FORM VI

MATHEMATICS EXTENSION 2

Examination date

Tuesday 1st August 2006

Time allowed

Three hours (plus 5 minutes reading time)

Instructions

All eight questions may be attempted.
All eight questions are of equal value.
All necessary working must be shown.
Marks may not be awarded for careless or badly arranged work.
Approved calculators and templates may be used.
A list of standard integrals is provided at the end of the examination paper.

Collection

Write your candidate number clearly on each booklet and on the tear-off sheet.
Hand in the eight questions in a single well-ordered pile.
Hand in a booklet for each question, even if it has not been attempted.
If you use a second booklet for a question, place it inside the first.
Bundle the tear-off sheet with the question it belongs to.
Keep the printed examination paper and bring it to your next Mathematics lesson.
6A: REP
$6 \mathrm{~B}: \mathrm{BDD}$
6C: GJ
6D: MLS

Checklist

SGS booklets: 8 per boy. A total of 750 booklets should be sufficient. Candidature: 61 boys.

Examiner

QUESTION ONE (15 marks) Use a separate writing booklet.
(a) Find the following integrals:
(i) $\int \frac{1}{x \ln x} d x$
(ii) $\int x \ln x d x$
(iii) $\int \frac{2 x+1}{x^{2}+2 x+5} d x$
(b) Use integration by parts to evaluate

$$
\int_{0}^{\frac{1}{2}} \cos ^{-1} x d x
$$

(c) (i) Find the values of A, B and C so that

$$
\frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{A}{1-x}+\frac{B x+C}{1+x^{2}}
$$

(ii) Use the substitution $t=\tan \theta$, and part (i) above, to find

$$
\int \frac{2}{1-\tan \theta} d \theta
$$

QUESTION TWO (15 marks) Use a separate writing booklet.
(a) Given that $w=3-4 i$, find $\frac{|w|-\bar{w}}{w}$ in the form $a+i b$, where a and b are real.
(b) Find the roots of the equation $(1+i) z^{2}+2 z+1-i=0$.
(c) (i) Write $1-i \sqrt{3}$ in the form $r(\cos \theta+i \sin \theta)$.
(ii) Hence find $(1-i \sqrt{3})^{6}$ in the form $a+i b$, where a and b are real.
(d) If ω is one of the complex roots of $z^{3}=1$, simplify

$$
(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{8}\right)
$$

(e) Shade on an Argand diagram the region given by

$$
|z-1| \leq 1 \quad \text { ana } \quad \frac{\pi}{6}<\arg z<\frac{\pi}{3}
$$

(a)

The diagram above shows the region bounded by the curve $y=2 x^{2}$ and the line $y=8$.
This region is rotated about the line $y=10$ to form a solid of revolution.
(i) The solid is sliced perpendicular to the axis of rotation. Show that the area of each cross-section formed is

$$
4 \pi\left(24-10 x^{2}+x^{4}\right)
$$

(ii) Hence find the volume of the solid.
(b) (i) Let $I_{n}=\int_{0}^{1} x^{n} e^{x} d x$, for $n \geq 0$, where n is an integer.

Show that $I_{n+1}=e-(n+1) I_{n}$.
(ii) Hence find $\int_{0}^{1} t^{3} e^{t} d t$.
(c) The tangents to the hyperbola $x y=c^{2}$ at the points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ intersect at the point T.
(i) Given that the equation of the tangent at P is $x+p^{2} y=2 c p$, show that the coordinates of the point T are

$$
\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)
$$

(ii) Prove that the origin, the point T and the midpoint of $P Q$ are collinear.
(a) Given that α, β and γ are the roots of the equation $2 x^{3}+3 x^{2}-5 x+8=0$, find the polynomial equation with roots $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$.
(b) (i) Using the sums-to-products formulae, or otherwise, prove that

$$
\frac{\sin 2 x+\sin 3 x+\sin 4 x}{\cos 2 x+\cos 3 x+\cos 4 x}=\tan 3 x .
$$

(ii) Hence find the general solution of

$$
\frac{\sin 2 x+\sin 3 x+\sin 4 x}{\cos 2 x+\cos 3 x+\cos 4 x}=\frac{1}{\sqrt{3}} .
$$

(c) The parametric equations of an ellipse are $x=5 \cos \theta$ and $y=4 \sin \theta$.
(i) Find the Cartesian equation of the ellipse and show that its eccentricity is $\frac{3}{5}$.
(ii) Sketch the ellipse showing its intercepts, foci and directrices.
(d)

The region enclosed by the curve $y=(x-4)^{2}$ and the line $4 x+y=16$ is shaded in the diagram above. A solid is formed with this region as its base.
When the solid is sliced perpendicular to the x-axis, each cross-section is an equilateral triangle with its base in the $x y$-plane.
(i) Show that the area of the cross-section x units to the right of the y-axis is

$$
\frac{\sqrt{3}}{4} x^{2}(4-x)^{2}, \text { where } 0 \leq x \leq 4
$$

(ii) Hence find the volume of the solid.

QUESTION FIVE (15 marks) Use a separate writing booklet.
(a) De Moivre's theorem with $n=5$ states that

$$
(\cos \theta+i \sin \theta)^{5}=\cos 5 \theta+i \sin 5 \theta
$$

(i) Show that $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$.
(ii) Hence find all five roots of the equation $16 x^{5}-20 x^{3}+5 x=0$.
(iii) Show that $\cos \frac{\pi}{10} \cos \frac{3 \pi}{10}=\frac{\sqrt{5}}{4}$.
(b) The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$, where $p>q$, lie on the parabola $x^{2}=4 a y$, and the difference in their x-coordinates is $2 a$. Show that the locus of the midpoint M of the chord $P Q$ is a parabola, and find the coordinates of its focus.
(c)

In the diagram above, $P(a \cos \theta, b \sin \theta)$ is a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where P lies in the first quadrant.
A straight line through the origin parallel to the tangent at P meets the ellipse at the point Q, where P and Q both lie on the same side of the y-axis.
(i) Prove that the equation of the line $O Q$ is $x b \cos \theta+y a \sin \theta=0$, and find the coordinates of the point Q.
(ii) Prove that the area of $\triangle O P Q$ is independent of the position of P.
(a)

In the diagram above, $P\left(\frac{1}{2}, e\right)$ is the point of intersection of the curve $y=e^{2 x}$ and the line $y=e$.
Use the method of cylindrical shells to find the volume of the solid generated when the shaded region enclosed by the y-axis, the curve $y=e^{2 x}$ and the line $y=e$ is rotated about the y-axis.
(b) A particle of unit mass is projected vertically upwards from a point O, with initial velocity of $u \mathrm{~m} / \mathrm{s}$, in a medium whose resistance has magnitude $k v^{2}$, where k is a positive constant and $v \mathrm{~m} / \mathrm{s}$ is the velocity after t seconds. Let x be the vertical displacement of the object above the origin after t seconds.
After reaching its maximum height, the particle then falls back to O, experiencing the same resistance.
(i) Taking upwards as positive, show that

$$
\ddot{x}=-\left(g+k v^{2}\right) .
$$

(ii) Hence show that the maximum height attained by the particle is

$$
\frac{1}{2 k} \ln \left(\frac{g+k u^{2}}{g}\right)
$$

(iii) Show that the speed of the particle when it returns to O is

$$
\sqrt{\frac{g u^{2}}{g+k u^{2}}}
$$

(iv) Find the terminal velocity V of any particle of unit mass falling in this medium
subject to the resistance $k v^{2}$. Hence prove that if the particle in part (i) above is projected upwards with velocity V, it will return to O with speed $\frac{V}{\sqrt{2}}$.
(a) The polynomial $P(x)=3 x^{3}-11 x^{2}+24 x-12$ has one rational non-integer zero. Find its value.
(b) Given that $x=-\frac{2}{5}$ is a zero of the polynomial $P(x)=5 x^{3}-3 x^{2}+8 x+4$, factor $P(x)$ into its real and complex linear factors.
(c) NOTE: The diagram below has been reprinted on Page 11 so that working can be done on the diagram. Tear out Page 11, write your candidate number on the top of the sheet in the space provided, and place the sheet inside your answer booklet for Question Seven.

The diagram above shows two circles touching internally at the point T. The line $P Q$ is the common tangent at T. The points A and B lie on the small circle so that $T B=T A$, and $T A$ and $T B$ produced meet the larger circle at the points D and C respectively.

The line $D B$ produced meets the smaller circle at the point V and the larger circle at the point W, while the line $C A$ produced meets the smaller circle at the point U and the larger circle at the point X.

Let $\angle B A T=\alpha$ and $\angle V W X=\beta$.
(i) Show that $C D \| A B$.
(ii) Show that $A B C D$ is a cyclic quadrilateral.
(iii) Show that $U V W X$ is a cyclic quadrilateral.
(iv) Given that $T U=T V$, prove that T is the centre of a circle passing through the points U, V, W and X.
(a) (i) Show that $\alpha^{k}+\beta^{k}=(\alpha+\beta)\left(\alpha^{k-1}+\beta^{k-1}\right)-\alpha \beta\left(\alpha^{k-2}+\beta^{k-2}\right)$, for $k \geq 2$.
(ii) By substituting $\alpha=\cos \theta+i \sin \theta$ and $\beta=\cos \theta-i \sin \theta$, show that

$$
\cos k \theta=2 \cos \theta \cos (k-1) \theta-\cos (k-2) \theta, \text { for } k \geq 2
$$

(iii) Using part (ii) with $k=2,3$ and 4 , show that
$\cos 2 \theta=2 \cos ^{2} \theta-1$,
$\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$,
$\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$.
(b) (i) The Tschebyshev polynomials are defined by the recurrence formula

$$
\begin{aligned}
& t_{0}(x)=1 \\
& t_{1}(x)=x \\
& t_{k}(x)=2 x t_{k-1}(x)-t_{k-2}(x), \text { for } k \geq 2
\end{aligned}
$$

Show that the Tchebyshev polynomials $t_{2}(x), t_{3}(x)$ and $t_{4}(x)$ are
$t_{2}(x)=2 x^{2}-1$,
$t_{3}(x)=4 x^{3}-3 x$,
$t_{4}(x)=8 x^{4}-8 x^{2}+1$.
(ii) To find a formula for $t_{k}(x)$ let $F(z)$ be the power series in z with the coefficient of z^{k} being $t_{k}(x)$. That is, let

$$
F(z)=1+x z+\left(2 x^{2}-1\right) z^{2}+\left(4 x^{3}-3 x\right) z^{3}+\left(8 x^{4}-8 x^{2}+1\right) z^{4}+\cdots+t_{k}(x) z^{k}+\cdots
$$

(α) Show that

$$
(1-2 x z) F(z)=1-x z-z^{2} F(z)
$$

and hence show that

$$
F(z)=\frac{1-x z}{1-2 x z+z^{2}}
$$

(β) Given that α and β are the zeroes of $1-2 x z+z^{2}$ show that

$$
1-2 x z+z^{2}=\left(1-\frac{z}{\alpha}\right)\left(1-\frac{z}{\beta}\right)
$$

(γ) Using the partial fraction decomposition of $F(z)$,

$$
F(z)=\frac{1-x z}{1-2 x z+z^{2}}=\frac{A}{1-\frac{z}{\alpha}}+\frac{B}{1-\frac{z}{\beta}}
$$

where A and B are independent of z, show that the coefficient $t_{k}(x)$ is

$$
A\left(\frac{1}{\alpha}\right)^{k}+B\left(\frac{1}{\beta}\right)^{k}, \text { for }|z| \text { sufficiently small. }
$$

(δ) Deduce that the formula for $t_{k}(x)$ is

$$
t_{k}(x)=\frac{1}{2}\left(\frac{1}{x+\sqrt{x^{2}-1}}\right)^{k}+\frac{1}{2}\left(\frac{1}{x-\sqrt{x^{2}-1}}\right)^{k}
$$

END OF EXAMINATION

Candidate number:

Detach this sheet and bundle it with the rest of question seven.

QUESTION SEVEN

(b)

2

QLESTION ÔNE
a(i) $\frac{1}{x \ln x} d x$

$$
\begin{aligned}
& =\int \frac{1}{\mu} d u \\
& =\ln |\mu|+c \\
& =\ln |\ln x|+C
\end{aligned}
$$

(ii) $\int x \ln x d x$

Lil M.- inz

$$
d r=x d x
$$

$$
=\frac{1}{2} x^{2} \ln p x-\iint_{2}^{\prime} x^{2} \times \frac{1}{x} d x \quad d u=\frac{1}{2} x d x
$$

$$
\left.=\frac{1}{2} x^{2} \sin x \right\rvert\,-\int \frac{1}{2} x d x
$$

$$
=\frac{1}{2} x^{2} \operatorname{lin} 24-\frac{1}{4} x^{2}+c
$$

(iii) $\int \frac{2 x-1}{x^{2}+2 x+5} d x$

$$
\begin{aligned}
& =\int \frac{2 x+2}{x^{2}-2 x+15} \cdot d x-\int \frac{1}{x^{2}+2 x+5} d x \\
& =\ln \left(x^{2}+2 x+5\right)-\int\left(\frac{1}{(x+1)^{2}+4} d x\right. \\
& =\ln \left(x^{2}+\alpha x-1\right)-\frac{1}{2} \tan ^{-1}\left(\frac{x+1}{\alpha}\right)+c
\end{aligned}
$$

(b) $\int_{0}^{\frac{1}{2}} \cos ^{-1} x d x=\int_{0}^{\frac{1}{2}} \cos ^{-1} x \frac{d}{d x}(x) d x$

$$
\begin{aligned}
& =\left[x \cos ^{-1} x\right]_{0}^{i}+\int_{0}^{\frac{1}{2} x} \sqrt{{\sqrt{1-x^{2}}}^{\frac{1}{2}}} d x \\
& =\frac{\pi}{6}+\int_{0}^{i} x\left(1-x^{2}\right)^{-i} d x \\
& =\frac{\pi}{6}+\left[2 x-\frac{1}{2}\left(1-x^{2}\right)^{i}\right]_{0}^{i} \\
& =\frac{\pi}{6}-\left[\left(1-\frac{1}{4}\right)^{2}-1\right] \\
& =\frac{\pi}{6}-\frac{\sqrt{3}}{2}+1
\end{aligned}
$$

$$
\begin{aligned}
(c)(1) \frac{2}{(1-x)\left(1+x^{2}\right)} & =\frac{A}{1-x}+\frac{B x+c}{1+x^{2}} \\
& =\frac{A\left(1+x^{2}\right)+(B x+(1-x)}{(1-x)\left(1+x^{2}\right)}
\end{aligned}
$$

Consed $\alpha=A\left(1+x^{2}\right)+(B x+\pi)(1-x)$
$\operatorname{sit} x=1: \quad 2=2 A$.
$A=1$
Loefficent of lerm $-x^{\circ}$

$$
\begin{aligned}
& 2=1+c \\
& c=1
\end{aligned}
$$

Loefficient of tern in x^{\prime}

$$
\begin{aligned}
& 0=B-C \\
& B=1
\end{aligned}
$$

: $20 A=1, B=1$ and $C=1$
(11) $t=\tan \theta$,

$$
\begin{aligned}
d t & =\sec ^{2} \theta d \theta \\
& =1+\tan ^{2} \theta d \theta \\
d \theta & =\frac{d^{2}}{1+t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{2}{1-\tan \theta} d \theta=\int \frac{2}{1-t} \times \frac{d t}{1+t^{2}} \\
& =\int \frac{2 d t}{(1-t)(1+t)} \\
& =\int\left(\frac{1}{1-t}+\frac{t+1}{1+t^{2}}\right) d t \text { fromeri, } \\
& =\int\left(\frac{1}{1-t}+\frac{t}{1+t}+\frac{1}{1+\Sigma^{2}}\right) d t \\
& =-\ln |1-t|+\frac{1}{2} \ln \left(11+t^{2}\right)+\tan ^{-1} t+C \\
& =-\ln |1-\tan \theta|+\frac{1}{2} \ln \left(1+\tan ^{2} \theta\right)+\tan ^{-1}(\tan \theta)+c \\
& =-\ln |i-\tan \theta|+\ln (\sec \theta)+\theta+c
\end{aligned}
$$

Question Tho

$$
\text { (w) } \begin{aligned}
w & =3-4 i \\
i \omega \mid & =\sqrt{9+16} \\
& =5 \\
\bar{w} & =3+4 i \\
\frac{|u|-\bar{w}}{w} & =\frac{5-3-4 i}{3-4 i} \\
& =\frac{2-4 i}{3-4 i} \times \frac{3+4 i}{3+4 i} \\
& =\frac{6+16+8 i-12 i}{9+16} \\
& =\frac{22}{25}-\frac{4}{25} i
\end{aligned}
$$

(μ)

$$
\begin{aligned}
&\left(1 i^{-}\right) z^{2}+2 z+i-i=0 \\
& \Delta=4-4(1+i)(1-i) \\
&=4-8 \\
&=-4 \\
& z=\frac{-2+\sqrt{-4}}{2(1+i)} \text { or } \frac{-2-\sqrt{-4}}{2(1+i)} \\
&=\frac{-2-2 i}{2+2 i} \text { or } \frac{-2+2 i}{2(11 i)} \\
&=-1 \text { or } \frac{-1+i}{11 i} \times \frac{1-i}{1-i} \\
&=-1 \text { or } \frac{2 i}{2} \\
&=-1 \text { or } i
\end{aligned}
$$

(ci(i) OVRA
cii, Let $z=1+\sqrt{3} i$

$$
\begin{aligned}
& =2\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right) \\
& =2 \operatorname{cis}\left(-\frac{\pi}{3}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
z^{6} & =2^{6} \cos \left(-\frac{\pi}{3} \times 6\right) \\
& =2^{6} \cos (-2 \pi) \\
& =2^{6}(\cos (-2 \pi)+i \sin (-2 \pi)) \\
& =64
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \alpha \text {) } \\
& \begin{aligned}
\left(\alpha, \quad z^{3}\right. & =1 \\
z^{3}-1 & =0 \\
(z-1)\left(z^{2}+z+1\right) & =0
\end{aligned}
\end{aligned}
$$

So $w^{3}=1$ and 1 How $w^{2}=0 \quad W^{*}$

$$
\begin{aligned}
& (1-w)\left(1-w^{2}\right)\left(1-\omega^{4}\right)\left(1-w^{8}\right) \\
& =(1-w)\left(1-w^{2}\right)\left(1-\omega^{2}\right)\left(1-w^{2}\right) ? \\
& =\left(1-w-\omega^{2}+w^{3}\right)^{2} \\
& =\left(1-w-w^{2}+1\right)^{2} \\
& =\left(2-w-w^{2}\right)^{2} \\
& =\left(3-1-w^{2}-w^{2}\right)^{2} \\
& =3^{2} \\
& =9
\end{aligned}
$$

(e)

PuEstion THREE
(a) (i)

$$
\text { Qrea }=\pi\left(R^{2}-r^{2}\right)
$$

$$
=\pi(R-r)(R+r)
$$

$$
=\pi\left(10-2 x^{2}-2\right)\left(10-2 x^{2}+2\right)
$$

$$
=\pi\left(8-2 x^{2}\right)\left(12-2 x^{2}\right)
$$

$$
=4 \pi\left(4-x^{2}\right)\left(6-x^{2}\right)
$$

$$
=4 \pi\left(24-10 x^{2}+x^{+}\right)
$$

(ii)

$$
\begin{aligned}
V & =2 \int_{0}^{2} 4 \pi\left(24-10 x^{2}+x^{4}\right) d x \\
& =8 \pi \int_{0}^{2}\left(24-10 x^{2}+x^{4}\right) d x \\
& =8 \pi\left[24 x-\frac{10 x^{3}}{3}+\frac{\pi^{5}}{5}\right]_{0}^{2} \\
& =8 \pi\left(48-\frac{80}{3}+\frac{32}{5}\right) \\
& =\frac{3328 \pi}{15} \text { murts }^{3}
\end{aligned}
$$

(c) ${ }^{\text {i }}$

$$
\begin{aligned}
I_{n} & =\int_{0}^{1} x^{n} e^{x} d x \\
& =\int_{0}^{1} x^{n} d \alpha d\left(e^{x}\right) d x \\
& =\left[x^{n} e^{x}\right]_{0}^{1}-\int_{n} n x^{n+} e^{x} d x \\
& =l-n \int x^{n-1} e^{x} d x
\end{aligned}
$$

$$
\left.\begin{array}{l}
=e-n I_{n-1} \\
m=-(n+1) I_{n}
\end{array}\right\}
$$

(ii)

$$
\begin{aligned}
I_{0} & =\int_{0}^{1} e^{x} d x \\
& =\left[e^{2}\right]_{0}^{\prime} \\
& =e-1 \\
I_{1} & =e-I_{0} \\
& =e-e+1 \\
& =1 \\
I_{2} & =e-2 I_{1} \\
& =e-2 \\
I_{3} & =e-3 I_{2} \\
& =e-3 e+l \\
& =6-2 e
\end{aligned}
$$

So $\int_{0}^{1} t^{3} l^{t} d t=6-2 e$.

$$
\text { (i) } x+p^{2} y=2 c p-c
$$

So $x+q^{2} y=2 c \varepsilon-(2)$ is the langent ot p
(i) $-\varepsilon, \quad y\left(p^{2}-\varepsilon^{2}\right)=2 c(p-q)$

$$
\begin{aligned}
y & =\frac{2 c(p-\varepsilon)}{(p-a)\left(p p^{\prime}-\right)}, p \neq \varepsilon \\
& =\frac{2 \varepsilon}{p-\varepsilon} \\
x & =\frac{2 c p-\frac{2 c p^{2}}{p+q}}{} \\
& =\frac{2 c p \varepsilon}{p r}
\end{aligned}
$$

Ths che point $\left(\frac{2 c p q}{p+\varepsilon}, \frac{x c}{p q q}\right)$
(iii) Midipont $M=\left(\frac{c(p+q)}{\alpha}, \frac{c\left(\frac{1}{p}+\frac{1}{q}\right)}{\alpha}\right)$

$$
=\left(\frac{c(p-\varepsilon)}{\alpha}, \frac{c(p+\varepsilon)}{2 p q}\right)
$$

gredent of OT $=\frac{2 c}{p+q} \div \frac{2 c p q}{p 1-q}$

$$
=\frac{1}{p q}
$$

$$
\begin{aligned}
\text { Praduint of oM } & =\frac{c(p r q)}{2 p q} \div \frac{c(p r q)}{2} \\
& =\frac{1}{\gamma q}
\end{aligned}
$$

thnce the greabencs ene equal mond 0 \therefore is comenthe point the potmens
-10 ane colleniar.

Question Foure
(a) $a^{2} x^{3}+3 x^{2}-5 x+8=0$

$$
\operatorname{set}_{2} x=\frac{1}{7}
$$

$$
\frac{2}{y^{3}}+\frac{3}{y^{2}}-\frac{5}{7 y}+8=0
$$

So $8 y^{3}-5 y^{2}+3 y+2=0$ is has reizured equation
$(x-) x^{\prime}, \operatorname{sen} 2 x+\operatorname{sen} 4 x=2 \operatorname{sen} \frac{2 x+4 x}{2} \cos \frac{4 x-2 x}{2}$

$$
=2 \operatorname{sen} 3 x \cos x
$$

$$
\cos 2 x+\cos 4 x=2 \cos \frac{2 x \sin x}{2} \cos \frac{4 x-2 x}{2}
$$

$$
=2 \omega 3 x \cos x
$$

$$
\text { So } \begin{aligned}
\angle H S & =\frac{\operatorname{sen} 2 x+\sin 3 x+\operatorname{sen} 4 x}{\cos 2 x+\cos 3 x+\cos 4 x} \\
& =\frac{2 \operatorname{sen} 3 x \cos x+\sin 3 x}{2 \cos 3 x \cos x+\cos 3 x} \\
& =\frac{\sin 3 x(2 \cos x+1)}{\operatorname{sen} 3 x(\alpha \cos x+1)} \\
& -\sin 3 x \\
& =R 1)
\end{aligned}
$$

(ii) $\frac{\operatorname{sen} 2 x+\operatorname{sen} 3 x+\operatorname{sen} x x}{\cos 2 x+\cos 3 x+\cos +x x}=\frac{1}{\sqrt{3}}$
α

Se $3 n=n \pi+\frac{\pi}{2}, n \in \mathbb{Z}$
S $\quad n=\frac{n \pi}{3}+\frac{\pi}{18}, n \in \mathbb{Z}$
. (t) (i) $x=5 \cos \theta, y=4 \cdot \operatorname{sen} \theta$

Now $\quad b^{2}=a^{2}\left(1-e^{2}\right)$

$$
16=25\left(1-e^{2}\right)
$$

$$
\cos ^{2} \theta+\operatorname{sen}^{2} \theta=\frac{x^{2}}{25}+\frac{y^{2}}{16}
$$

$\cos \theta+\sin ^{2} \theta=\frac{2}{25}+\frac{6}{16}$

$$
\text { So } \frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

So $\frac{x^{2}}{25}+\frac{y}{6}=1$

$$
l^{2}=\frac{9}{2_{5}}
$$

$$
e=\frac{3}{54}, e>0
$$

(6L) ivi

e lypicai shec x uncts from the y-axiy has

$$
\begin{aligned}
A B & =16-4 x-(x-4)^{2} \\
& =16-4 x-x^{2}+8 x-66 \\
& =4 x-x^{2} \\
& =x(4-x), \text { where } 0 \leq x \leq r
\end{aligned}
$$

Rueal each shaie

$$
\begin{aligned}
& =\frac{1}{2} x^{2}(4-x)^{2} \sin \frac{\pi}{3} \\
& =\frac{\sqrt{3}}{4} x^{2}\left(4-x^{2}\right)
\end{aligned}
$$

("ii) Volerms

$$
\begin{aligned}
V & =\int_{0}^{4} \frac{\sqrt{3}}{4}\left(x^{2}\right)(x-4)^{2} d x \\
& =\int_{2}^{4} \frac{\sqrt{3}}{4}\left(x^{4}-8 x^{3}+6 x^{2}\right) d x \\
& =\frac{\sqrt{3}}{4}\left[\frac{x^{5}}{5}-2 x^{4}+\frac{16 x^{3}}{3}\right] \\
& =\frac{\sqrt{3}}{4}\left(\frac{1024}{5}-192+\frac{102}{3}\right) \\
& =\frac{128 \sqrt{3}}{15} \operatorname{unc}^{3}
\end{aligned}
$$

Question Frve
(a.)(i)

$$
(\cos \theta+i \sin \theta)^{5}=\cos 5 \theta+i \sec 5 \theta
$$

$$
S_{0} \cos 5 \theta+i \sin 5 \theta
$$

$$
\begin{aligned}
= & (\cos \theta-r \sin \theta)^{5} \\
= & \cos ^{5} \theta+5 \cos ^{4} \theta \cdot i \sin \theta+10 \cos ^{3} \theta i^{2} \sin ^{2} \theta+10 \cos ^{2} \theta \cdot i^{3} \sin ^{3} \theta \\
& +5 \cos \theta \cdot i+\operatorname{sen}^{4} \theta+i^{5} \sin ^{5} \theta
\end{aligned}
$$

$=\cos ^{5} \theta+\operatorname{sics}^{2} \theta \sin \theta-10 \cos ^{3} \theta \sin ^{2} \theta-10 i \cos ^{2} \theta \sin ^{3} \theta$

$$
+5 \cos \theta \operatorname{sen}^{4} \theta+i \operatorname{sen}^{5} \theta
$$

Equating, reac parts.
$\cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta$

$$
\begin{aligned}
& =\cos ^{5} \theta-10 \cos ^{3} \theta\left(1-\cos ^{2} \theta\right)-5 \cos \theta\left(1-\cos ^{2} \theta\right)^{2} \\
& =\cos ^{5} \theta-10 \cos ^{3} \theta+10 \cos ^{5} \theta+5 \cos \theta-10 \cos ^{5} \theta+5 \cos ^{5} \theta \\
& =16 \cos ^{5} \theta-20 \cos ^{3} \theta-5 \cos \theta .
\end{aligned}
$$

(ii) Jo acher $16 x^{\prime}-20 x^{3}+5 x=0$ let $x=\cos \theta$. so $\cos 5 \theta=0$

$$
5_{\theta}=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}, \frac{9 \pi}{2}, \ldots .
$$

So $\theta=\frac{\pi}{10}, \frac{3 \pi}{10}, \frac{5 \pi}{10}, \frac{7 \pi}{10}, \frac{9 \pi}{10}$ are the

ie $x \geqslant a a^{-\frac{k \pi}{10}}$, for $k=1,3,5,7,9$.
(iii) Mon $16 x^{5}-20 x^{3} 1-5 x=x\left(16 x^{4}-20 x^{2} 5\right)$

Rools are guen liy.

$$
x\left(16 x^{x}-20 x^{2} 5\right)=0
$$

S $x=0$ or $16 x^{4}-20$ ar $5=0$
Therovis of $16 x+20 x^{2}-20=0$
arn $\cos \frac{\pi}{1 \pi}, \cos \frac{3 \pi}{1=}, \cos \frac{7 \pi}{10}$ or $\sin \frac{9 \pi}{12}$
Groducl if virots

$$
\begin{aligned}
& \cos \frac{\pi}{10} \cos \frac{3 \pi}{13} \cos \frac{\pi}{11} \cos \frac{9 \pi}{12}=\frac{5}{16} \\
& \cos \frac{\pi}{10} x-\cos \frac{5}{12} x \cos \frac{3 \pi}{10}-\cos \frac{3 \pi}{10}=\frac{5}{16} \\
& \cos ^{2} \frac{\pi}{10} \cos \frac{3 \pi}{11}=\frac{5}{16} \\
& \cos \frac{\pi}{1=} \cos \frac{3 \pi}{10}=\frac{\sqrt{5}}{4}
\end{aligned}
$$

tuin $<\underline{\pi}\rangle=$ an cas $\frac{3 \pi}{2}>0$.
(t) Miodpornt of $P Q$

$$
M=\left(e(p+q), \frac{a\left(p^{2}+q^{2}\right)}{\alpha}\right)
$$

The loues is dofenced hy

$$
\begin{align*}
& x=a(p+q)=(1) \\
& y=a\left(p^{2} q^{2}\right)-(2) \\
& 2 \\
& \text { Qlso } 2 a / p-2 q q=2 a \tag{3}\\
& \text { So } p-q=1-(3)
\end{align*}
$$

7nom (3) $p^{2}+q-2 p q=1$
From (')

$$
\begin{aligned}
x^{2} & =a^{2}\left(p^{2}+q^{2}+2 p q\right) \\
& =a^{2}\left(p^{2}+q^{2}+y^{2} 1-q^{2}-1\right) \\
& =a^{2}\left(\frac{4 y}{a}-1\right) \\
x^{2} & =4 a\left(y-\frac{a}{4}\right)
\end{aligned}
$$

whut s a paratsola with vertex $\left(0, \frac{a}{4}\right.$)ame
Tho ar leni. K a
The form is ($0, \frac{a}{4}$ ra)

$$
=\left(0, \frac{5 a}{4}\right)
$$

(c) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{e^{2}}=1$

$$
\begin{aligned}
\frac{x}{a^{2}}+\frac{2 y}{t^{2}} \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =\frac{-b^{2} x}{a^{2} y}
\end{aligned}
$$

epradeent of tempont at P

$$
\begin{aligned}
m & =-\frac{b^{2} a \cos \theta}{a^{2} b \sin \theta} \\
& =-\frac{l^{2} \cos \theta}{a} \sin \theta
\end{aligned}
$$

¿quak of OS.

$$
y=-\frac{b}{a} \frac{\cos }{\operatorname{din}} x
$$

$x i \cos \theta$ ryasuno - o

Tor pount 9

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{b^{2} \cos ^{2} \theta}{a^{2} b^{2} \operatorname{sen}^{2} \theta} x^{2}=1 \\
\frac{x^{2}}{a^{2}}\left(1-\cot ^{2} \theta\right)=1 \\
\frac{x^{2}}{a^{2}} \operatorname{cosec}^{2} \theta=-1 \\
\frac{x^{2}}{a^{2}}=\frac{1}{\operatorname{cosec}^{2} \theta} \\
x^{2}=a^{2} \sin ^{2} \theta \\
x=a \sin ^{2} \theta \\
y=-\frac{b}{a} \frac{\cos \theta}{\sin \theta} \times \cos \theta \\
=-b \cos \theta
\end{gathered}
$$

Wo Pis the pount (asin $\theta,-\cos \theta$)
(ii). Fquedur of $O P$

$$
y=\frac{e \sin \theta}{a \cos \theta} x
$$

Penpencertinea dintamen fruin Q to OP

$$
\begin{aligned}
p & =\left|\frac{a \operatorname{sen}-\theta+\alpha \cos \cos ^{2} c}{\sqrt{b^{2} \sin ^{2} \theta+a^{2} \cos ^{2} \theta}}\right| \\
& =\frac{\operatorname{ain}^{2}}{\sqrt{\alpha^{2} \sin ^{2} \theta+\operatorname{cic}^{2} \theta}}
\end{aligned}
$$

Distame op

$$
d=\sqrt{x^{2} \sin ^{\alpha} \theta 1-a^{2} \cos \theta}
$$

So $\begin{aligned} \text { S. } 1 \triangle O P Q & =\frac{1}{2} p \alpha \\ & =\frac{1}{2} \text { ce }\end{aligned}$

$$
=\frac{1}{2} c e
$$

Questron Six
(a) Durface orea of thell $\begin{aligned} & =2 \pi x(e-y) \\ & =2 \pi x(e-e\end{aligned}$

Volume of shell ifurathi $\delta_{x}=2 \pi x\left(i-e^{2 x}\right) d \sqrt{c}$

$$
\operatorname{Sop}_{0} V=\int_{0}^{\frac{1}{2}} 2 \pi x\left(e-e^{2 x}\right) d x
$$

Nor $\int_{0}^{\frac{1}{2}} 2 \pi x e d x=2 \pi e\left[\frac{x^{2}}{2}\right]_{0}^{i}$

$$
=\frac{\pi e}{4}
$$

$$
x \cdot 2 \operatorname{since}-e y \cdot \cos \cdot 0=0
$$

$$
\begin{aligned}
\int_{0}^{\frac{1}{2}} 2 \pi x e^{2 x} d x & =2 \pi \int_{0}^{\frac{1}{2}} x \frac{d}{4}\left(\frac{1}{2} e^{2 x}\right) d x \\
& =2 \pi\left\{\left[\frac{1}{2} x e^{2 x} \int_{0}^{\frac{1}{2}}-\int_{0}^{\frac{1}{2}} \frac{1}{2} e^{2 x} d x\right\}\right. \\
& =2 \pi\left\{\frac{e}{4}-\left[\frac{1}{4} e^{2 x}\right]_{0}^{2}\right\} \\
& =2 \pi\left\{\frac{e}{4}-\left(\frac{e}{4}-\frac{1}{4}\right)\right\} \\
& =-\frac{\pi}{2} \\
\text { Volume } & =\frac{\pi e}{4}=\frac{\pi}{2} \\
& =\frac{\pi}{4}(e-2) \text { unis } 3
\end{aligned}
$$

bi, Moleon upwaids $\operatorname{ing}<0, \mathrm{Kv}^{2}<0$
Force on patizle

$$
\begin{aligned}
& m \ddot{x}=-m g-k v^{2} \\
& \ddot{x}=-g-k u^{2} \\
& \ddot{ }
\end{aligned}
$$

$\ddot{x}=-\left(g+k v^{\prime}\right)$
Some explenchion is required.

$$
\begin{aligned}
w \frac{d v}{d x} & =-(g+\sqrt{2}) \\
\frac{d x}{d w} & =-\frac{v}{g+d^{2}} \\
x & =-\int_{\mu}^{0} \frac{v}{g+\tan w^{2}} \theta
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{1}{2 k} \int_{0}^{u 2 k v} d v \\
& =\frac{1}{d k} \cdot\left[\ln \left|g+k v^{2}\right|\right]_{0}^{-u} \quad \begin{array}{l}
\text { or } x=-\frac{1}{d k} \ln \left|g-k v^{2}\right|+c \\
\text { when } x=0 \quad v=\mu
\end{array} \\
& =\frac{1}{2 k} \ln \left|\frac{g+k u^{2}}{g}\right| \\
& c=\frac{1}{2 k} \ln |g+k u|
\end{aligned}
$$

Mascerain haject $=\frac{1}{2 k} \ln \left(\frac{g+k u^{2}}{g}\right)$
(iii) Downwarcts mortion Ialle x dounwards as poritive

$$
\begin{aligned}
& \text { ma }>=\text {, ki < }< \\
& m \ddot{x}=m g-k i \\
& \text { E } \quad \ddot{x}=g-k v^{2} \\
& v \frac{d v}{d x}=g-k v^{2} \\
& \frac{d x}{d w}=\frac{\tau}{g-k v^{2}} \\
& x=\int_{0}^{v} \frac{v^{v}}{g-k_{s}} d v \\
& =-\frac{1}{2 k}\left[\ln \left|g-k v^{2}\right|\right]_{0}^{v} \\
& =-\frac{1}{2 k}\left\{\ln \left|g-k w^{2}\right|-\ln |g|\right\} \\
& =\frac{1}{2 k} \ln \left|\frac{g}{g-k v^{n}}\right| \\
& =\frac{1}{2 k} \ln \frac{g}{g-k \omega^{2}}, \quad g-k u^{2}>0
\end{aligned}
$$

when the pastice velums to 0

$$
\frac{1}{2 k} \ln \left(\frac{\left(g+k u^{2}\right.}{g}\right)=\frac{1}{2 k} \ln \left(\frac{g}{g-k v^{2}}\right)
$$

Le $\frac{g+-k a^{2}}{g}=\frac{g}{g-b c c^{2}}$

$$
\begin{aligned}
g-k v^{2} & =\frac{g^{2}}{g+k u^{2}} \\
k v^{2} & =g-\frac{g^{2}}{g+k u^{2}} \\
k v^{2} & =\frac{g 2+k g u^{2}-g^{2}}{g+k u^{2}} \\
v^{2} & =\frac{g \mu^{2}}{g+k u^{2}}
\end{aligned}
$$

So speed $|v|=\sqrt{\frac{g u^{2}}{g+k u^{2}}}$ when perticle rebirns to 0 .
(iii) Now $\ddot{x} \rightarrow 0$

$$
\begin{aligned}
\text { if } g-b v^{2} & \rightarrow 0 \\
v^{2} & \rightarrow 0
\end{aligned}
$$

to the liminal velouly as $V=\sqrt{\frac{g}{k}}$
If $u=V$ the relum speed is

$$
\begin{aligned}
|V| & =\sqrt{\frac{c j v^{2}}{g+k v^{2}}} \\
& =\sqrt{\frac{V^{2}}{1+\frac{k}{g} V^{2}}} \\
& =\sqrt{\frac{v^{2}}{1+1}} \\
& =\frac{V}{\sqrt{2}}
\end{aligned}
$$

Purestion Seven
(a) $P(x)=3 x^{3}-11 x^{2}+24 x-12$

Given that $\frac{p}{q}$ w zeno, $q / 3$ and $p / 12$ Do 2 many lee 1 or 3
oner Homay be $\pm 1, \pm 2, \pm 3, \pm 4, \pm \epsilon, \pm 12$
A. $\frac{A}{2}$ man be $\pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}$.

$$
\begin{aligned}
P\left(\frac{2}{3}\right) & =3\left(\frac{2}{3}\right)^{3}-11\left(\frac{2}{3}\right)^{2}+2 \times\left(\frac{2}{3}\right)-12 \\
& =0
\end{aligned}
$$

So $x=\frac{2}{3}$ as the now-untager zero. T
(b) $x+\frac{2}{5} \sim$ e factor of $P(x)$

By kong devision

$$
5 x^{3}-3 x^{2}+8 x+4=\left(x+\frac{2}{5}\right)\left(5 x^{2}-5 x+10\right)
$$

So $P(x)=\left(x+\frac{2}{5}\right)\left(5 x^{2}-5 x+10\right)$

$$
\begin{aligned}
& =(5 x+2)\left(x^{2}-x+2\right) \\
& =(5 x+2)\left(\left(x-\frac{1}{2}\right)^{2}+\frac{7}{4}\right) \\
& =(5 x+2)\left(x-\frac{1}{2}+i \frac{\sqrt{7}}{2}\right)\left(x-\frac{1}{2}-i \frac{\sqrt{7}}{2}\right) \\
& =\frac{1}{4}(5 x+2)(2 x-1+i \sqrt{7})(2 x-1-i \sqrt{7})
\end{aligned}
$$

$f(-)(i)$
$\angle B A T=\angle B T P=\alpha$ (alterncte segment. Sheorven)
$. \angle C D A-\angle B T P=x$ (alternede pegrueat pheorvem) SOLBAT $=\angle C D A=\alpha$
: So $C D \| A B$ (equal correspaondeng anglio)
(ii) $\angle A B T=\angle B A T=\alpha$ (base angis y isuscelea $\triangle A B T$)

So $\angle A B T=\angle C D A=\alpha$
So $A B C D$ so a cyche quadulaterd (exciorior anqles is equel to the Intenor opporsh angle).
("ii) $\angle V W X=\angle D C X=\beta$ (anqus at corcun ference are chord $D X$):
$\angle D C W=\angle D S A=\beta$ (anglesat-cercump perexce on chord $D A$)
$\angle D B A=\angle A U V=\beta$ (excteror angile of cychi quadritatod ABVV)
$\delta \angle V O X=\angle A U V=\beta$
: So UVWXis a cugiec quadreleterel (interuor engen is sequl to the entermor oppersate angler)
'(iv) $\angle D C B=\alpha$. (corresponcieng angles, $A B / / C D$)
Now $\angle D C T=\angle D W T=\alpha$ (anglesat-cercen forven on cherd $D X$)
$\angle D V T=\angle T V W=\alpha$ (enterns angle of ayche quadiABVTI
So TV $=$ TW (b-ase angles of isoseches \triangle TVW)
Similarly $T V=T X$
But $T V=T V$ (given)
$\Sigma_{0} T L=T x=T V=T W$
So T is the centre $I f$ a curcle pessing (hanough the paints V, r, w and \times (eru-e

Candidate number

Detach this sheet and bundle it with the rest of question seven.

QUESTION SEVEN

(b)

H

Question $E_{1 g_{i n t}}$

$$
\begin{aligned}
= & \cos k \theta \\
\text { But } \alpha^{k}+\beta^{k} & =(\alpha+\beta)\left(\alpha^{k-1}+\beta^{k-1}\right)-\alpha \beta\left(\alpha^{k-2}+\beta^{k-2}\right)
\end{aligned}
$$

$$
\alpha^{k}+\beta^{k}=2 \cos \theta \times 2 \cos (k-1) \theta-1 \times 2 \cos (k-2) \theta
$$

$$
S=\cos k \theta=2 \cos \theta \cos (k-1) \theta-\cos (k-2) \theta, k \geqslant 2 \cdot v
$$

㕸(iii) $\cos k \theta=2 \cos \theta \cos (k-1) \theta-\cos (k-2) \theta$
when $k=2$,

$$
\cos 2 \theta=2 \cos ^{2} \theta-1
$$

when $k=3$,

$$
\cos 3 \theta=2 \cos \theta \cos 2 \theta-\cos \theta
$$

$$
=\cos \theta(2 \cos 2 \cdot \theta-1)
$$

$$
=\cos \theta\left(4 \cos ^{2} \theta-2-1\right)
$$

$$
-4 \cos ^{3} \theta-3 \cos \theta
$$

when $k=4$,

$$
\begin{aligned}
\cos 4 \theta & =2 \cos \theta \cos 3 \theta-\cos 2 \theta \\
& =2 \cos \theta\left(4 \cos ^{3} \theta-3 \cos \theta\right)-2 \cos ^{2} \theta+1 \\
& =8 \cos ^{4} \theta-6 \cos ^{2} \theta-2 \cos ^{2} \theta+1 \\
& =8 \cos ^{4} \theta-8 \cos ^{2} \theta+1
\end{aligned}
$$

$$
\begin{aligned}
& q_{1}(1)=(\alpha+\beta)\left(\alpha^{k-1}+\beta^{k-1}\right)-\alpha \beta\left(\alpha_{k-2}^{k-\beta^{k-2}}\right) \\
& \begin{array}{l}
=\alpha^{k}+\alpha \beta^{k-1}+\beta \alpha^{k \cdot 1}+\beta^{k}-\beta \alpha^{k-1}-\alpha \beta^{k-1} \\
=\alpha^{k}+\beta^{k}
\end{array} \\
& =L u s, k \geqslant 2 \\
& \text { (ii) } \alpha=\cos \theta \operatorname{ti} \operatorname{sen} \theta \\
& \begin{aligned}
\beta \beta & =\cos \theta-i \operatorname{sen} \theta \\
\alpha^{k}+\beta^{k} & =\cos \theta+B \operatorname{sen} k \theta+\cos k \theta-i \operatorname{sen} k \theta \\
& =2 \operatorname{sos} \theta \theta
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& f(-)(i) t_{2}(x)= 2 x t_{1}(x)-t_{0}(x) \\
&=2 x^{2}-1 \\
& t_{3}(x)= 2 x t_{2}(x)-t_{1}(x) \\
&=4 x^{3}-2 x-x \\
&= 4 x^{3}-3 x \\
& t_{4}(x)= 2 x t_{3}(x)-t_{2}(x) \\
&= 2 x\left(4 x^{3}-3 x\right)-2 x^{2}+1 \\
&-8 x^{4}-8 x^{2}+1 \\
&\left.\left(i i^{\prime}\right) F(z)=1+x z+\left(2 x^{2}-1\right) z^{2}+14 x^{3}-3 x\right) z^{3}+\left(8 x^{4}-8 x^{2}+1\right) z^{4}+\cdots 0 \\
& 2 x z F(z)=2 x z+2 x^{2} z^{2}+\left(4 x^{3}-2 x\right) z^{3}+\left(8 x^{4}-6 x^{2}\right) z^{4} \\
&+\left(16 x^{5}-16 x^{3}+2 x\right) z^{5}+\cdots 0
\end{aligned}
$$

ho $F(z)-2 x z F(z)$

$$
\begin{aligned}
= & 1+(x-2 x) z+\left(2 x^{2}-1-2 x^{2}\right) z^{2}+\left(4 x^{3}-3 x-4 x^{3}+2 x\right) z^{3} \\
& +\left(8 x^{4}-8 x^{2}+1-8 x^{4}+6 x^{2}\right) z^{4}+000 \\
= & 1-x z+z^{2}\left(-1-x z-\left(2 x^{2}-1\right) z^{2}-00\right) \\
= & 1-x z-z^{2}\left(1+x z+\left(2 x^{2}-1\right) z+\cdots\right) \\
= & 1-x z-z^{2} F(z)
\end{aligned}
$$

$$
\begin{aligned}
\text { Now } & (1-2 x z) F(z) \\
\left(1-2 x z 1-z^{2}\right) F(2) & =1-x z-z^{2} F(z) \\
& =1-x z
\end{aligned}
$$

$$
\begin{aligned}
\left(1-2 x z 1-z^{2}\right) F(z) & =1-x z \\
F(z) & =\frac{1-x z}{1-2 x z+z^{2}}
\end{aligned}
$$

(β)

$$
\begin{aligned}
1-2 x z+z^{2} & =(\alpha-z \lambda \beta-z) \\
& =\alpha\left(1-\frac{z}{\alpha}\right)\left(s\left(1-\frac{z}{\beta}\right)\right. \\
& =\alpha \beta\left(1-\frac{z}{\alpha}\right)\left(1-\frac{z}{\alpha}\right) \\
& =\left(1-\frac{z}{\alpha}\right)\left(1-\frac{z}{s}\right)^{\alpha}, \text { since } \alpha \beta=1 .
\end{aligned}
$$

(8)

$$
\begin{aligned}
F(z) & =\frac{1-x z}{1-2 x z+z^{2}} \\
& =\frac{1-x z}{\left(1-\frac{z}{\alpha}\right)\left(1-\frac{z}{\beta}\right)} \\
& =\frac{A}{1-\frac{z}{\alpha}}+\frac{B}{1-\frac{z}{\beta}}
\end{aligned}
$$

Mow $\frac{1}{1-\frac{z}{\alpha}}=1+\frac{z}{\alpha}+\left(\frac{z}{\alpha}\right)^{2} \rightarrow=0$ for $1 z$ lsufficivatily sinall and $\frac{1}{1-\frac{z}{\beta}}=1+\frac{z}{\beta}+\left(\frac{z}{\beta}\right)^{2}$ 上oo.forlz/sufficuatly mad.
So $F(z)=A\left(1+\frac{z}{\alpha}+\left(\frac{z}{\alpha}\right)^{2}+\infty \infty\right)+B\left(1+\frac{z}{5}+\left(\frac{z}{5}\right)^{2}+\infty 00\right)$

$$
t_{k}(x)=A\left(\frac{1}{2}\right)^{k}+B\left(\frac{1}{\beta}\right)^{k}
$$

(δ)

$$
N_{\text {ow }} t_{0}(x)=1
$$

S $A+B=1$

$$
t_{1}(x)=x
$$

$$
\frac{A}{\alpha}+\frac{B}{\beta} \equiv x
$$

Also the zeroes of $1-2 x z+z{ }^{2}$ are:

$$
\begin{aligned}
& z=\frac{2 x \pm \sqrt{4 x^{2}-x}}{2} \\
&=x \pm \sqrt{x^{2}-1} \\
& \epsilon_{0} \alpha=x=\sqrt{x^{2}-1} \text { and } \beta=x-\sqrt{x^{2}-1} \\
& \text { So } \frac{A}{x+\sqrt{x^{2}-1}}+\frac{B}{x-\sqrt{x^{2}-1}} \equiv x
\end{aligned}
$$

So $\frac{A\left(x-\sqrt{x^{2}-1}\right)+B\left(x+\sqrt{x^{2}-1}\right)}{x^{2}-x^{2}+1} \equiv 2$
So $(A+B) x-(A-B) \sqrt{x^{2}-1} \equiv x_{1}$
So $A+B=1$

$$
A-B=0
$$

$$
\text { So } A=B=\frac{1}{2}
$$

But

$$
\begin{aligned}
& S_{0} A A=B=\frac{1}{2} \\
& t_{k}(x)=A\left(\frac{1}{2}\right)^{k}+B\left(\frac{1}{S}\right)^{k} \\
&=\frac{1}{2}\left(\frac{1}{x+\sqrt{x^{2}-1}}\right)^{k}+\frac{1}{2}\left(\frac{1}{x-\sqrt{x^{2}-1}}\right)^{k}
\end{aligned}
$$

