

FORM VI

MATHEMATICS EXTENSION 2

Monday 6th August 2012

General Instructions

- Writing time - 3 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 100 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 90 Marks

- Questions 11 - 16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet and on the tear-off sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet

Examiner

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The value of $\int_{0}^{\pi} 5 \sin x \cos ^{4} x d x$ is:
(A) 0
(B) 2
(C) $\quad-2$
(D) 20

QUESTION TWO

The eccentricity of the ellipse $\frac{x^{2}}{100}+\frac{y^{2}}{36}=1$ is $e=\frac{4}{5}$.
The distance between the two foci is:
(A) 8
(B) 16
(C) 20
(D) 25

QUESTION THREE

The diagram above shows a trapezium with an interval x units in length drawn parallel to the base and h units from the base. An expression for x in terms of h is given by:
(A) $x=8+\frac{h}{6}$
(B) $x=12+\frac{h}{8}$
(C) $x=8+\frac{h}{3}$
(D) $x=5-\frac{6}{h}$

QUESTION FOUR

A motor bike and rider with mass 200 kg accelerates under a propelling force of 12800 Newtons and as it moves it experiences a resisting force of $2 v^{2}$ Newtons, where $v \mathrm{~m} / \mathrm{s}$ is the velocity. The motion is therefore described by the equation $\ddot{x}=64-\frac{v^{2}}{100}$.
What is the maximum speed attained by the bike?
(A) $288 \mathrm{~km} / \mathrm{h}$
(B) $80 \mathrm{~km} / \mathrm{h}$
(C) $280 \mathrm{~km} / \mathrm{h}$
(D) $\sqrt{32} \mathrm{~m} / \mathrm{s}$

QUESTION FIVE

The area bounded by the curve $y=\sqrt{x}$, the y-axis and the line $y=2$ is rotated about the line $y=3$. The volume is to be calculated by taking slices perpendicular to the axis of rotation. Which integral gives the volume of the solid formed?
(A) $\pi \int_{0}^{2}\left((3-y)^{2}-1\right) d y$
(B) $\pi \int_{0}^{4}(x-6 \sqrt{x}+8) d x$
(C) $\pi \int_{0}^{4}(2-2 \sqrt{x}+x) d x$
(D) $\quad \pi \int_{0}^{4}\left((3-x)^{2}-1\right) d x$

QUESTION SIX

The diagram above shows parallelogram $A B C D$ drawn in the first quadrant of the complex plane. The points A, B and C represent the complex numbers z_{1}, z_{2} and z_{3} respectively. The vector $D B$ represents the complex number:
(A) $z_{1}+z_{3}-2 z_{2}$
(B) $z_{2}-z_{1}-z_{3}$
(C) $2 z_{2}-z_{1}-z_{3}$
(D) $2 z_{2}-z_{1}+z_{3}$

QUESTION SEVEN

The complex number ω is a root of the equation $z^{3}+1=0$.
Which of the following is FALSE?
(A) $\bar{\omega}$ is also a root.
(B) $\omega^{2}+1-\omega=0$
(C) $\frac{1}{\omega}$ is also a root.
(D) $(\omega-1)^{3}=-1$

QUESTION EIGHT

The value of $\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-x} d x$ is:
(A) 0
(B) 1
(C) -1
(D) ∞

QUESTION NINE

The graph of $y=f(x)$ is shown above. The graph of $y=f(2-x)$ is:
(A)

(B)

(C)

(D)

QUESTION TEN

In the diagram above, all equal angles are marked with a dot and $A F E$ is straight. Which of these statements is INCORRECT?
(A) A circle may be drawn through A, B, F with diameter $B F$
(B) The points B, C, D, F are concyclic.
(C) A circle may be drawn through D, F, H with tangent $A E$
(D) A circle may be drawn through B, D, F with tangent $A E$.

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Find $\int x \cos x d x$.
(b) Find $\int \frac{x+1}{x-2} d x$.
(c) Use the substitution $x=2 \cos \theta$ to evaluate $\int_{1}^{\sqrt{3}} \frac{1}{x^{2} \sqrt{4-x^{2}}} d x$.
(d) (i) Find constants A, B and C such that

$$
\frac{x^{2}-x+1}{(x+1)^{2}}=A+\frac{B}{(x+1)}+\frac{C}{(x+1)^{2}} .
$$

(ii) Hence find $\int \frac{x^{2}-x+1}{(x+1)^{2}} d x$.
(e) The polynomial $P(x)=2 x^{3}-3 x^{2}-36 x+k$ has a double zero. Find the possible values of k.
(f)

The diagram above shows the right branch of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$. The right directrix d and right focus S are shown. Let P be a fixed point on the curve and F a point on d, such that $P F$ is perpendicular to d. It is known that $P F=4$.
(i) Find the eccentricity of the hyperbola.
(ii) Find the distance $P S$.

QUESTION TWELVE (15 marks) Use a separate writing booklet.
(a) Let $z=3-i$ and $w=2+i$. Find the following in the form $x+i y$.
(i) $\overline{z w}$
(ii) $\left|\frac{z}{w}\right|$
(b) (i) Find the two square roots of $16-30 i$.
(ii) Hence solve $z^{2}-2 z-(15-30 i)=0$.
(c) In separate diagrams, sketch the region in the complex plane where:
(i) $|z-i| \leq|z-1|$
(ii) $0<\arg (z-(1+i)) \leq \frac{\pi}{3}$
(d) (i) Write the complex number $1+\sqrt{3} i$ in modulus-argument form.
(ii) Use de Moivre's theorem to express $(1+\sqrt{3} i)^{5}$ in the form $a+b i$.
(e) The locus of a point P on the complex plane is defined by $|z-(1+2 i)|=3$.
(i) Sketch the locus of P.
(ii) Find the maximum value of $|z|$.
(a)

The base of a solid is the region bounded by the parabola $y^{2}=4-x$ and the y-axis, as in the diagram above. A typical vertical cross-section is a semi-circle parallel to the y-axis.
(i) Write an expression in terms of x for the area of a cross-section standing on the interval $A B$, as in the diagram.
(ii) Find the volume of the solid.
(b) Consider the polynomial equation $P(x)=0$, where $P(x)=x^{4}-2 x^{3}+6 x^{2}-8 x+8$.
(i) Given that $x=1+i$ is a root of $P(x)=0$, write down a second root.
(ii) Write $P(x)$ as a product of two quadratic expressions.
(iii) Fully factorise $P(x)$ over the complex numbers.
(c) An object of mass 2 kilograms is projected vertically upwards from ground level at a speed of $20 \mathrm{~m} / \mathrm{s}$. It experiences a resistance of $\frac{v^{2}}{2}$ Newtons at a speed of $v \mathrm{~m} / \mathrm{s}$, and reaches a maximum height H metres. Take upwards as positive and $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Show that the acceleration is given by $\ddot{x}=\frac{-40-v^{2}}{4}$.
(ii) Show that the time it takes for the object to reach its maximum height is approximately 0.8 seconds.
(iii) Find the maximum height H reached by the object.
(iv) Calculate the speed of projection required to reach a maximum height of 2 H metres.
(a) (i) Find the roots of the equation $z^{5}-1=0$. You may leave the complex roots in modulus-argument form.
(ii) Hence find the exact value of $\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}$.
(b) The diagram below is reproduced on a tear off sheet at the end of this paper. It should be handed in with your solution to this question.

The minor $\operatorname{arc} A B$ on the circle \mathcal{C}_{1} subtends angles at P and Q on \mathcal{C}_{1}. The point X is chosen on the minor arc $P Q$ such that $A X$ bisects $\angle P A Q$. Suppose that $A X$ and $B X$ intersect $B P$ and $A Q$ at L and M respectively, and that $A Q$ and $B P$ intersect at R. Let O_{1} be the centre of \mathcal{C}_{1}, D be the midpoint of $A B, \angle P A X=\theta$ and $\angle A P B=\alpha$.
(i) Show that $B X$ bisects $\angle P B Q$.
(ii) Show that A, L, M and B lie on the circumference of a circle \mathcal{C}_{2} and call its centre O_{2}.
(iii) By considering the perpendicular bisector of the chord $A B$, explain why O_{1}, O_{2} and D are collinear.
(iv) Show that $\angle A O_{2} D=\alpha+\theta$.
(v) Show that $\angle O_{1} A O_{2}=\theta$.

QUESTION FOURTEEN (Continued)
(c) Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $a>b$, and let $P(a \cos \theta, b \sin \theta)$ be a point on the ellipse in the first quadrant.

Let $O(0,0)$ be the centre of the ellipse. Let T and N be the y-intercepts of the tangent and normal respectively to the ellipse at P. You may use the fact that the tangent at P has equation ay $\sin \theta+b x \cos \theta=a b$.
(i) Show the normal to the ellipse at P has equation

$$
b y \cos \theta-a x \sin \theta=\left(b^{2}-a^{2}\right) \cos \theta \sin \theta
$$

(ii) Show that the product $T O \times O N$ is independent of θ.
(iii) Suppose that the circle with diameter $T N$ is drawn. Using the result in (ii), or otherwise, show that the points of intersection of the circle with the x-axis are independent of θ.

QUESTION FIFTEEN (15 marks) Use a separate writing booklet.
(a) Consider the graph $y=f(x)$ sketched below.

Draw separate one-third page sketches of the following graphs:
(i) $y=(f(x))^{2}$
(ii) $y=\ln f(x)$
(iii) $y=x f(x)$
(b) Let $I_{n}=\int_{0}^{1} x^{n} \sqrt{1-x^{3}} d x$, for $n \geq 2$.
(i) By writing $x^{n} \sqrt{1-x^{3}}=x^{n-2} \times x^{2} \sqrt{1-x^{3}}$, or otherwise, show that

$$
I_{n}=\frac{2 n-4}{2 n+5} \times I_{n-3}, \quad \text { for } n \geq 5
$$

(ii) Hence find I_{8}.
(c) Let $z=\cos \theta+i \sin \theta$.
(i) Show that $\sin n \theta=\frac{z^{n}-z^{-n}}{2 i}$ and $\cos n \theta=\frac{z^{n}+z^{-n}}{2}$.
(ii) Hence, or otherwise, prove the identity

$$
32 \sin ^{4} \theta \cos ^{2} \theta=\cos 6 \theta-2 \cos 4 \theta-\cos 2 \theta+2
$$

QUESTION SIXTEEN (15 marks) Use a separate writing booklet.
(a) The circle $x^{2}+y^{2}+a x+b y+c=0$ cuts the rectangular hyperbola $x=k t, y=k / t$ in four points P, Q, R and S defined by parameters p, q, r and s respectively.
(i) Show that the parameters are roots of the quartic equation

$$
k^{2} t^{4}+a k t^{3}+c t^{2}+b k t+k^{2}=0
$$

(ii) Show that pqrs $=1$.
(iii) Show that if $Q S$ is a diameter of the hyperbola then $P R$ is a diameter of the circle.

$$
x=-1
$$

(b)

The diagram above shows the parabola $y=3+2 x-x^{2}$ and its reflection in the y-axis. The vertical strips shown will generate cylindrical shells of the same height y when rotated about the line $x=-1$.
(i) Show that the sum of the areas of these two cylindrical shells is $4 \pi y$.
(ii) Find the volume of the solid formed when the region bounded by the parabolas and the x-axis is rotated about the line $x=-1$.
(c) The polynomial equation $x^{3}-p x+1=0$ has roots α, β and γ.
(i) Find the cubic equation whose roots are $\frac{1}{\alpha^{3}}, \frac{1}{\beta^{3}}$ and $\frac{1}{\gamma^{3}}$.
(ii) Find an expression for $\frac{\beta \gamma}{\alpha^{5}}+\frac{\alpha \gamma}{\beta^{5}}+\frac{\alpha \beta}{\gamma^{5}}$ in terms of p.
(d) Use the identity $(1+x)^{2 n+1}(1-x)^{2 n}=(1+x)\left(1-x^{2}\right)^{2 n}$ to prove that

$$
\binom{2 n+1}{0}\binom{2 n}{0}-\binom{2 n+1}{1}\binom{2 n}{1}+\cdots+\binom{2 n+1}{2 n}\binom{2 n}{2 n}=(-1)^{n}\binom{2 n}{n}
$$

SGS Trial 2012 Form VI Mathematics Extension 2. . Page 14

BLANK PAGE

SGS Trial 2012 Form VI Mathematics Extension 2. . Page 15

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

CANDIDATE NUMBER:

Detach this sheet and bundle it with The rest of question fourteen.

QUESTION FOURTEEN

(b) The circle geometry diagram from question 14 b is reproduced below. Hand this in with your solution to question 14 b .

SGS Trial 2012 Form VI Mathematics Extension 2 Page 18

BLANK PAGE

2012
Trial Examination
FORM VI
MATHEMATICS EXTENSION 2
Monday 6th August 2012

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Candidate number:

Question One

A
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Two

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Three
AB
$\mathrm{C} \bigcirc$
D

Question Four

A

B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Five

AB \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Six
A \bigcirc
B
\bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Seven

A
B

D \bigcirc

Question Eight

$\mathrm{A} \bigcirc$
B
C
D \bigcirc

Question Nine

$\mathrm{A} \bigcirc$
B
\bigcirc
C

D

Question Ten

AB$\mathrm{C} \bigcirc$
D \bigcirc
"2012"EXT.'II S.G.S TRIAL HOC.
MULTIPLE CHOICE (1 mark each)

$$
\begin{aligned}
& 0 / 2 \\
& \int_{0}^{\pi} \sin x c^{4} x d x=-\left[\cos ^{5} x\right]_{0}^{\pi} \\
&=-\{-1-1\} \\
&=2
\end{aligned}
$$

Q $\quad \overrightarrow{B C}=33-32$
$\overrightarrow{O D}=\overrightarrow{O A}+\overrightarrow{B C}$

$$
=\ldots 子_{4}+z_{3}=子_{2}
$$

$$
\text { NOW } \overrightarrow{D B}=\overrightarrow{O B}-O D
$$

$$
=z_{2}-\left(z_{1}+z_{3}-3+\right)
$$

$$
=z_{2}-z_{1}-z_{3}
$$

$0 \% \quad s!(-a e, 0) \quad s(a e, 0)$

$$
\begin{aligned}
& d=200 \\
& d=2 \times 10 \times \frac{4}{5} \\
& =16
\end{aligned}
$$

Q7 $\quad z^{3}+1=0$
roots $; \omega, \frac{1}{\omega},-1$
sum:

$$
\begin{aligned}
& w+\frac{1}{w}=0+1=0
\end{aligned}
$$

03

$$
\begin{align*}
& \frac{x-8}{2}=\frac{h}{6} \\
& x-8=\frac{h}{3} \\
& x=8+\frac{h}{3} \tag{c}
\end{align*}
$$

$\ddot{4} \quad \ddot{x}=64-\frac{v^{2}}{100}$
them $\ddot{x}=0 ., \quad r=80 \mathrm{~m} / \mathrm{s}$

$$
80 \mathrm{~m} / \mathrm{s}=288 \mathrm{~km} / \mathrm{h}
$$

05

$$
\begin{align*}
V & =\pi \int_{0}^{4}(3-y)^{2}-1^{2} d x \\
& =\pi \int_{0}^{4} 3-6 \sqrt{x}+x d x
\end{align*}
$$

QB

$$
\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-x} d x
$$

$=\lim _{N \rightarrow \infty}\left[-e^{-x}\right]_{0}^{N}$
$=\lim _{\sim \rightarrow \infty}\left(-\frac{e^{u}}{}\right)-1$ $=1$

09

$$
\begin{aligned}
& y=f(x) \\
& y=f(2-x)
\end{aligned}
$$

Respect about the line $x=1$
corot the angle the ween the chord and tangent at the point of content F io Nor eg cal to the angle in the alternate segment. $\quad(\angle F B D \neq \angle D F E)$ D

QUESTION II
(a)
$\int x \cos x d x=x \sin x-\int \sin x d x$ $=x \sin x+\cos x+c$
b) $\int \frac{x+1}{x-2} d x=\int \frac{x-2+3}{x-2} d x$

$$
=\int 1+\frac{3}{x-2} d x
$$

c) $\int_{1}^{\sqrt{3}} \frac{1}{x^{2} \sqrt{4-x^{2}}} d x$

$$
=x+3 \ln (x-2)+c
$$

Let $\quad x=2 \cos \theta$

$$
d x=-2 \sin \theta d \theta
$$

vertex $x=1, \ldots \theta=\frac{\pi}{3}$
x -en $x=\sqrt{3}, \theta=\frac{\pi}{6}$

$$
\begin{aligned}
& \int_{\pi}^{\pi / 6} \frac{-2 \sin \theta d \theta}{4 \cos ^{2} \theta \sqrt{4-4 \cos ^{2} \theta}} \\
& =\int_{\frac{\pi}{3}}^{3 \pi / 8} \frac{-2 \sin \theta d \theta}{8 \cos -\theta \sin \theta} \\
& =-\frac{1}{4} \cdot \int_{\frac{\pi}{3}}^{\pi / 6} \sec ^{2} \theta d \theta \sqrt{\pi / 6} . \\
& =-\frac{1}{4}^{\frac{\pi}{3}}[\tan \theta]_{\frac{\pi}{3}}^{\pi / 6} \\
& =-\frac{1}{4}\left\{\tan \pi / 6-\tan \frac{\pi}{3}\right\} \\
& =-\frac{1}{4}\left\{\frac{1}{\sqrt{3}}-\sqrt{3}\right\} \\
& =-\frac{1}{4}\left(\frac{\sqrt{3}}{3} \cdot \sqrt{3}\right)=\frac{\sqrt{3}}{6}
\end{aligned}
$$

(d) (i)
$x^{2}-x+1 \equiv A(x+1)^{2}+B(x+1)+C$
put $x=-1 ; c=3$
pent $x=0: A+B+3=1$

$$
A+B=-2
$$

punt $x=1: 4 A+2 B+3=1$

$$
2 A+B=-1
$$

(2) $-(1): A=1, \therefore \quad B=-3$
(ii) The integral theirs:

$$
\begin{aligned}
& \int 1-\frac{3}{x+1}+\frac{3}{(x+1)^{2}} d x \\
= & x-3 \ln (x+1)-\frac{3}{(x+1)}+c
\end{aligned}
$$

(e)

$$
\begin{gathered}
P(x)=2 x^{3}-3 x^{2}-36 x+k \\
P(x)=6 x^{2}-6 x-36 \\
(x-3-6 x) x x+2)=0 \\
P(3): 54-27-100+k=0 \\
P(-2)=0 \\
P(-2):-16-12+72+k=0 \\
M=-44
\end{gathered}
$$

(f) (i)

$$
\begin{align*}
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& 9=16\left(e^{2}-1\right) \\
& \frac{9}{16}=e^{2}-1 \\
& e^{2}=\frac{25}{16} \tag{15}\\
& e=\frac{4}{4}
\end{align*}
$$

(ii)

$$
\begin{aligned}
& \frac{P S}{P F}=e V \\
& \frac{P 5}{4}=\frac{5}{4}, \quad \therefore P S=5 \ln h b
\end{aligned}
$$

GUESTION 12

$$
\begin{aligned}
& z=3-i \\
& \frac{z w}{(3-i)(2+i)} \\
&=2+i
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& =\quad 7-i \sqrt{ } \\
& =\frac{|z|}{|w|}=\frac{\sqrt{10}}{\sqrt{5}}
\end{aligned}
$$

$$
\left|\frac{z}{w}\right|=\frac{|z|}{|w|}=\frac{\sqrt{10}}{\sqrt{5}}
$$

(1)
(i)

$$
\begin{aligned}
& \text { i) } \quad \text { t } \\
&(a+i b)^{2}=a+3 b \\
& a^{2}-b=10 \\
& 2 a b=-30
\end{aligned}
$$

$$
a=5, \quad b=3 \quad 0 R
$$

$$
a=-5, b=3
$$

$$
z=5-3 i \quad \text { oR } z=-5+3 i
$$

(ii)

$$
\text { i) } \begin{align*}
z^{2} & -2 z-(15-30 i)=0 \\
\Delta & =b^{2}-4 a c \\
& =4+4(15-30 i) \\
& =4(1+15-30 i) \\
& =2^{2}(5-30 i) \\
z & = \pm 2 \pm 2(5)^{2}(i) \tag{i}\\
z & =1 \pm(5-3 i) \\
z & =-3 i \text { or } z=-4+3 i
\end{align*}
$$

(e)

$$
\begin{aligned}
& (z-(1+2 i) \mid=3 \\
& (x-1)^{2}+(y-2)^{2}=9
\end{aligned}
$$

(i)

(ii)

$$
13 / \cot \alpha=3+\sqrt{5}
$$

(e) (i) $|z-i| \leq|z-1|$

(ii) 1^{2} QY QVESTION. 13
(a)

$$
\begin{align*}
& A=\frac{\pi}{2} y^{2} \tag{I}\\
& A=\frac{\pi}{2}(4-x)
\end{align*}
$$

(ii)

$$
V=\frac{\pi}{2} \int_{0}^{4} 4-x d x
$$

$$
V=\frac{\pi}{2}\left[4 x-\frac{x^{2}}{2}\right]_{0}^{4}
$$

$$
V=4 \pi \text { colac uats }
$$

(b) $x^{4}-2 x^{3}+6 x^{2}-8 x+8=0$
(i) $1-i$ is anotle root.
(ii) $x^{2}-S x+P=-$ $x^{2}-2 x+2$ io an quanertic footor.

$$
\begin{aligned}
& \frac{1}{x^{2}-2 x+2} \frac{\sqrt{2}+4}{x^{4}-2 x^{3}+6 x^{2}-8 x+8} \\
& \frac{x^{4}-2 x^{2}+2 x^{2}}{4 x^{2}-8 x+8} \\
& P(x)=\left(x^{2}-2 x+2\right)\left(x^{2}+4\right) \sqrt{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
P(x)= & (x-1-i)(x-1-i) x \\
& (x-2 i)(x+2 i)
\end{aligned}
$$

(c) (i) $m^{x}=-m g-\frac{n^{2}}{2}$

$$
\begin{aligned}
& 2 \ddot{x}=-20-\frac{v^{2}}{2} \\
& \ddot{x}=\frac{-40-v^{2}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \frac{d v}{d t}=-\frac{v^{2}+40}{4} \\
& \frac{d t}{d v}=-\frac{4}{v^{2}+40} \\
& t=\frac{-4}{2 \sqrt{10} \tan ^{-1} v} \frac{2 \sqrt{10}}{}
\end{aligned}
$$

when $t=0, r=20$

$$
\begin{gathered}
e=\frac{2}{\sqrt{10}} \tan ^{-1} \sqrt{10} \\
t=\frac{2}{\sqrt{10}} \tan ^{-1} \sqrt{10}-\frac{2}{\sqrt{10} \tan ^{-1} v} \frac{2 \sqrt{10}}{}
\end{gathered}
$$

mex legyt wew $\quad v=0$:

$$
t=\frac{2}{\sqrt{10}} \tan ^{-1} \sqrt{10}
$$

$$
t \pm 0.8 \mathrm{~s}
$$

(iii)

$$
\ddot{u}=-\frac{40-v^{2}}{4}
$$

$$
v \frac{d v}{d x}=-\frac{v^{2}+40}{4}
$$

$$
\frac{d v}{d x}=-\frac{v^{2}+40}{4 v}
$$

$$
\frac{d x}{d v}=-\frac{4 v}{v^{2}+40}
$$

$$
x=-2 \ln \left(v^{2}+40\right)+c
$$

ven $x=0, v=20$

$$
c=2 \operatorname{liv}(440)
$$

$$
x=2 \ln \left(\frac{440}{v+40}\right)
$$

mex. heyst whew $v=0$

$$
\frac{x}{\max }=2 \ln 11
$$

(iv) $\quad x=-2 \ln \left(v^{2}+4\right)+c$
from (1).
orlen $n=0$, put $v=v$

$$
x=2 \ln \left(\frac{v^{2}+40}{v^{2}+40}\right)
$$

$$
\begin{aligned}
\text { olen light } & =2 H \\
& =4 \ln 11 m \\
x^{2} \ln \left(\frac{v^{2}+40}{v^{2}+40}\right) & =4 \ln 11 \\
\frac{v^{2}+40}{v^{2}+40} & =121
\end{aligned}
$$

put $w=0$ for max.
light.

$$
\begin{align*}
V^{2}+40 & =40 \times 14 \\
V^{2} & =15 \times 40 \\
V^{2} & =4800 \\
V & =40 \sqrt{3} \mathrm{~m} / \mathrm{s} \tag{76}
\end{align*}
$$

QVESTON 14
(a) (i) $z^{5}=1$

$$
\begin{aligned}
& -\operatorname{lot} z=\operatorname{cis} \theta \\
& (\operatorname{cis} \theta)^{5}=1
\end{aligned}
$$

unit do moire than:
R:

$$
\operatorname{cis} 5 \theta=1
$$

$$
\cos 5 \theta=1
$$

$$
59=2 \pi n
$$

$$
\theta=\frac{2 \pi n}{5}, n=0, \pm 1, D
$$

Pots are:

$$
1, \operatorname{cis}\left(\frac{2 \pi}{5}\right), \operatorname{cis}\left(-\frac{2 \pi}{5}\right), \operatorname{cis}\left(\frac{4 \pi}{5}\right)
$$

and oars $\left(-\frac{4 \pi}{5}\right)$
(ii)

$$
\begin{aligned}
& \operatorname{cis}\left(\frac{2 \pi}{5}\right)+\operatorname{cis}\left(-\frac{2 \pi}{5}\right)=2 \cos \frac{2 \pi}{5} \\
& \operatorname{cis}\left(\frac{4 \pi}{5}\right)+\operatorname{cis}\left(-\frac{4 \pi}{5}\right)=2 \cos \frac{4 \pi}{5}
\end{aligned}
$$

Sum rats $\quad 0=-\frac{b}{a}=0$

$$
\begin{aligned}
& 2 \cos \frac{2 \pi}{5}+2 \cos \frac{4 \pi}{5}+1=0 \\
& \therefore \quad \cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& \angle P A X=\angle P B X=\theta \\
& \angle X A Q=\angle X B Q=\theta
\end{aligned}
$$

(angles draws to the cirmafurene stampeding on the same are are equal. $\angle P B X=\angle X B Q$
$\therefore B X$ besets $\angle P B Q . \checkmark$
(ii)

$$
\begin{array}{c:c}
\angle L A R=\theta & (\text { given }) \\
\angle M B R=\theta & (i)
\end{array}
$$

Qughe in the alternate Regent are equal, hence $A \angle M B$ ore congalic points and the on the circimpluence of c_{2}.
(iii) Since. At io a common chord \mathcal{F} corded C_{1} and c_{2}, the perpendicular tine tor of chard $A B$ thanes through the center O, and O_{2}. Hence O_{1}, O_{2} and D are collinear.
(iv) $\angle A \angle R=\theta+\alpha$
(exterior angl of triangle tho.) $\angle A O_{2} B=2(\theta+\alpha)$
large at the centre io terce the angle drawn to the arruenffecuce of: C_{2} tanning ow the are AB)

$$
1 A Q_{2} \Delta=\triangle D O_{1} B(55 s)
$$

$$
\angle A O_{2} D=\angle B O_{2} D
$$

(corryynatiry agha of cong.thongh

$$
\angle A O_{2} D+\angle B O_{1} D F \quad 1(\theta+\alpha)
$$

$$
2 \angle A O_{2} \Delta=2(\theta+\alpha)
$$

$$
\therefore \quad \angle A O_{2} \Delta=\quad \theta+\alpha
$$

(v) $\angle A O_{1} B=2 \alpha$ (angle drawn do the conte is thrice the arg le drawn to the circumference.)

$$
\angle A O_{B} D=\angle B O D
$$

lmataking angles of cong. triangles,

$$
\begin{aligned}
& \angle A O_{1} D=\alpha, \quad \text { bunt } \\
& \angle A O_{2} D=\alpha+\theta \quad(\text { pent iv })
\end{aligned}
$$

$$
\therefore \angle O_{1} A O_{2}=\theta \text { (enteral }
$$ angl if triangle theorem.

\ldots cont.

U15... sont.
(c) -
(i) $\}=\cos \theta+i \sin \theta$

GL

$$
\gamma^{n}=\cos \theta \theta+i \sin n \theta
$$

$$
y^{-n}=\cos (-n \theta)+i \sin (-n \theta)
$$

$\theta \gamma^{-n}=\cos n \theta-2 \sin n \theta$
0 (2)

$$
\begin{aligned}
& z^{n}+y^{-n}=2 \cos n \theta \\
& \cos n \theta=\frac{z^{n}+z^{-n}}{2}
\end{aligned}
$$

(1)

$$
\begin{aligned}
z^{n}-z^{-n} & =2 i \sin \theta \theta \\
\sin -\theta & =\frac{z^{n}-z^{-n}}{2 i}
\end{aligned}
$$

(i)
\leq RHS

$$
\begin{aligned}
& H H=32 \sin ^{4} \theta \cos ^{2} \theta \\
& =32\left(\frac{3-2^{-1}}{2 i}\right)^{4}\left(\frac{3+y^{-1}}{2}\right)^{2} \\
& =\frac{1}{2}(z-1 z)^{4}(z+y z)^{2} \\
& =[(z-1 / z)(z+1 / z)]^{2}(z-1 / z)^{2} \\
& =\frac{1}{2}\left(z^{2}-y z^{2}\left(z^{2}-2+\frac{1}{z^{2}}\right)\right. \\
& =\left\{\left(z^{4}-2+\frac{1}{z^{4}}\right)\left(z^{2}-2+\frac{1}{z^{2}}\right)\right\} \\
& \frac{1}{2}\left\{z^{6}-2 z^{4}+z^{2}-2 z^{2}+4-\frac{2}{z^{2}}+\frac{1}{z^{4}}=\frac{2}{z^{4}}+\frac{1}{z^{6}}\right\} \\
& =\frac{1}{2}\left\{\left(z^{6}+\frac{1}{z^{6}}\right)-2\left(z^{4}+\frac{1}{z^{4}}\right)-\left(z^{2}+\frac{1}{z^{2}}\right)+4\right\} \\
& =\frac{1}{2}\{2 \cos 6 \theta-4 \cos 4 \theta-2 \cos 2 \theta+4\} \\
& =\cos 6 \theta-2 \cos 4 \theta-\cos 2 \theta+2
\end{aligned}
$$

(i) $\quad x=k t$ and $\gamma=k / t$

$$
\begin{aligned}
& x^{2}+y^{2}+a x+b y+c=0 \\
& \therefore k^{2} t^{2}+k^{2}+a k t+\frac{b k}{E}+c=0 \\
& t^{2} \\
& \frac{k^{2} t^{4}+k^{2}+a k t^{3}+b k t+c t^{2}=0}{k^{2} t^{4}+a t^{3}+c t^{2}+b k t+k^{2}=0}
\end{aligned}
$$

all pounts $P\left(R^{t}, \frac{p}{t}\right)-Q, R$, and s anterty this sinats.
(ii) purduct of the routs $=\frac{e}{a}$

$$
\begin{aligned}
& p q r s=\frac{K^{2}}{K_{2}} \\
& p^{2 q r s}=1
\end{aligned}
$$

iii) If Of is a diamete of the hyperpola, $\theta\left(q t, \frac{q}{t}\right) \quad s\left(s t, \frac{s}{t}\right)$

- He: $q t=-s t$ and

$$
\frac{q}{t}=-\frac{s}{t}
$$

lane. $n=-s$

Now grookent: of. $P\left(k p, \frac{k}{p}\right)$ $S\left(K_{S}, \frac{k}{s}\right):$
$M_{k}=-\frac{k / s}{k_{s}-k_{p}}$

$$
=\frac{p-s}{\operatorname{sp}(s-p)}
$$

$$
=-\frac{1}{s e}
$$

Simile-ly $M_{K D}=-\frac{1}{\beta^{5}}$

$$
\begin{aligned}
M_{R+} \times M_{p s} & =\frac{1}{p r \delta L} \quad \text { Sine } \\
& =1(s=-q) \\
& =-\frac{1}{p r s}(-q) \\
& =-1 \quad \checkmark \quad(p<q=1) \\
\therefore \quad \angle \rho S R & =90^{\circ} \quad \text { and }
\end{aligned}
$$ $P R$ is e diametor.

(b) (i) (ande in a Remi-circle).)

$$
\begin{aligned}
& A_{T}=2 \pi R_{y}+2 \pi r y \\
& R=x+1 \quad a x=1-x \\
& A_{T}=2 \pi y\{x+1+1-x\} \\
& A_{T}=2 \pi y \times 2 . \\
& A T=4 \pi y-\quad \text { as rined }
\end{aligned}
$$

(ii) $V=4 \pi \int_{0}^{1} 3-2 x-x^{2} d x$

$$
\begin{aligned}
& V=4 \pi\left[3 x-x^{2}-\frac{x^{3}}{3}\right]_{0}^{1} \\
& V=4 \pi[(3-1-1 / 3)-(0)]
\end{aligned}
$$

$V=\frac{20 \pi}{2}$ andic $\operatorname{mon} \cdot V$
(6)
(1)

$$
\begin{gathered}
\left(\frac{1}{x^{1 / 3}}\right)^{3}-p\left(\frac{1}{x^{1 / 3}}\right)+1=0 \\
\frac{1}{x}+1=\frac{p}{x^{2 / 3}} \\
\left(\frac{1}{x}+1\right)^{3}=\frac{p^{3}}{x} \\
\frac{1}{x^{3}}+\frac{3}{x^{2}}+\frac{1}{x}+1=\frac{p^{3}}{x} \\
1+3 x+3 x^{2}+x^{3}=\frac{p^{2}}{1} \\
x^{3}+\left(3-p^{3}\right) x^{2}+3 x+1=0
\end{gathered}
$$

(ii)

$$
\begin{align*}
& x^{3}-p x+1=0 \\
& \alpha \beta \gamma=-1 \\
& \frac{\beta^{2} \gamma}{\alpha 5}+\frac{\alpha \gamma}{\beta^{5}}+\frac{\alpha \beta}{\gamma^{5}} \\
& =\alpha \beta r\left\{\frac{1}{\alpha^{6}}+\frac{1}{\beta^{2}}+\frac{1}{r^{6}}\right\} \\
& =\alpha \beta \gamma\left\{\left(\frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}+\frac{1}{r^{3}}\right)^{2}-\right. \\
& \left.2\left\{\frac{1}{\alpha^{3} \beta^{3}}+\frac{1}{\alpha^{3} \gamma^{3}}+\frac{1}{\gamma^{3} \beta^{2}}\right\}\right\} \\
& =-\left\{\left(r^{3}-3\right)^{2}-2 \times 3\right\} \\
& =6-\left(p^{6}-6 \cdot \rho^{3}+9\right) \\
& 6 p^{3}-p^{6}-3 \tag{d}
\end{align*}
$$

$$
\begin{aligned}
& \angle H \delta=(1+x)^{2 x+1}(1-x)^{2 n} \\
& =\left\{\binom{2 n+1}{0}+\binom{2 n+1}{0} x+\cdots+\binom{2 n+1}{2 x-1} x^{2 n-1}+\left(\frac{2 n+1}{2 n}\right) x^{2 n}+\left(\frac{2 n+1}{2 n+1}\right)^{2 n x}\right. \\
& \underline{x}\left\{\left(\frac{2 n}{0}\right)-\left(\frac{2 n}{1}\right) x+\left(\frac{2 n}{2}\right) x^{2}+\cdots+\binom{2 n}{2 n-2} x^{2 n-2}-\left(\frac{2 n}{2 n-1}\right) x^{2 n-1}+\left(\frac{4}{2}\right) x^{2 n}\right\}
\end{aligned}
$$

Consider the cooffinut of $x^{2 N}$ is the prodinct:

$$
=\binom{2 n+1}{0}\binom{2 n}{2 n}-\binom{2 n+1}{0}\binom{2 n}{2 n-1}+\cdots+\binom{2 n+1}{2 n}\binom{2 n}{0}
$$

$V \operatorname{sing}\binom{n}{n}=\binom{n}{n-r}:$

$$
\text { coppuet of }=\binom{2 n+1}{0}\binom{2 n}{0}-\binom{2 n+1}{0}\binom{2 n}{1}+\cdots\binom{2 n+1}{2 n}\binom{2 n}{2 n}
$$

Nou Rits $=(1+x)\left(1-x^{2}\right)^{2 x}$

$$
=(1+x)\left\{\left(\frac{2 x}{6}\right)-\left(\frac{2 x}{1}\right) x^{2}+\left(\frac{2 x}{2}\right) x^{4}+\cdots+(-1)^{n}\left(\frac{2 n}{n}\right) x^{2 x}+\cdots\left(\frac{2 x}{2 n}\right) x^{4 n}\right\}
$$

No temp in $x^{2 n}$ will te gerarated ty the pranet of x in $(1+x)$ and the expantia rince teme in the expention liare leen powers.
coifficunt of $x^{2 n}: \quad(-1)^{n}\binom{2 n}{n}$
Hence

$$
\binom{2+1}{0}\left(\frac{2 n}{0}\right)-\left(\frac{2 n+1}{0}\right)\left(\frac{2 n}{1}\right)+\cdots\left(\frac{2 n+1}{2 n}\right)\left(\frac{2 n}{2 n}\right)=(-1)^{n}\binom{2 n}{n} .
$$

