(O)ydney Srammar © © chool
 4 unit mathematics

Crial DSC Examinazion 1994

1. (a) Find: (i) $\int \frac{e^{x} d x}{\left(1-e^{x}\right)^{2}}$ (ii) $\int \frac{x+3}{x^{2}-4 x+8} d x$.
(b) Evaluate $\int_{0}^{\frac{\pi}{2}} x \cos x d x$.
(c) Evaluate $\int_{1}^{3} \frac{d x}{x^{2}+2 x}$
(d) Use the substitution $x=\sin ^{2} \theta$ to evaluate $\int_{0}^{\frac{1}{2}} \frac{\sqrt{x} d x}{(1-x)^{\frac{3}{2}}}$.
2. (a) Find both square roots of $5-42 i$, expressing them in the form $a+i b$, where a and b are real.
(b)

$A B C D E F$ is a regular hexagon drawn on an Argand diagram with vertex A at the point $(2,0) . O$ is the centre of the hexagon.
(i) Copy the diagram.
(ii) On your diagram show the region within the hexagon in which both the inequalities $|z| \geq 1$ and $-\frac{\pi}{3} \leq \arg z \leq \frac{\pi}{3}$ are satisfied.
(iii) Find, in the form $|z-c|=R$, the equation of the circle through the point O, B and F.
(iv) Find the complex numbers represented by the points C and E.
(v) The hexagon is rotated anticlockwise about the origin through an angle of $\frac{\pi}{4}$. Express in the form $r(\cos \theta+i \sin \theta)$ the complex numbers represented by the new positions of C and E.
(c) z is a point on the circle $|z-1|=1$ and $\arg z=\theta$.
(i) Find $\arg (z-1)$ in terms of θ.
(ii) Hence, or otherwise, find $\arg \left(z^{2}-3 z+2\right)$ in terms of θ.
3. (a)

The diagram shows the region bounded by the curve $y^{2}=4(x-2)$ and the line $x=6$. Use the method of cylindrical shells to find the volume of the solid formed by rotating the given region about the y axis.

The diagram shows a solid with base in the x - y-plane. Every cross-section perpendicular to the y-axis is a square. One part of the base is the segment $O A B$ of the parabola $x^{2}=2 y$ cut off by the line $y=8$. The other part of the base is a semi-circle with diameter $A B$. Consider a slice S of the solid of width δy and perpendicular to the y-axis as shown.
(i) Find an expression for the volume δV of S in terms of x and δy.
(ii) Find the volume of the solid.
4. (a) (i) If $f(x)=(x+1)(x-2)$, sketch the graphs of the following on separate diagrams.
$(\boldsymbol{\alpha}) y=f(x)(\boldsymbol{\beta}) y=\frac{1}{|f(x)|}(\boldsymbol{\gamma}) y=\ln [f(x)]$.
(ii) If also $g(x)=-x^{2}$, sketch the graphs of $y^{2}=g(x) f(x)$. Use calculus to describe the nature of the curve at $x=-1, x=0$ and $x=2$.
(b) Find a general solution (in radians) of the equation $\cos 3 x-\cos x+\cos 5 x=0$
(c) If $2 \sin 2 x+\cos 2 x=k$, show that $(1+k) \tan ^{2} x-4 \tan x-1+k=0$. Also show that if $\tan x_{1}$ and $\tan x_{2}$ are the roots of this quadratic equation in $\tan x$ then $\tan \left(x_{1}+x_{2}\right)=2$.
5. (a)

From a point on the ground an object of mass m is projected vertically upwards with an initial speed of u. It reaches a maximum height of H before falling back to the ground. The resistance due to air is equal to $m k v^{2}$ and g is the acceleration due to gravity.
(i) Show that $H=\frac{1}{2 k} \ln \left(\frac{g+k u^{2}}{g}\right)$.
(ii) Q is a point of height d above the ground. Let V_{1} be the speed of the object at Q on its upward path. Show that $d=\frac{1}{2 k} \ln \left(\frac{g+k u^{2}}{g+k V_{1}^{2}}\right)$
(iii) On the object's downwards path it passes Q with a speed of half that when first at Q. Show that $V_{1}=\sqrt{\frac{3 g}{k}}$.
(b)

A particle P is rotating in a circle with a uniform angular velocity of $4 \mathrm{rad} / \mathrm{s}$. The
circle has a centre A and a radius of 40 metres. B is the initial position of the particle P. From a point O, a distance of H metres vertically above A, a stone is projected with a speed of $20 \mathrm{~m} / \mathrm{s}$ at an angle of θ to the horizontal. The stone is projected when P is at its initial position B, and the path of the stone is in the same vertical plane as O, A and B. The stone strikes B at the moment that P has completed exactly 3 revolutions after the stone was projected.
(i) Derive the equations of motion for the stone in flight. (Use $g=10 \mathrm{~m} / \mathrm{s}^{2}$ and take O as the origin).
(ii) Show that the time of flight for the stone is $\frac{3 \pi}{2}$ seconds.
(iii) Find H and θ (nearest metre and degree respectively).
6. (a) (i) ($\boldsymbol{\alpha}$) Prove that for any polynomial $P(x)$, if k is a zero of multiplicity 2 , then k is also a zero of $P^{\prime}(x)$.
($\boldsymbol{\beta}$) Show that $x=1$ is a double root of the equation $x^{2 n}-n x^{n+1}+n x^{n-1}-1=0$.
(ii) Find all the roots of $3 x^{3}-26 x^{2}+52 x-24=0$, given that the roots are in geometric progression.
(b)

$P Q R$ is a triangle inscribed in a circle with W a point on the $\operatorname{arc} Q R . W X$ is perpendicular to $P R$ produced, and $W Z$ is perpendicular to $P Q$.
(i) Copy this diagram.
(ii) Explain why $W X R Y$ and $W Y Z Q$ are cyclic quadrilaterals.
(iii) Show that the points X, Y and Z are collinear.
7. (a) (i) $(\boldsymbol{\alpha})$ If $z=-1+i$, express z in mod-arg form.
$\boldsymbol{(} \boldsymbol{\beta})$ On an Argand diagram plot the points representing the complex numbers z^{4} and $\frac{1}{z^{2}}$.
(ii) Sketch the locus of those points w such that $\left|w-z^{4}\right|=\left|w-\frac{1}{z^{2}}\right|$. Find the Cartesian equation of this locus.
(iii) $(\boldsymbol{\alpha})$ Write down, in mod-arg form, the five of the equation $z^{5}=1$.
($\boldsymbol{\beta}$) Show that $z^{5}-1$ can be fully factorized in the form
$z^{5}-1=(z-1)\left(z^{2}+2 z \cos \frac{3 \pi}{5}+1\right)\left(z^{2}+2 z \cos \frac{\pi}{5}+1\right)$.
(b) (i) Find the sum of the series $x+x^{2}+x^{3}+\cdots+x^{n}$.
(ii) Hence find the sum of the series $x+2 x^{2}+3 x^{3}+\cdots+n x^{n}$.
8. (a) (i) If $I_{n}=\int_{0}^{1} x^{n} e^{x^{2}} d x$, show that $I_{n}+(n-1) I_{n-2}=2 e,(n \geq 2)$.
(ii) Evaluate I_{5}.
(b) The function $f(x)$ is given by $f(x)=x-\ln \left(1+x^{2}\right)$.
(i) Show that $f^{\prime}(x) \geq 0$ for all values of x.
(ii) Deduce that $e^{x}>1+x^{2}$ for all positive values of x.
(c) If $u_{n+1}=u_{n}+u_{n}^{2}$ and $u_{1}=\frac{1}{3}$, find $\sum_{n=1}^{\infty} \frac{1}{1+u_{n}}$.

