(a) Find $\int_{0}^{4} \frac{1}{\sqrt{2 x+1}} d x$.
(b) Find $\int \tan ^{3} x \sec ^{2} x d x$.
(c) Find $\int \frac{x}{x^{2}-4 x+8} d x$.
(d) (i) Find the values of A and B such that $\frac{3 x^{2}-10}{x^{2}-4 x+4}=3+\frac{A}{x-2}+\frac{B}{(x-2)^{2}}$.
(ii) Find $\int \frac{3 x^{2}-10}{x^{2}-4 x+4} d x$.
(e) Use integration by parts twice, to show that $\int_{1}^{e} \sin (\ln x) d x=\frac{e}{2}(\sin 1-\cos 1)+\frac{1}{2}$.
(a) Simplify $|\cos \theta+i \sin \theta|$.
(b) Express $\frac{i^{5}(1-i)}{2+i}$ in the form $a+i b$ where a and b are rational.
(c) By drawing a diagram, or otherwise, find the solutions of $z^{5}=-1$.
(d) Graph the region in the Argand diagram which simultaneously satisfies

$$
1 \leq|z-i| \leq 2 \text { and } \operatorname{Im} z \geq 0
$$

(e) Find the complex number ϕ if $1+i$ is a root of the equation $z^{2}+\phi z-i=0$.
(f)

Suppose that $z=1+\sqrt{3} i$ and $\omega=(\operatorname{cis} \alpha) z$ where $-\pi<\alpha \leq \pi$.
(i) Find the argument of z.
(ii) Find the value of α if ω is purely imaginary and $\operatorname{Im}(\omega)>0$.
(iii) Find the value of $\arg (z+\omega)$ if ω is purely imaginary and $\operatorname{Im}(\omega)>0$.

QUESTION THREE (15 marks) Use a separate writing booklet.
(a)

The diagram above shows the region bounded by the curve $x=2-y^{2}$ and the lines $x=3, y=1$ and $y=-1$. This region is rotated about the y-axis to form a solid. The interval ℓ at height y sweeps out an annulus.
(i) Show that the annulus at height y has area equal to

$$
\pi\left(5+4 y^{2}-y^{4}\right)
$$

(ii) Find the volume of the solid.
(b) Consider the function $f(x)=\frac{1}{1+x^{3}}$.
(i) Show that there is a horizontal point of inflexion at $x=0$.
(ii) Find the vertical asymptote and the horizotal asymptote.
(iii) Sketch $y=f(x)$ showing the features from parts (a) and (b) and the y-intercept.
(iv) On a separate diagram sketch $y=|f(x)|$.
(v) On a separate diagram sketch $y^{2}=f(x)$.
(vi) On a separate diagram sketch $y=e^{f(x)}$.
(a) Consider the polynomial equation $x^{3}-3 x^{2}+x-5=0$ which has roots α, β and γ.
(i) Show that $\alpha+\beta=3-\gamma$.
(ii) Write down similar expressions for $\alpha+\gamma$ and $\beta+\gamma$ and hence find a polynomial equation which has the roots $\alpha+\beta, \alpha+\gamma$ and $\beta+\gamma$.
(b)

The diagram above shows a monument 50 metres high. A horizontal cross section x metres from the top is an equilateral triangle with sides $\frac{x}{5}$ metres. Use integration to find the volume of the monument.
(c)

Use the method of cylindrical shells to find the volume of the solid formed when the region bounded by the curve $y=\frac{\sin x}{x}$ and the lines $y=0$ and $x=\frac{\pi}{2}$ is rotated about the y-axis.
(d) An hyperbola is defined parametrically by $x=3 \sec \theta$ and $y=4 \tan \theta$.
(i) Write the equation of the curve in Cartesian form and show that the eccentricity is $\frac{5}{3}$.
(ii) Sketch the curve showing its x-intercepts, foci, directrices and asymptotes.

QUESTION FIVE (15 marks) Use a separate writing booklet.
(a)

The diagram above shows the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with foci $F(a e, 0)$ and $F^{\prime}(-a e, 0)$. $P\left(x_{1}, y_{1}\right)$ is any point on the ellipse.
Let M and M^{\prime} be the feet of the perpendiculars from P to the directrices $x=\frac{a}{e}$ and $x=-\frac{a}{e}$.
Line $T S$ is a tangent to the ellipse at P and G is the point where the normal at P. meets the x-axis.
(i) Show that the equation of the normal at P is $\frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}$.
(ii) Show that the point G has co-ordinates $\left(e^{2} x_{1}, 0\right)$.
(iii) Show that the distance $P F$ is $a-e x_{1}$.
(iv) Show that $\frac{P F}{F G}=\frac{P F^{\prime}}{F^{\prime} G}$.
(b) (i) Show that $1-\cos 2 \theta-i \sin 2 \theta=2 \sin \theta(\sin \theta-i \cos \theta)$.
(ii) Given that $\frac{z-1}{z}=\operatorname{cis} \frac{2 \pi}{5}$, show that $z=\frac{1}{2}\left(1+i \cot \frac{\pi}{5}\right)$.

QUESTION SIX (15 marks) Use a separate writing booklet.
(a)

In the diagram above, $A B C$ is a triangle with the circumcircle through points A, B and C drawn. P is another point on the minor arc $B C$. Points L, M and N are the feet of the perpendiculars from P to the sides $B C, C A$ and $A B$ respectively.
(i) Copy the diagram and explain why P, L, N and B are concyclic.
(ii) Explain why P, L, C and M are concyclic.
(iii) Let $\angle P L M=\alpha$.
(α) Show that $\angle A B P=\alpha$.
(β) Hence show that M, L and N are collinear.
(b) A particle of unit mass is thrown vertically downwards with an initial velocity of v_{0}. It experiences a resistive force of magnitude $k v^{2}$ where v is its velocity.
Taking downwards as the positive direction, the equation of motion of the particle is given by

$$
\ddot{x}=g-k v^{2} .
$$

Let V be the terminal velocity of the particle.
(i) Explain why $V=\sqrt{\frac{g}{k}}$.
(ii) Show that $v^{2}=V^{2}+\left(v_{0}^{2}-V^{2}\right) e^{-2 k x}$.
(c) Let $z=x+i y$ be any non-zero complex number such that $z+\frac{1}{z}=k$, where k is a real number.
(i) Prove that either $y=0$ or $x^{2}+y^{2}=1$.
(ii) Show that if $y=0$ then $|k| \geq 2$.
(a) (i) Write down $\cos 2 \theta$ in terms of $\tan \theta$.
(ii) Show that $\cos 4 \theta=\frac{1-6 \tan ^{2} \theta+\tan ^{4} \theta}{1+2 \tan ^{2} \theta+\tan ^{4} \theta}$.
(iii) Deduce that $\tan ^{2} \frac{\pi}{8}+\tan ^{2} \frac{3 \pi}{8}=6$.
(b) Consider the equation $z^{7}=1$.

This equation has seven roots $1, \rho, \rho^{2}, \ldots, \rho^{6}$, where $\rho=\operatorname{cis} \frac{2 \pi}{7}$.
Let $\alpha=\rho+\rho^{2}+\rho^{4}$ and $\theta=\rho^{3}+\rho^{5}+\rho^{6}$.
(i) Express ρ^{9} as a lower positive power of ρ.
(ii) Simplify $\alpha+\theta$.
(iii) Simplify $\alpha \theta$.
(iv) Form a quadratic equation with α and θ as roots.
(v) Deduce that $\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{8 \pi}{7}=-\frac{1}{2}$.
(a) The sequence $a_{1}, a_{2}, \ldots, a_{n}$ is defined by $a_{n}=\frac{(2 n)!}{2^{n} n!}$.

Show by induction on n that a_{n} is an odd positive integer.
(b) Suppose that $y=f(x)$ is an increasing function for $x \geq 1$.

Suppose also that $f(x) \geq 0$ for $x \geq 1$.
(i) Explain, with the aid of a diagram, why

$$
f(1)+f(2)+\cdots+f(n-1)<\int_{1}^{n} f(x) d x<f(2)+f(3)+\cdots+f(n)
$$

(ii) Show that $\int_{1}^{n} \ln x d x=n \ln n-n+1$.
(iii) Use parts (i) and (ii) to deduce that, for $n>1$:
(α) $n!>\frac{n^{n}}{e^{n-1}}$
(β) $n!<\frac{n^{n+1}}{e^{n-1}}$
(iv) Find $\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}$. (You may assume that $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.)

SOLUTIONS TO SGS EXT 2 TRLAL 2005
Oivestron One
(a)

$$
\begin{aligned}
& \int_{0}^{4}(2 x+1)^{-\frac{1}{2}} d x \\
= & {\left[\frac{(2 x+1)^{\frac{1}{2}}}{2 \times \frac{1}{2}}\right]_{0}^{4} } \\
= & \sqrt{9}-\sqrt{1} \\
= & 2 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { b) } I=\int \tan ^{3} x \sec ^{2} x d x \\
& \text { Let }=u=\tan x \\
& I=d x=\sec ^{2} x d x \\
& I= \int u^{3} d u \\
&= \frac{u^{4}}{4}+C \\
&= \frac{\tan ^{4} x}{4}+C
\end{aligned}
$$

(c) $\int \frac{x}{x^{2}-4 x+8} d x$
$=\frac{1}{2} \int \frac{2 x-4+4}{x^{2}-4 x+8} d x$
$=\frac{1}{2} \int \frac{2 x-4}{x^{2}-4 x+8} d x+\int \frac{2}{(x-2)^{2}+4} d x$
$=\frac{1}{2} \ln \left(x^{2}-4 x+8\right)+2 \times \frac{1}{2} \tan ^{-1} \frac{x-2}{2}+C$
$=\frac{\frac{1}{2} \ln \left(x^{2}-4 x+8\right)+\tan ^{-1} \frac{x-2}{2}+C}{\sqrt{ }}$

$$
\begin{aligned}
& \text { (d) } \frac{3 x^{2}-10}{x^{2}-4 x+4}=3+\frac{A}{x-2}+\frac{B}{(x-2)^{2}} \\
& 3 x^{2}-10=3(x-2)^{2}+A(x-2)+B
\end{aligned}
$$

subst: 12-10 $=B$

$$
x=2 \quad B=2
$$

subst: $-10=12+B-2 A$
$x=0$

$$
\begin{aligned}
& -22=2-2 A \\
& -24=-2 A \\
& A=12
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{3 x^{2}-10}{x^{2}-4 x+4} d x & =\int 3+\frac{12}{x-2}+\frac{2}{(x-2)^{2}} \\
& =\underbrace{3 x+12 \ln |x-2|-\frac{4}{x-1}}_{V}+C
\end{aligned}
$$

(e) $\quad \int_{1}^{e} \sin (\ln x) \frac{d}{d x}(x) d x$

$$
\begin{aligned}
& =x \sin (\ln x)]_{1}^{e}-\int_{1}^{e} x \cdot \cos (\ln x) \cdot \frac{1}{x} d x \\
& =x \sin (\ln x)]_{1}^{e}-\int_{1}^{e} \cos \ln x \frac{d}{d x}(x) d x \\
& =e \sin 1-0-\left\{[x \cos (\ln x)\}_{1}^{e}-\int_{1}^{e} x x-\sin (\ln x) \cdot \frac{1}{x} d x\right. \\
& =e \sin 1-\left\{e \cos 1-1+\int_{1}^{e} \sin (\ln x) d x\right.
\end{aligned}
$$

So $2 \int_{1}^{e} \sin (\ln x) d x=e \sin 1-e \cos 1+1$

$$
\int_{1}^{e} \sin (\ln x) d x=\frac{e}{2}[\sin 1-\cos 1]+\frac{1}{2}
$$

Guestron Two
(a)

$$
|\cos \theta+r \sin \theta|=1
$$

(b)

$$
\begin{aligned}
\frac{\tau^{5}(1-\tau)}{2+i} & =\frac{2(1-\imath)}{2+i} \\
& =\frac{1+1}{2+i} \\
& =\frac{(1+i)(2-i)}{4+1} \\
& =\frac{2-\tau+2 i+1}{5} \\
& =\frac{3}{5}+\frac{1}{5} i
\end{aligned}
$$

(c)

Clealy $z=-1$.
is a $\rightarrow 0+$.
The other four roots are equally spacied around the curde.

Solvtions to $z^{5}=-1$ are
(d)

(e) $1+i$ is a noot
(iii) Multiplication by cis α is a rotathon antrclockwise thongh $\alpha \quad \alpha+\frac{\pi}{3}=\frac{\pi}{2}$
So of w is punely magenony and $\operatorname{Sm}(z)>0$ then $\alpha=\frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6} \quad /$
(iii) $O A B C \sim a r h o m b \cup S$ Duogonals brsect vertex

$$
\text { So } \circ \operatorname{og}(z+\omega)=\pi+\frac{\pi}{12}
$$

$$
=\frac{5 \pi}{12}
$$

$$
\begin{align*}
& \therefore(1+c)^{2}+\phi(1+c)-i=0 \\
& 1+2 i-1+\phi(1+c)-c=0 \\
& \phi=\frac{-i}{1+i} \times \frac{1-i}{1-i} \\
& (f) \quad \phi=\frac{-1-i}{B+A^{2}} \\
& \tan \theta=\sqrt{3} \\
& \theta=\frac{\pi}{3} \\
& \text { ory }(z)=\frac{\pi}{3} \tag{t}
\end{align*}
$$

(a)
(i)

$$
\begin{aligned}
A(y) & =\pi\left(r_{1}^{2}-r_{2}^{2}\right) \\
& =\pi\left(3^{2-}-\left(2-y^{2}\right)^{2}\right) \\
& =\pi\left(9-4+4 y^{2}-y^{4}\right) \\
& =\pi\left(5+4 y^{2}-y^{4}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
V & =2 \pi \int_{0}^{1} 5+4 y^{2}-y^{4} d y \\
& =2 \pi\left[5 y+\frac{4 y^{3}}{3}-\frac{y^{5}}{5}\right]_{0}^{1} \\
& =2 \pi\left[5+\frac{4}{3}-\frac{1}{5}\right] \\
& \left.=\frac{2 \pi[75+20-3]}{15}\right] \frac{184 \pi}{15}
\end{aligned}
$$

(b) (1)

$$
\begin{aligned}
& f(x)=\left(1+x^{3}\right)^{-1} \\
& f^{\prime}(x)=-\frac{3 x^{2}}{\left(1+x^{3}\right)^{2}}
\end{aligned}
$$

Stat point where $x=0$
Horgontal point of inflescion where $x=0$ $y=1$

x	$-\frac{1}{2}$	0	$\frac{1}{2}$
y^{\prime}	$-v e$	0	$-v e$

(ii) Vertical osymptote at $x=-1$

As $x \rightarrow \infty, y \rightarrow 0^{+}$

$$
x \rightarrow-\infty \quad y \rightarrow 0
$$

Honzoutve asymptute at $y=0$.

Oueston Forr
(a)

$$
x^{3}-3 x^{2}+x-5=0
$$

(1)

$$
\begin{aligned}
\alpha+\beta+\gamma & =-\frac{b}{\alpha} \\
\alpha+\beta+\gamma & =3 \\
\alpha+\beta & =3-\gamma
\end{aligned}
$$

(ii) $\beta+\gamma=3-\alpha$ and $\alpha+\gamma=3-\beta$

The polyromal equotion has noots

$$
3-\alpha, \quad 3-\beta, 3-\gamma
$$

Tranafornation s $y=3-x$

$$
x=3-y
$$

New equation i $(3-y)^{3}-3(3-y)^{2}+(3-y)-5=0$
(b)

$$
\begin{aligned}
& \frac{x^{\circ}}{\frac{x}{5}} \\
& A(x)=\frac{x}{5}\left(\frac{x}{5}\right)^{2} \sin 60^{\circ} \\
& =\frac{x^{2}}{50} \cdot \frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& V=\lim _{\Delta x \rightarrow 0} \sum A(x) \Delta x \\
& V=\int_{0}^{50} \frac{1}{2}\left(\frac{x}{5}\right)^{2} \cdot \frac{\sqrt{3}}{2} x x
\end{aligned}
$$

$$
=\frac{\sqrt{3}}{100}\left[\frac{x^{3}}{3}\right]_{0}^{50}
$$

$$
=\frac{\sqrt{3}}{100} \times \frac{50^{3}}{3}
$$

$$
=\frac{1250 \sqrt{3}}{6} \text { unvt }^{3}
$$

Onestron Five
(a) $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(i) Differentiate implicitly wrt c

$$
\begin{array}{r}
\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \\
\frac{d y}{d x}=-\frac{b^{2} x}{a^{2} y}
\end{array}
$$

pt $P\left(x_{1}, y_{2}\right)$, groduent $=\frac{-b^{2} x_{1}}{a^{2} y_{1}}$ So gradent of normal is $\frac{a^{2} y_{1}}{b^{2} x_{1}}$
Equ of noxmae s

$$
\begin{aligned}
& y-y_{1}=\frac{a^{2} y_{1}}{b^{2} x}\left(x-x_{1}\right) \\
& \frac{y}{y_{1}}-1=\frac{a^{2}}{b^{2}}\left(\frac{x}{x_{1}}-1\right) \\
& \frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}
\end{aligned}
$$

(II)

When $y=0, x=\frac{a^{2}-b^{2}}{a^{2}} x$,
But $\frac{a^{2}-b^{2}}{a^{2}}=e^{2}$
So $\quad G=\left(e^{2} x, 0\right)$
(iii) Now PF $=e^{P M}$ (otefin of eltope)

$$
\begin{aligned}
P F & =e\left(\frac{a}{e}-x_{1}\right) \\
& =a-e x_{1}
\end{aligned}
$$

(IV)

$$
\begin{aligned}
& \frac{P F}{F G}=\frac{a-e x_{1}}{a e-e^{2} x_{1}}=\frac{1}{e} \\
& \frac{P F^{\prime}}{F^{\prime} G}=\frac{a+e x_{1}}{a+e^{2} x_{1}}=\frac{1}{e}
\end{aligned}
$$

So $\frac{P F}{F G}=\frac{P F^{\prime}}{F^{\prime} G}$
(b)
(1)

$$
\begin{aligned}
\angle H S & =1-\cos 2 \alpha-i \sin 2 \alpha \\
& =1-\left(1-2 \sin ^{2} \alpha\right)-2 i \sin \alpha \cos \alpha \\
& =2 \sin ^{2} \alpha-2 i \sin \alpha \cos \alpha \\
& =2 \sin \alpha(\sin \alpha-i \cos \alpha) \\
& =\text { RHS }
\end{aligned}
$$

(ii)

$$
\begin{gathered}
\frac{z-1}{z}=\operatorname{cis} \frac{2 \pi}{5} \\
z-1=z \cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5} \\
z\left(1-\cos \frac{2 \pi}{5}-i \sin \frac{2 \pi}{5}\right)=1 \\
z \times 2 \sin \frac{\pi}{5}\left(\sin \frac{\pi}{5}-i \cos \frac{\pi}{5}\right)=1 \quad \text { by partu) } \\
2 z \sin \frac{\pi}{5}=\sin \frac{\pi}{5}+i \cos \frac{\pi}{5} \\
z=\frac{1}{2}\left(1+i \cot \frac{\pi}{5}\right)
\end{gathered}
$$

Q 6
a)

(1) $\ldots \angle B C P=\angle B N P$ (given)

So B, L, N and P are concyelere by converse of angles standing on the same are
(ii) $\angle P L C F \angle P M C=180^{\circ}$ (given)

So P, L, C and M are concyche by. converse of opposite angles of a cychi quad.
(iii) $(\alpha) \quad \angle P C M=\angle P L M$ (angles standing on the same are PM) $=\alpha$
$\angle A B P=\angle P C M$ (opposite interior a ingle of

$$
\begin{aligned}
& =\angle P C M \text { (opposite interior angle of; } \\
& =\alpha \quad \text { egelice quad } A \cdot B \cdot P C \text {) }
\end{aligned}
$$

(β) $\angle N B P=\alpha \quad$ (same as $\angle A B P$)
$S_{\sigma} \angle N L P=180^{\circ}-\alpha$ (ope angles of cyclic quad $B N \angle P$)
So $\angle N \angle M=\angle N L P \pm \angle M \angle P$

$$
=180^{\circ}-\alpha+\alpha
$$

$$
=180^{\circ}
$$

$\therefore N, L$ and M are collinear.
(b) (1) Terminal velouty when $\ddot{x}=0$

$$
\begin{aligned}
& g-k V^{2}=0 \\
& V^{2}=\frac{g}{K}
\end{aligned}
$$

$S_{0} \quad V=\sqrt{\frac{g}{k}} \quad\binom{$ since $v_{0}>0$ initially and }{ so can mot change sign }
(b) (ii)

$$
\begin{aligned}
& v \frac{d v}{d c}=g-k v^{2} \\
& \frac{d x}{d v}=\frac{v}{g-k v^{2}} \\
& \frac{d c}{d v}=-\frac{1}{2 k} \frac{-2 k v}{g-k v^{2}} \\
& x=-\frac{1}{2 k}\left(g-k v^{2}\right)+c
\end{aligned}
$$

When $x=0\} \quad c=\frac{1}{2 K}\left(9-k v^{2}\right)$

$$
\begin{aligned}
v_{0} J & =-\frac{1}{2 k} \ln \left(\frac{g-k v^{2}}{g-k v_{0}^{2}}\right) \\
\frac{g-k v^{2}}{g-k v_{0}^{2}} & =e^{-2 k x} \\
g-k v^{2} & =\left(g-k v_{0}^{2}\right) e^{-2 k x} \\
-k v^{2} & =-g+\left(y-k v_{0}^{2}\right) e^{-2 k x} \\
v^{2} & =\frac{g}{k}+\left(v_{0}^{2}-\frac{g}{k}\right) e^{-2 k x} \\
v^{2} & =v^{2}+\left(v_{0}^{2}-v^{2}\right) e^{-2 k x}
\end{aligned}
$$

(c) (1) Let $z=x+c y$

$$
\begin{array}{r}
z=x+1 y+\frac{1}{x+1 y} \times \frac{x-2 y}{x^{2}-2 y} \\
\operatorname{Im}(z)=0 \text { so } y+\frac{y}{x^{2}+y^{2}}=0 \\
y\left(1-\frac{1}{x^{2}+y^{2}}\right)=0 \\
y=0 \text { or } x^{2}+y^{2}=1
\end{array}
$$

(ii)

$$
\begin{array}{ll}
x+\frac{1}{x}=k \\
-x^{2}-k x+1=0
\end{array} \quad A \quad A \geqslant 0
$$

has real roots.

$$
|k| \geqslant 2
$$

Onestion Seven
(a)
(1) $\quad \cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$
(ii)

$$
\begin{aligned}
\cos 4 \theta & =\frac{1-\tan ^{2} 2 \theta}{1+\tan ^{2} 2 \theta} \\
& =\frac{1-\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)^{2}}{1+\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)^{2}} \\
& =\frac{1-2 \tan ^{2} \theta+\tan ^{4} \theta-4 \tan ^{2} \theta}{1-2 \tan ^{2} \theta+\tan ^{4} \theta+4 \tan ^{2} \theta} \\
& =\frac{1-6 \tan ^{2} \theta+\tan ^{4} \theta}{1+2 \tan ^{2} \theta+\tan ^{4} \theta}
\end{aligned}
$$

consioter $\cos 4 \theta=0$

$$
\begin{aligned}
& 4 \theta=\frac{\pi}{2} \text { or } \frac{3 \pi}{2} \\
& \theta=\frac{\pi}{8}, \frac{3 \pi}{8}
\end{aligned}
$$

Conswor the quadmuter

$$
1-6 x+x^{2}=0 \rightarrow K
$$

where $x=\operatorname{tin}^{2} \theta$
The solutions to * are $\tan ^{2} \frac{\pi}{8}$ and $\operatorname{tur}^{2} \frac{3 \pi}{8}$

$$
\begin{aligned}
& \sum \cos t=\tan ^{2} \frac{\pi}{8}+\tan ^{2} \frac{3 \pi}{8}=-\frac{b}{w} \\
& \tan ^{2} \frac{\pi}{8}+\tan ^{2} \frac{3 \pi}{8}=6 \cdot \square
\end{aligned}
$$

Ouentron Seven (b)
(i)

$$
\begin{aligned}
\rho^{9} & =\rho^{7} \times \rho^{2} \\
& =\rho^{2}
\end{aligned}
$$

(ii) $\quad \alpha+\theta=\rho+\rho^{2}+\rho^{3}+\rho^{4}+\rho^{5}+\rho^{6}$

In the equation $j^{7}-1=0$

$$
\begin{aligned}
1+\rho+\rho^{2}+\rho^{3}+\rho^{4}+\rho^{5}+\rho^{6} & =0 \\
\rho+\rho^{2}+\rho^{3}+\rho^{4}+\rho^{5}+\rho^{6} & =-1
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\alpha \theta & =\left(\rho+\rho^{2}+\rho^{4}\right)\left(\rho^{3}+\rho^{5}+\rho^{6}\right) \\
& =\rho^{4}+\rho^{6}+\rho^{7}+\rho^{5}+\rho^{7}+\rho^{8}+\rho^{7}+\rho^{4}+\rho^{10} \\
& =\rho+\rho^{2}+\rho^{3}+\rho^{4}+\rho^{5}+\rho^{6}+\rho^{7}+2 \\
& =0+2
\end{aligned}
$$

(iv) The quadrate is

$$
\begin{aligned}
& x^{2}-(\alpha+\theta) x+\alpha \theta=0 \\
& x^{2}+x+2=0
\end{aligned}
$$

(v) The coots of $*$ are

$$
\begin{gathered}
x=\frac{-1 \pm \sqrt{7} i}{2} \\
\operatorname{Re}\left(\rho+\rho^{2}+\rho^{4}\right)=-\frac{1}{2} \\
\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{8 \pi}{7}=-\frac{1}{2}
\end{gathered}
$$

3 (a) $\quad a_{1}=\frac{2!}{2^{\prime} \times 1!}=1$, which is odd.
Suppose that $a_{k}=\frac{(2 k)!}{2^{k} k!}$ is odd.
Prove that a_{k+1} is odd:

$$
\begin{aligned}
a_{k+1} & =\frac{(2 k+2)!}{2^{k+1}(k+1)!} \\
& =\frac{(2 k+2)(2 k+1)(2 k)!}{2 \times 2^{k} \times(k+1) \times k!} \\
& =\frac{2(k+1)(2 k+1)(2 k)!}{2(k+1)} 2^{k} k! \\
& =(2 k+1) \cdot a_{k} \\
& =\text { odd }
\end{aligned}
$$

$\therefore a_{k+1}$ is odd
(b) (a)
 sum of area exact area < sum of areas
of lower rectangles prover curve $x=1$ to $x \times n$ of upper rectangles

$$
f(1)+f(2)+\cdots+f(n-1)<\int_{1}^{n} f(x) d x<f(2)+f(3)+\cdots+f(n)
$$

(ii) $\int_{1}^{1} \ln x \frac{x}{d x}(x) d x$

$$
\begin{aligned}
& =[x \ln x]_{1}^{n}-\int_{1}^{n} 1 d x \\
& =n \ln n-n+1
\end{aligned}
$$

(iii) (x) Let $f(x)=\ln x$

From (i) : $\quad \int_{1}^{n} \ln x d x<\ln 2+\ln 3+\cdots+\ln n$
Using (ii) $n \ln n-n+1<\ln n$!

$$
\begin{aligned}
& n!>e^{\ln n^{n}-n+1} \\
& n!>n^{n} e^{1-n} \\
& n!>\frac{n^{n}}{e^{n-1}}
\end{aligned}
$$

(β) From (i) and (ii)

$$
\begin{array}{r}
\ln 1+\ln 2+\cdots+\ln (n-1)<n \ln n-n+1 \\
\ln (n-1)!<\ln n^{2}-n+1 \\
(n-1)!<n^{n} e^{1 n} \\
n!<\frac{n^{n+1}}{e^{n-1}}
\end{array}
$$

(iv) From (iii) $\frac{n^{n}}{e^{n-1}}<n^{1}<\frac{n^{n+1}}{e^{n-1}}$

Tang $n_{\text {th }}$ the $\quad \frac{n}{e^{1-\frac{1}{n}}}<(n!)^{\frac{1}{n}}<\frac{n^{1+\frac{1}{n}}}{e^{1-\frac{1}{n}}}$

$$
\therefore \quad e^{\frac{1}{n}-1}<\frac{\sqrt[n]{n}!}{n} \leq \sqrt[n]{n} e^{\frac{1}{n}-1}
$$

As $n \rightarrow \infty \quad e^{\frac{1}{n}-1} \rightarrow e^{-1}$ and $\sqrt[n]{n} \rightarrow 1$ given

$$
\therefore \lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}=\frac{1}{e}
$$

