FORM VI
 MATHEMATICS EXTENSION 2

Tuesday 11th August 2009

General Instructions

- Reading time - 5 minutes
- Writing time - 3 hours
- Write using black or blue pen.
- Board-approved calculators may be used.
- A list of standard integrals is provided at the end of the examination paper.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Structure of the paper

- Total marks - 120
- All eight questions may be attempted.
- All eight questions are of equal value.

Collection

- Write your candidate number clearly on each booklet and on the tear-off sheet.
- Hand in the eight questions in a single well-ordered pile.
- Hand in a booklet for each question, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Bundle the tear-off sheet with the question it belongs to.
- Bundle the tear-off sheet with the question it belongs to.
- Place the question paper inside your answer booklet for Question 1.

Checklist

- SGS booklets - 8 per boy

Examiner

- Candidature - 72 boys

QUESTION ONE (15 marks) Use a separate writing booklet.
(a) Evaluate $\int_{0}^{1} x e^{x^{2}} d x$.
(b) Complete the square to find $\int \frac{d x}{x^{2}-2 x+5}$.
(c) Evaluate $\int_{0}^{\frac{\pi}{2}} x \sin x d x$.
(d) (i) Find values of a, b and c such that

$$
\frac{x^{2}+2 x-4}{(x+1)\left(x^{2}+4\right)}=\frac{a}{x+1}+\frac{b x+c}{x^{2}+4} .
$$

(ii) Hence evaluate $\int_{0}^{1} \frac{x^{2}+2 x-4}{(x+1)\left(x^{2}+4\right)} d x$.
(e) Use the substitution $x=\frac{\pi}{2}-u$ to show that

$$
\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\sin 2 x} d x=0
$$

QUESTION TWO (15 marks) Use a separate writing booklet.
(a) Let $z=3-4 i$ and $w=2+i$. Find, in the form $x+i y$:
(i) $z+i w$
(ii) $z \bar{w}$
(b) Let $\alpha=1-i$.
(i) Write α in modulus-argument form.
(ii) Hence show that $\alpha^{4}+4=0$.
(c) Let $z=x+i y$ and $w=1-\frac{2 i}{z}$.
(i) Write w in the form $a+i b$.
(ii) For what value of z is w undefined?
(iii) Given that w is purely imaginary, describe the locus of z.
(d)

In the Argand diagram above, P represents the complex number $w=r \operatorname{cis} \theta . Q$ is that point on the ray $\arg (z)=\alpha$ such that $\angle P Q O=\frac{\pi}{2}$. The point P^{\prime}, which represents the complex number v, is the reflection of P in the ray $\arg (z)=\alpha$. You may assume that $\triangle O P Q \equiv \triangle O P^{\prime} Q$.
(i) Write down the values of $|v|$ and $\arg (v)$.
(ii) Hence show that $v=\bar{w} \operatorname{cis} 2 \alpha$.
(iii) The circle $|z-(2+2 i)|=1$ is reflected in the $\operatorname{ray} \arg (z)=\frac{\pi}{6}$. By using the result in part (ii), or otherwise, show that the equation of this new circle is

$$
|z-((1+\sqrt{3})+i(\sqrt{3}-1))|=1
$$

QUESTION THREE (15 marks) Use a separate writing booklet.
(a)

The graph of $y=f(x)$ is shown above. The horizontal asymptote is $y=-1$ and the y-intercept is at $\left(0, \frac{1}{2}\right)$. The x-intercepts are at $(-1,0)$ and $(1,0)$.

Draw separate graphs of the following functions:
(i) $y=\frac{1}{f(x)}$
(ii) $y=(f(x))^{2}$
(iii) $y=4^{f(x)}$
(b) The ellipse \mathcal{E} has equation $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$.
(i) State the intercepts with the axes.
(ii) Determine the eccentricity of \mathcal{E}.
(iii) State the coordinates of the two foci.
(iv) Find the equations of the two directrices.
(c)

The graph of $y=\frac{x}{x^{2}+1}$ is shown above.
Use the method of cylindrical shells to find the volume of the solid generated when the shaded region bounded by $y=0, y=\frac{x}{x^{2}+1}$ and $x=1$ is rotated about the y-axis.

QUESTION FOUR (15 marks) Use a separate writing booklet.
(a) (i) Show that $2 \cos A \sin B=\sin (A+B)-\sin (A-B)$.
(ii) Hence evaluate $\int_{0}^{\frac{\pi}{3}} 2 \cos 2 x \sin x d x$.
(b) Consider the integral $I_{n}=\int_{0}^{1} \frac{x^{n}}{\sqrt{1+x}} d x$.
(i) Show that $I_{0}=2 \sqrt{2}-2$.
(ii) Show that $I_{n-1}+I_{n}=\int_{0}^{1} x^{n-1} \sqrt{1+x} d x$.
(iii) Use integration by parts to show that

$$
I_{n}=\frac{2 \sqrt{2}-2 n I_{n-1}}{2 n+1} .
$$

(iv) Hence evaluate I_{2}.
(c) The number c is real and non-zero. It is also known that $(1+i c)^{5}$ is real.
(i) Use the binomial theorem to expand $(1+i c)^{5}$.
(ii) Show that $c^{4}-10 c^{2}+5=0$.
(iii) Hence show that $c=\sqrt{5-2 \sqrt{5}},-\sqrt{5-2 \sqrt{5}}, \sqrt{5+2 \sqrt{5}}$ or $-\sqrt{5+2 \sqrt{5}}$.
(iv) Let $1+i c=r \operatorname{cis} \theta$. Use de Moivre's theorem to show that the smallest positive value of θ is $\frac{\pi}{5}$.
(v) Hence evaluate $\tan \frac{\pi}{5}$.
(a) The polynomial $P(z)=2 z^{3}-3 z^{2}+8 z+5$ has a zero at $z=1-2 i$. Factorise $P(z)$.
(b) (i) The cubic equation $x^{3}-p x-q=0$ has a double root. Show that $27 q^{2}=4 p^{3}$.
(ii) Hence find the y-coordinates of the stationary points of $y=x^{3}-3 x$ without the use of calculus.
(c) Consider the series:

$$
S=1-x^{2}+x^{4}-x^{6}+\cdots .
$$

(i) For which values of x does S have a limiting sum, and what is the limiting sum?
(ii) Assuming that it is valid to integrate this series, show that

$$
\tan ^{-1} x=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\cdots .
$$

(iii) Show that $\tan \frac{\pi}{12}=2-\sqrt{3}$.
(iv) Let $x=\tan \frac{\pi}{12}$. Use this value of x and the first three terms of the series in part (ii) to find an approximation for π, correct to four decimal places.

QUESTION SIX (15 marks) Use a separate writing booklet.
(a)

The solid in the diagram above has a horizontal square base $O P Q R$ with diagonal $O Q=r$. The thin horizontal slice $A B C D$ at height z above the base is also square with $O C=r$. The line $O A$ is vertical. The curve $Q C E$ is a quadrant of a circle with centre O and radius r.
(i) Show that the area of $A B C D$ is $\frac{1}{2}\left(r^{2}-z^{2}\right)$.
(ii) Hence find the volume of the solid.
(b) The points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$ lie on the same branch of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, and $P Q$ is a focal chord, passing through $S(a e, 0)$.
Use the gradients of $P S$ and $Q S$ to show that $e=\frac{\sin \theta-\sin \phi}{\sin (\theta-\phi)}$.
(c)

In the diagram above, two circles of differing radius intersect at A and B. The lines $P Q$ and $R S$ are the common tangents with $P S \| Q R$. A third circle passes through the points S, A and R. The tangent to this circle at A meets the parallel lines at F and G.

Let $\angle R A G=\alpha, \angle A G R=\beta$ and $\angle G R A=\gamma$.
Note: You do not have to copy the diagram above. It has been reproduced for you on a tear-off sheet at the end of this paper. Insert this sheet into your answer booklet.
(i) State why $\angle A F P=\beta$.
(ii) Show that $\angle S P A=\alpha$.
(iii) Hence prove that $F G$ is also tangent to the circle which passes through the points A, P and Q.

QUESTION SEVEN (15 marks) Use a separate writing booklet.
(a) (i) The definition of ${ }^{k} \mathrm{C}_{r}$ is the coefficient of x^{r} in the expansion of $(1+x)^{k}$. Using this definition, what is the value of ${ }^{k} \mathrm{C}_{r}$ whenever $k<r$?
(ii) Prove that $\sum_{k=0}^{n}{ }^{k} \mathrm{C}_{r}={ }^{n+1} \mathrm{C}_{r+1}$. You may assume the addition property for the binomial coefficients, which may be written as ${ }^{k} \mathrm{C}_{r}={ }^{k+1} \mathrm{C}_{r+1}-{ }^{k} \mathrm{C}_{r+1}$.
(iii) Use the result proven in part (ii) to show that $\sum_{k=0}^{n} k=\frac{1}{2} n(n+1)$.
(iv) (α) Show that $k^{2}=2 \times{ }^{k} \mathrm{C}_{2}+{ }^{k} \mathrm{C}_{1}$.
(β) Hence find a formula for $\sum_{k=0}^{n} k^{2}$.
(b) Show that the equation of the directrix of the parabola $y=a x^{2}+b x$ is

$$
y=-\frac{b^{2}+1}{4 a} .
$$

(c) A projectile is fired from the origin O with initial speed V and angle of projection α. The Cartesian equation of its trajectory is

$$
y=x \tan \alpha-\frac{g x^{2} \sec ^{2} \alpha}{2 V^{2}}
$$

(i) Use part (b) to find the equation of the directrix.
(ii) Hence show that the focus lies on the circle

$$
x^{2}+y^{2}=\frac{V^{4}}{4 g^{2}}
$$

(iii) There is only one trajectory which passes through P. Use the geometry of the parabola to prove that $O P$ is a focal chord.

QUESTION EIGHT (15 marks) Use a separate writing booklet.
(a) Consider the function

$$
f(x)=x-\frac{g^{2}}{x}-2 g \log \left(\frac{x}{g}\right), \text { for } x \geq g
$$

(i) Evaluate $f(g)$.
(ii) Show that $f^{\prime}(x)=\left(1-\frac{g}{x}\right)^{2}$.
(iii) Explain why $f(x)>0$ for $x>g$.
(b) A body is moving vertically through a resisting medium, with resistance proportional to its speed. The body is initially fired upwards from the origin with speed v_{0}. Let y metres be the height of the object above the origin at time t seconds, and let g be the constant acceleration due to gravity. Thus

$$
\frac{d^{2} y}{d t^{2}}=-(g+k v) \quad \text { where } \quad k>0
$$

(i) Find v as a function of t, and hence show that

$$
k^{2} y=\left(g+k v_{0}\right)\left(1-e^{-k t}\right)-g k t .
$$

(ii) Find T, the time taken to reach the maximum height.
(iii) Show that when $t=2 T$,

$$
k^{2} y=\left(g+k v_{0}\right)-\frac{g^{2}}{g+k v_{0}}-2 g \log \left(\frac{g+k v_{0}}{g}\right) .
$$

(iv) Use this result and part (a) to show that the downwards journey takes longer.
(c) Suppose that the equation $f(x)=0$ has a single root $x=\alpha$, where $a \leq \alpha \leq b$. Let the sequence

$$
x_{0}=a, x_{1}=b, x_{2}=\frac{a+b}{2}, x_{3}, x_{4}, \ldots
$$

be the successive approximations of $x=\alpha$ obtained when the bisection method is used. (The bisection method is also known as the method of halving the interval.) Let $u_{n}=\left|x_{n}-x_{n-1}\right|$ be the distances between successive terms of this sequence.
(i) Explain why $u_{n+1}=\frac{1}{2} u_{n}$.
(ii) Hence show that $u_{n}=(b-a)\left(\frac{1}{2}\right)^{n-1}$ for $n \geq 1$.
(iii) Explain why $\left|\alpha-x_{n}\right| \leq u_{n}$.
(iv) Hence prove that the bisection method converges to the root $x=\alpha$.

That is, prove that $\lim _{n \rightarrow \infty} x_{n}=\alpha$.

CANDIDATE NUMBER:

Detach this sheet and bundle it with The rest of question six.

QUESTION SIX

(c)

SGS Trial 2009 Form VI Mathematics Extension 2 Page 12

BLANK PAGE

SGS Trial 2009 Form VI Mathematics Extension 2 Page 13

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

QUESTION ONE (15 marks)
(a) $\quad \int_{0}^{1} x e^{x^{2}} d x=\frac{1}{2}\left[e^{x^{2}}\right]_{0}^{1}$

$$
=\frac{1}{2}(e-1) .
$$

(b) $\quad \int \frac{d x}{x^{2}-2 x+5}=\int \frac{d x}{(x-1)^{2}+2^{2}}$

$$
=\frac{1}{2} \tan ^{-1} \frac{x-1}{2}+C
$$

(c) $\quad \int_{0}^{\frac{\pi}{2}} x \sin x d x=[-x \cos x]_{0}^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}} \cos x d x \quad$ (by parts)

$$
\begin{aligned}
& =[-x \cos x+\sin x]_{0}^{\frac{\pi}{2}} \\
& =1
\end{aligned}
$$

(d) (i) The given equation is true if

$$
x^{2}+2 x-4=a\left(x^{2}+4\right)+(b x+c)(x+1) .
$$

At $x=-1 \quad-5=5 a+0$
so

$$
a=-1
$$

At $x=0$

$$
-4=-4+c
$$

so $\quad c=0$.
At $x=1$

$$
-1=-5+2 b
$$

so

$$
b=2 \text {. }
$$

(ii) $\quad \int_{0}^{1} \frac{x^{2}+2 x-4}{(x+1)\left(x^{2}+4\right)} d x=\int_{0}^{1} \frac{2 x}{x^{2}+4}-\frac{1}{x+1} d x \quad$ (from part (i))

$$
\begin{aligned}
& =\left[\log \left(x^{2}+4\right)-\log (x+1)\right]_{0}^{1} \\
& =\log 5-\log 2-\log 4+\log 1 \\
& =\log \left(\frac{5}{8}\right)
\end{aligned}
$$

(e) Let $\quad I=\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\sin 2 x} d x$

Put $\quad x=\frac{\pi}{2}-u$
then $\quad d x=-d u$.
at $\quad x=0, \quad u=\frac{\pi}{2}$
and at $\quad x=\frac{\pi}{2}, \quad u=0$.

Thus $\quad I=\int_{\frac{\pi}{2}}^{0} \frac{\cos \left(\frac{\pi}{2}-u\right)-\sin \left(\frac{\pi}{2}-u\right)}{1+\sin 2\left(\frac{\pi}{2}-u\right)}(-d u)$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{2}} \frac{\cos \left(\frac{\pi}{2}-u\right)-\sin \left(\frac{\pi}{2}-u\right)}{1+\sin 2\left(\frac{\pi}{2}-u\right)} d u \\
& =\int_{0}^{\frac{\pi}{2}} \frac{\sin u-\cos u}{1+\sin 2 u} d u
\end{aligned}
$$

so

$$
I=-I
$$

Hence $\quad I=0$
Total for Question 1: $\overline{15 \text { Marks }}$

QUESTION TWO (15 marks)

(a) (i) $z+i w=3-4 i+2 i-1$

$$
=2-2 i
$$

(ii) $z \bar{w}=(3-4 i)(2-i)$

$$
=2-11 i
$$

(b) (i) $1-i=\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)$
(ii) $\quad \alpha^{4}+4=\left(\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)\right)^{4}+4$

$$
\begin{aligned}
& =4 \operatorname{cis}(-\pi)+4 \quad \text { (by de Moivre) } \\
& =-4+4 \\
& =0
\end{aligned}
$$

(c) (i) $w=1-\frac{2 i}{z}$

$$
=1-\frac{2 i \bar{z}}{|z|^{2}}
$$

$$
=\left(1-\frac{2 y}{x^{2}+y^{2}}\right)-\frac{2 i x}{x^{2}+y^{2}}
$$

(ii) w is undefined when $z=0$
(iii) Since w is pure imaginary,

$$
\begin{aligned}
\operatorname{Re}(w) & =0 \\
\text { so } & x^{2}+y^{2}-2 y
\end{aligned}=0
$$

Thus the locus is the unit circle with centre $z=i$, omitting the origin.
(d)

$$
\text { (i) } \quad \begin{aligned}
|v| & =|w| \quad\left(\text { since } O P^{\prime}=O P\right) \\
& =r \\
\arg v & =\alpha+\angle P^{\prime} O Q \\
& =\alpha+\angle P O Q \\
& =\alpha+(\alpha-\theta) \\
& =2 \alpha-\theta
\end{aligned}
$$

(ii)

$$
\begin{aligned}
v & =r \operatorname{cis}(2 \alpha-\theta) \\
& =r \operatorname{cis}(-\theta) \operatorname{cis} 2 \alpha \\
& =\bar{w} \operatorname{cis} 2 \alpha
\end{aligned}
$$

(iii) The radius remains the same for a reflection. The new centre will be

$$
\begin{aligned}
\overline{(2+2 i)} \operatorname{cis}\left(2 \times \frac{\pi}{6}\right) & =(2-2 i) \operatorname{cis} \frac{\pi}{3} \\
& =(2-2 i) \frac{1}{2}(1+i \sqrt{3}) \\
& =(1+\sqrt{3})+i(\sqrt{3}-1)
\end{aligned}
$$

Hence the new circle is $|z-((1+\sqrt{3})+i(\sqrt{3}-1))|=1$.
Total for Question 2: $\overline{15 \text { Marks }}$

QUESTION THREE (15 marks)

(a) The graphs below are exact.

vertical asymptotes
y-intercept and horizontal asymptote

Shape at x-intercepts y-intercept and horizontal asymptote

$$
(-1,1) \text { and }(1,1)
$$

y-intercept and horizontal asymptote
(b) (i) $(5,0),(-5,0),(0,4)$ and $(0,-4)$
(ii) From $\quad b^{2}=a^{2}\left(1-e^{2}\right)$

$$
16=25\left(1-e^{2}\right)
$$

$$
e^{2}=\frac{9}{25}
$$

so

$$
e=\frac{3}{5}
$$

(iii) $(3,0)$ and $(-3,0)$
(iv) $x=\frac{25}{3}$ and $x=-\frac{25}{3}$
(c) The volume of the element is the difference between two cylinders, thus

$$
\begin{aligned}
d V & =\pi(x+d x)^{2} y-\pi x^{2} y \\
& =\pi y(2 x+d x) d x
\end{aligned}
$$

Sum the elements and take the limit as $d x \rightarrow 0$ to get

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi x y d x \\
& =2 \pi \int_{0}^{1} \frac{x^{2}}{x^{2}+1} d x \\
& =2 \pi \int_{0}^{1} 1-\frac{1}{x^{2}+1} d x \\
& =2 \pi\left[x-\tan ^{-1} x\right]_{0}^{1} \\
& =2 \pi-\frac{\pi^{2}}{2}
\end{aligned}
$$

Total for Question 3: 15 Marks

QUESTION FOUR (15 marks)
(a) (i) $R H S=\sin A \cos B+\cos A \sin B$

$$
\underline{-\sin A \cos B+\cos A \sin B}
$$

$$
=2 \cos A \sin B
$$

(ii) $\quad \int_{0}^{\frac{\pi}{3}} 2 \cos 2 x \sin x d x=\int_{0}^{\frac{\pi}{3}} \sin 3 x-\sin x d x$

$$
\begin{aligned}
& =\left[-\frac{1}{3} \cos 3 x+\cos x\right]_{0}^{\frac{\pi}{3}} \\
& =\left(\frac{1}{3}+\frac{1}{2}\right)-\left(-\frac{1}{3}+1\right) \\
& =\frac{1}{6}
\end{aligned}
$$

(b)

$$
\begin{aligned}
I_{0} & =\int_{0}^{1} \frac{1}{\sqrt{1+x}} d x \\
& =2[\sqrt{1+x}]_{0}^{1} \\
& =2 \sqrt{2}-2
\end{aligned}
$$

(ii) LHS $=\int_{0}^{1} \frac{x^{n-1}}{\sqrt{1+x}}+\frac{x^{n}}{\sqrt{1+x}} d x$

$$
\begin{aligned}
& =\int_{0}^{1} \frac{x^{n-1}(1+x)}{\sqrt{1+x}} d x \\
& =\int_{0}^{1} x^{n-1} \sqrt{1+x} d x \\
& =R H S
\end{aligned}
$$

(iii)

$$
\begin{aligned}
I_{n} & =\left[2 x^{n} \sqrt{1+x}\right]_{0}^{1}-2 n \int_{0}^{1} x^{n-1} \sqrt{1+x} d x \quad \text { (by parts) } \\
& =2 \sqrt{2}-2 n\left(I_{n-1}+I_{n}\right) \quad(\text { by part ii }) \\
\text { so } \quad(2 n+1) I_{n} & =2 \sqrt{2}-2 n I_{n-1} \\
& \text { or } \quad I_{n}
\end{aligned}=\frac{2 \sqrt{2}-2 n I_{n-1}}{2 n+1} .
$$

(iv) $\quad I_{1}=\frac{1}{3}\left(2 \sqrt{2}-2 I_{0}\right)$

$$
=\frac{1}{3}(4-2 \sqrt{2})
$$

$$
I_{2}=\frac{1}{5}\left(2 \sqrt{2}-4 I_{1}\right)
$$

$$
=\frac{1}{5}\left(2 \sqrt{2}-\frac{16}{3}+\frac{8 \sqrt{2}}{3}\right)
$$

$$
=\frac{1}{15}(14 \sqrt{2}-16)
$$

(c) (i) $\quad(1+i c)^{5}=1+5 i c-10 c^{2}-10 i c^{3}+5 c^{4}+i c^{5}$
(ii) $\quad \operatorname{Im}\left((1+i c)^{5}\right)=0$
so $\quad 5 c-10 c^{3}+c^{5}=0$
thus $c^{4}-10 c^{2}+5=0 \quad($ since $c \neq 0)$
(iii) The equation is a quadratic in c^{2}, thus

$$
c^{2}=\frac{10+\sqrt{80}}{2} \text { or } \frac{10-\sqrt{80}}{2}
$$

hence $c=\sqrt{5-2 \sqrt{5}},-\sqrt{5-2 \sqrt{5}}, \sqrt{5+2 \sqrt{5}}$ or $-\sqrt{5+2 \sqrt{5}}$.
(iv) $\quad(r \operatorname{cis} \theta)^{5}=r^{5} \operatorname{cis} 5 \theta \quad$ (by de Moivre)
and since this is real

$$
\begin{aligned}
\sin 5 \theta & =0 \\
5 \theta & =n \pi \\
\theta & =\frac{n \pi}{5}
\end{aligned}
$$

or
Thus the smallest positive value is $\theta=\frac{\pi}{5}$.
(v) This corresponds to the smallest positive value of c.

Thus $\tan \frac{\pi}{5}=\frac{c}{1}$

$$
=\sqrt{5-2 \sqrt{5}}
$$

Total for Question 4: 15 Marks

QUESTION FIVE (15 marks)

(a) Since $P(z)$ has real coefficients, it follows that $z=1+2 i$ is also a zero.

Let the remaining zero be α, then summing the roots

$$
\alpha+2=\frac{3}{2}
$$

or

$$
\alpha=-\frac{1}{2}
$$

Hence $P(z)=2\left(z+\frac{1}{2}\right)(z-(1-2 i))(z-(1+2 i))$.
(b) (i) Let the roots be α, α and β, then by the sums and products of roots

$$
\begin{align*}
2 \alpha+\beta & =0 \tag{1}\\
\alpha^{2}+2 \alpha \beta & =-p \tag{2}\\
\alpha^{2} \beta & =q \tag{3}
\end{align*}
$$

From (1), equations (2) and (3) become

$$
\begin{aligned}
3 \alpha^{2} & =p \\
2 \alpha^{3} & =-q \quad(4) \\
4 p^{3} & =4 \times 27 \alpha^{6} \quad(\text { from equation (4)) } \\
& =27 \times 4 \alpha^{6} \\
& =27 q^{2} \quad(\text { from equation (5).) }
\end{aligned}
$$

(ii) Re-writing the equation of the cubic

$$
x^{3}-3 x-y=0
$$

which has a double root at the y-coordinates of the stationary points, so

$$
\begin{aligned}
& 27 y^{2}=4 \times 3^{3} \quad \text { (from part (i)) } \\
& \text { so } \quad y^{2}=4 \\
& \text { thus } \quad y=2 \text { or }-2
\end{aligned}
$$

(c) (i)

$$
\begin{array}{lrl}
& & |x| \\
& <1 \\
\text { or } & -1 & <x<1 \\
\text { for which } & S & =\frac{1}{1+x^{2}}
\end{array}
$$

(ii) Thus $\quad \frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\cdots$
so

$$
\int \frac{d x}{1+x^{2}}=\int\left(1-x^{2}+x^{4}-x^{6}+\cdots\right) d x
$$

and $\quad \tan ^{-1} x=\left(x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\cdots\right)+C$
At $x=0, \tan ^{-1} 0=0$, so

$$
\begin{aligned}
C & =0 \\
\tan ^{-1} x & =x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\cdots .
\end{aligned}
$$

thus
(iii)

$$
\begin{aligned}
\tan \frac{\pi}{12} & =\tan \left(\frac{\pi}{3}-\frac{\pi}{4}\right) \\
& =\frac{\sqrt{3}-1}{1+\sqrt{3}} \\
& =\frac{(\sqrt{3}-1)^{2}}{2} \\
& =2-\sqrt{3} .
\end{aligned}
$$

(iv)

$$
\text { so } \quad \begin{aligned}
\frac{\pi}{12} & \doteqdot(2-\sqrt{3})-\frac{1}{3}(2-\sqrt{3})^{3}+\frac{1}{5}(2-\sqrt{3})^{5} \\
& \doteqdot 12\left((2-\sqrt{3})-\frac{1}{3}(2-\sqrt{3})^{3}+\frac{1}{5}(2-\sqrt{3})^{5}\right) \\
& \doteqdot 3 \cdot 1418 \quad(\text { correct to four decimal places })
\end{aligned}
$$

Total for Question 5: $\overline{15 \text { Marks }}$

QUESTION SIX (15 marks)

(a) (i)

In $\triangle O A C \quad A C^{2}=r^{2}-z^{2} \quad$ (by Pythagoras)
hence $\quad|A B C D|=\frac{1}{2} A C^{2} \quad$ (a square is a rhombus)

$$
=\frac{1}{2}\left(r^{2}-z^{2}\right) .
$$

(ii) The volume of the thin slice with thickness $d z$ is $d V=\frac{1}{2}\left(r^{2}-z^{2}\right) d z$ Sum the elements and take the limit as $d z \rightarrow 0$ to get

$$
\begin{aligned}
V & =\frac{1}{2} \int_{0}^{r}\left(r^{2}-z^{2}\right) d z \\
& =\frac{1}{2}\left[r^{2} z-\frac{1}{3} z^{3}\right]_{0}^{r} \\
& =\frac{1}{2}\left(r^{3}-\frac{1}{3} r^{3}\right)-0 \\
& =\frac{1}{3} r^{3} .
\end{aligned}
$$

(b) Since S lies on $P Q$ it follows that

$$
\text { gradient } P S=\text { gradient } Q S
$$

thus

$$
\frac{b \tan \theta}{a \sec \theta-a e}=\frac{b \tan \phi}{a \sec \phi-a e}
$$

or

$$
\frac{\tan \theta}{\sec \theta-e}=\frac{\tan \phi}{\sec \phi-e}
$$

whence $\tan \theta \sec \phi-e \tan \theta=\tan \phi \sec \theta-e \tan \phi$
and $\quad e(\tan \theta-\tan \phi)=\tan \theta \sec \phi-\tan \phi \sec \theta$.
So $\quad e=\frac{\tan \theta \sec \phi-\tan \phi \sec \theta}{\tan \theta-\tan \phi} \times \frac{\cos \theta \cos \phi}{\cos \theta \cos \phi}$
$=\frac{\sin \theta-\sin \phi}{\sin \theta \cos \phi-\cos \theta \sin \phi}$
$=\frac{\sin \theta-\sin \phi}{\sin (\theta-\phi)}$.
(c) (i) $\quad \angle A F P=\beta \quad$ (Alternate angles, $P S \| Q R$.)
(ii) $\angle R S A=\angle R A G$ (angle in the alternate segment of circle $S A R$) $=\alpha$.
$\angle S P A=\angle R S A \quad$ (angle in the alternate segment of circle $P B A S$)
$=\alpha$.
(iii) $\quad \angle F A P=\gamma \quad$ (angle sum of $\triangle F A P$)
$\angle P Q A=\angle Q R A \quad$ (angle in the alternate segment of circle $R A B Q$)

$$
=\gamma
$$

Thus $\angle F A P=\angle P Q A$
Hence $F G$ is tangent to the circle through $A P Q$ by the converse of the angles in the alternate segment theorem.

Total for Question 6: 15 Marks

QUESTION SEVEN (15 marks)
(a) (i) If $k<r$ then there is no term in x^{r}, hence ${ }^{k} \mathrm{C}_{r}=0$.
(ii) $\quad \sum_{k=0}^{n}{ }^{k} \mathrm{C}_{r}=\sum_{k=0}^{n}\left({ }^{k+1} \mathrm{C}_{r+1}-{ }^{k} \mathrm{C}_{r+1}\right)$ $=\left({ }^{1} \mathrm{C}_{r+1}-{ }^{0} \mathrm{C}_{r+1}\right)+\left({ }^{2} \mathrm{C}_{r+1}-{ }^{1} \mathrm{C}_{r+1}\right)+\left({ }^{3} \mathrm{C}_{r+1}-{ }^{2} \mathrm{C}_{r+1}\right)$ $+\ldots+\left({ }^{n+1} \mathrm{C}_{r+1}-{ }^{n} \mathrm{C}_{r+1}\right)$
$={ }^{n+1} \mathrm{C}_{r+1}-{ }^{0} \mathrm{C}_{r+1} \quad$ (since all other terms cancel)
$={ }^{n+1} \mathrm{C}_{r+1}-0 \quad$ (by part (i))
$={ }^{n+1} \mathrm{C}_{r+1}$
(iii) $\quad \sum_{k=0}^{n} k=\sum_{k=0}^{n}{ }^{k} \mathrm{C}_{1}$

$$
={ }^{n+1} \mathrm{C}_{2} \quad(\text { by part (ii) })
$$

$$
=\frac{1}{2} n(n+1) .
$$

(iv) (α) $2 \times{ }^{k} \mathrm{C}_{2}+{ }^{k} \mathrm{C}_{1}=k(k-1)+k$

$$
=k^{2}
$$

$$
\begin{align*}
\sum_{k=0}^{n} k^{2} & =\sum_{k=0}^{n} 2 \times{ }^{k} \mathrm{C}_{2}+{ }^{k} \mathrm{C}_{1} \\
& =2 \times{ }^{n+1} \mathrm{C}_{3}+{ }^{n+1} \mathrm{C}_{2} \quad(\text { by part (ii)) } \\
& =\frac{1}{3}(n+1) n(n-1)+\frac{1}{2}(n+1) n \\
& =\frac{1}{6}(n+1) n(2(n-1)+3) \\
& =\frac{1}{6}(n+1) n(2 n+1) .
\end{align*}
$$

(b) The focal length $=\frac{1}{4 a}$

At the vertex $y=x(a x+b)$

$$
\begin{aligned}
& =-\frac{b}{2 a}\left(-\frac{b}{2}+b\right) \\
& =-\frac{b^{2}}{4 a}
\end{aligned}
$$

hence the directrix has equation

$$
\begin{aligned}
y & =-\frac{b^{2}}{4 a}-\frac{1}{4 a} \\
& =-\frac{b^{2}+1}{4 a}
\end{aligned}
$$

(c) (i) $y=-\frac{\tan ^{2} \alpha+1}{4\left(\frac{-g \sec ^{2} \alpha}{2 V^{2}}\right)}$

$$
\begin{aligned}
& =\frac{V^{2} \sec ^{2} \alpha}{2 g \sec ^{2} \alpha} \\
& =\frac{V^{2}}{2 g}
\end{aligned}
$$

(ii) The origin lies on the parabola so is equidistant from the focus and directrix. Thus there is a circle with centre the origin which passes through the focus and is tangent to the directrix.
Hence the radius of this circle is $\frac{V^{2}}{2 g}$
and the equation is $x^{2}+y^{2}=\frac{V^{4}}{4 g^{2}}$.
(iii) Since P is on the parabola, P is equidistant from the focus and directrix. Hence there is a second circle with centre P which passes through the focus and is tangent to the directrix.

Since there is only one trajectory, the two circles intersect once only, at S.

Whence the two circles have a common tangent at S, which is perpendicular to both radii $O S$ and $S P$. Hence O, S and P are collinear.

That is, $O P$ is a focal chord.
Total for Question 7: 15 Marks

QUESTION EIGHT (15 marks)
(a) (i)

$$
\begin{aligned}
f(g) & =g-\frac{g^{2}}{g}-2 g \log \left(\frac{g}{g}\right) \\
& =g-g-2 g \log 1 \\
& =0
\end{aligned}
$$

(ii) $\quad f^{\prime}(x)=1+\frac{g^{2}}{x^{2}}-\frac{2 g}{x}$

$$
=\left(1-\frac{g}{x}\right)^{2}
$$

(iii) Now $\quad f(g)=0$
and $\quad f^{\prime}(x)>0$ for $x \neq g \quad$ (that is, $f(x)$ increasing for $x>g$) hence $\quad f(x)>0$ for $x>g$.
(b) (i)

$$
v^{\prime}=-(g+k v)
$$

so $\quad \frac{k v^{\prime}}{g+k v}=-k$
Integrate with respect to t to get

$$
\int \frac{k v^{\prime}}{g+k v} d t=\int-k d t
$$

Note on the LHS that the numerator is the derivative of the denominator
so $\quad \log (g+k v)=-k t+C_{1} \quad$ (for some constant C_{1})
or $\quad g+k v=A e^{-k t} \quad$ where $\quad A=e^{C_{1}}$.
At $t=0 \quad g+k v_{0}=A$
so

$$
g+k v=\left(g+k v_{0}\right) e^{-k t}
$$

Integrate again with respect to t to get

$$
g t+k y=-\frac{1}{k}\left(g+k v_{0}\right) e^{-k t}+\frac{1}{k} C_{2} \quad\left(\text { for some constant } C_{2}\right)
$$

so

$$
k g t+k^{2} y=-\left(g+k v_{0}\right) e^{-k t}+C_{2} .
$$

At $t=0$

$$
0+0=-\left(g+k v_{0}\right)+C_{2}
$$

so

$$
C_{2}=\left(g+k v_{0}\right) .
$$

Thus $\quad k g t+k^{2} y=\left(g+k v_{0}\right)\left(1-e^{-k t}\right)$
or

$$
k y^{2}=\left(g+k v_{0}\right)\left(1-e^{-k t}\right)-g k t .
$$

(ii) At $t=T, v=0$ so

$$
g=\left(g+k v_{0}\right) e^{-k T}
$$

or $\quad e^{k T}=\frac{g+k v_{0}}{g}$
so $\quad T=\frac{1}{k} \log \left(\frac{g+k v_{0}}{g}\right)$.
(iii) At $t=2 T, k^{2} y=\left(g+k v_{0}\right)\left(1-e^{-2 k T}\right)-2 g k T$

$$
\begin{aligned}
& =\left(g+k v_{0}\right)\left(1-\left(e^{-k T}\right)^{2}\right)-2 g k T \\
& =\left(g+k v_{0}\right)\left(1-\left(\frac{g}{g+k v_{0}}\right)^{2}\right)-2 g \log \left(\frac{g+k v_{0}}{g}\right) \\
& =\left(g+k v_{0}\right)-\frac{g^{2}}{g+k v_{0}}-2 g \log \left(\frac{g+k v_{0}}{g}\right)
\end{aligned}
$$

(iv) Let $x=g+k v_{0}$ then at $t=2 T$

$$
\begin{aligned}
k^{2} y & =x-\frac{g^{2}}{x}-2 g \log \left(\frac{x}{g}\right) \\
& =f(x) \\
& >0 \quad(\text { by part (a) })
\end{aligned}
$$

That is, it is above the ground and hence the downwards journey takes longer.
(c) (i) The value x_{n} is the average of two numbers, one of which is x_{n-1}. Let these two numbers be x_{L} and x_{R}, where $x_{L}<x_{n}<x_{R}$. Thus

$$
u_{n}=x_{n}-x_{L}=x_{R}-x_{n} .
$$

The situation is shown on the number line.

Either x_{n+1} is the mid-point of x_{L} and x_{n}
or x_{n+1} is the mid-point of x_{n} and x_{R}, as shown in the diagram.

In either case the $\left|x_{n+1}-x_{n}\right|=\frac{1}{2}\left|x_{n}-x_{n-1}\right|$, viz $u_{n+1}=\frac{1}{2} u_{n}$.
(ii) Since $\frac{u_{n+1}}{u_{n}}=\frac{1}{2}$ for all n, u_{n} is a GP with common ratio $=\frac{1}{2}$.

First term $\quad u_{1}=|b-a|$

$$
=(b-a)
$$

Hence $\quad u_{n}=(b-a)\left(\frac{1}{2}\right)^{n-1}$
(iii) The root α lies between x_{L} and x_{R}, as in the diagram below.

Hence the distance from α to x_{n} is less than or equal to u_{n}.
That is $\left|\alpha-x_{n}\right| \leq u_{n}$.
(iv)

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\alpha-x_{n}\right| & \leq \lim _{n \rightarrow \infty} u_{n} \\
& \leq \lim _{n \rightarrow \infty}(b-a)\left(\frac{1}{2}\right)^{n-1} \\
& \leq 0
\end{aligned}
$$

hence $\lim _{n \rightarrow \infty}\left|\alpha-x_{n}\right|=0$
thus $\quad \lim _{n \rightarrow \infty} x_{n}=\alpha$.

