(O)ydney Srammar © © Chool
 4 unit mathematics

Criad 2)SC Examinacion 1995

1. (a) Find (i) $\int x^{3} \ln x d x$ (ii) $\int \sin ^{3} \theta d \theta$.
(b) Find the exact value of (i) $\int_{0}^{1} \frac{4 x-13}{2 x^{2}+x-6} d x$ (ii) $\int_{5}^{7} \frac{d x}{x^{2}-10 x+29}$
(c) Using the substitution $u=a-x$, prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$. Hence or otherwise prove that $\int_{0}^{1} x(3-x)^{11} d x=\frac{3^{12}}{52}$.
2. (a) Let $z=3-2 i$ and $u=-5+6 i$.
(i) Find $\Im(u z)$ (ii) Find $|u-z|$ (iii) Find $\overline{-2 i z}$ (iv) Express $\frac{u}{v}$ in the form $a+i b$, where a and b are real numbers.
(b) On separate Argand diagrams sketch:
(i) $\{z:|z-2 i|<2\}$ (ii) $\left\{z: \arg (z-(1+i))=-\frac{3 \pi}{4}\right\}$.
(c) (i) Show that the solutions of the equation $z^{3}=1$ in the complex number system are $z=\cos \theta+i \sin \theta$ for $\theta=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}$.
(ii) If $\omega=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}$ show that $\omega^{2}+\omega+1=0$ and $\omega^{3}-\omega^{2}-\omega-2=0$.
(iii) Hence or otherwise solve the cubic equation $z^{3}-z^{2}-z-2=0$.
3. (a) Show, using the identity $2 \sin A \cos B=\sin (A+B)+\sin (A-B)$, that $\int_{0}^{t} \sin \phi x \cos \phi(t-x) d x=\frac{1}{2} t \sin \phi t$.
(b) The area bounded by the curve $y=x^{2}+1$ and the line $y=3-x$ is rotated about the x-axis.
(i) Sketch the curve and the line clearly showing and labelling all the points of intersection.
(ii) By considering slices perpendicular to the x-axis, find the volume of the solid formed.
(c) The graph below is of the circle $(x-3)^{2}+y^{2}=4 . \quad P(x, y)$ is a point on the circumference of the circle. $P M$ is the left-hand end of a strip of width δx which is

(i) Show, using the method of cylindrical shells, that the volume V of the doughnutshaped solid formed when the region inside the circle is rotated about the y-axis is given by $V=4 \pi \int_{1}^{5} x \sqrt{4-(x-3)^{2}} d x$.
(ii) Hence find the volume of the doughnut by using the substitution $u=x-3$.
4. (a) The sketch is of the even function $y=f(x)$.

On separate number planes sketch each of the following, clearly showing all important features:
(i) $(\boldsymbol{\alpha}) y=f(x)-2(\boldsymbol{\beta}) y=f(x-2)(\gamma) y=|f(x)|$
($\boldsymbol{\delta}) y^{2}=f(x)$
$(\varepsilon) y=\frac{1}{f(x)}$.
(ii) Suppose that $f(x)$ is the function

$$
f(x)= \begin{cases}\frac{1}{4}(4+x)(2-x), & \text { for } x<0 \\ \frac{1}{4}(4-x)(2+x), & \text { for } x \geq 0\end{cases}
$$

Sketch on a number plane the graph of the function $y=f^{\prime}(x)$, showing all important features.
(b) Let α, β and γ be the roots of the cubic equation $x^{3}+A x^{2}+B x+8=0$, where A and B are real. Furthermore $\alpha^{2}+\beta^{2}=0$ and $\beta^{2}+\gamma^{2}=0$.
(i) Explain why β is real and α and γ are not real.
(ii) Show that α and γ are purely imaginary.
(iii) Find A and B.
5. (a) In the figure below, $\triangle A B C$ is acute angled and $A D, B E$ and $C F$ are altitudes concurrent at the orthocentre $O . \triangle D E F$ is called the pedal triangle of $\triangle A B C$.

(i) By letting $\angle O C E=\alpha$ and considering \triangle 's $A B E$ and $A F C$ prove that $\angle O C E=$ $\angle O B F$.
(ii) Prove that O, D, C, E are concyclic.
(iii) Deduce that $\angle O D E=\angle O C E$.
(iv) Hence deduce that in an acute angled triangle the altitudes bisect the angles of the pedal triangle through which they pass.
(b) It is given that if $J_{n}=\int \cos ^{n-1} x \sin n x d x$ and $n \geq 1$ then
$J_{n}=\frac{1}{2 n-1}\left((n-1) J_{n-1}-\cos ^{n-1} x \cos n x\right)$
(c) Solve the equation $\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(3 x-2)$.
6. (a) (i) A vehicle of mass m is moving with speed v around a curve of radius r banked at angle θ. If the normal reaction between the road and the vehicle is N, the lateral thrust (taken to be up the slope) is T and the acceleration due to gravity is g, draw a diagram that represents the forces on the vehicle.
(ii) Hence prove that when lateral thrust is zero, $\tan \theta=\frac{v^{2}}{r g}$.
(iii) A train is moving at 72 km per hour on a curve of radius 360 metres and the distance between the rails is 1.4 metres. Taking the acceleration due to gravity to be $9.8 \mathrm{~m} / \mathrm{s}^{2}$ find how much (to the nearest centimetre) the outer rail must be raised in order that there may be no lateral thrust.
(b) (i) Prove that the acceleration of a body with displacement x and velocity v is given by $\ddot{x}=v \frac{d v}{d x}$.
(ii) A plane of mass M lands on the tarmac with speed u. When it is moving at speed v it experiences resistance forces of αv^{2} due to air resistance and a constant force β due to the friction between the wheels and the tarmac, where α and β are constants
($\boldsymbol{\alpha}$) Show that the equation of motion is $\frac{d v}{d x}=-\frac{1}{M}\left(\alpha v+\frac{\beta}{v}\right)$.
($\boldsymbol{\beta}$) Show that the distance required to bring the plane to rest is $\frac{M}{2 \alpha} \ln \left(1+\frac{\alpha}{\beta} u^{2}\right)$.
(γ) If it takes T seconds to bring the plane to rest show that $T=\frac{M}{\sqrt{\alpha \beta}} \tan ^{-1}\left(u \sqrt{\frac{\alpha}{\beta}}\right)$.
7. (a) A sequence $\left\{b_{n}\right\}$ is defined by $b_{1}=1$ and $b_{n+1}=b_{n}\left(b_{n}+1\right)$, for all $n \geq 1$.
(i) Evaluate b_{2}, b_{3}, b_{4}.
(ii) Use mathematical induction to prove that for each $n: b_{n+1}=1+\sum_{r=1}^{n} b_{r}^{2}$.
(iii) Show that $\left(2 b_{n+1}+1\right)^{2}=\left(2 b_{n}+1\right)^{2}+\left(2 b_{n+1}\right)^{2}$. Hence deduce that $\left(2 b_{n+1}+1\right)^{2}=$ $\left(2 b_{1}+1\right)^{2}+\sum_{r=2}^{n+1}\left(2 b_{r}\right)^{2}$.
(iv) Evaluate b_{5} and express it as the sum of 5 positive squares.
(v) Hence prove that $3^{2}+4^{2}+12^{2}+84^{2}+3612^{2}=3613^{2}$.
(b) (i) Prove that $(1+i \tan \theta)^{n}+(1-i \tan \theta)^{n}=2 \sec ^{n} \theta \cos n \theta$.
(ii) Hence prove that $\Re\left(1+i \tan \frac{\pi}{8}\right)^{8}=64(12 \sqrt{2}-17)$.
8. (a) (i) Let $f(x)=\frac{1}{1+x^{2}}$. ($\boldsymbol{\alpha}$) Prove that $f(x)$ is a decreasing function for all $x>0$.
($\boldsymbol{\beta}$) Hence or otherwise prove that if $0<x<1$ then $\frac{1}{2}<\frac{1}{1+x^{2}}<1$.
(ii) Find the sixth-degree polynomial $P(x)$ and the constant A such that $x^{4}(1-x)^{4} \equiv$ $\left(1+x^{2}\right) P(x)+A$.
(iii) Hence show that $\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x=\frac{22}{7}-\pi$.
(iv) Use (i) to deduce that: $\frac{22}{7}-\frac{1}{630}<\pi<\frac{22}{7}-\frac{1}{1260}$.
(b) Let $f(x)$ be a function which satisfies the equation $f(x y)=f(x)+f(y)$ for all $x, y \neq 0$.
(i) Show that $f(1)=0=f(-1)$ and that $f(x)$ is an even function.
(ii) Prove that $f(x+y)-f(x)=f\left(1+\frac{y}{x}\right)$ for $x, y, x+y \neq 0$.
(iii) Suppose $f(x)$ is differentiable at $x=1$ and $f^{\prime}(1)=1$. Deduce that $f(x)$ is differentiable at any $x \neq 0$ and $f^{\prime}(x)=\frac{1}{x}$.

