

## FORM VI

# MATHEMATICS EXTENSION 2 

Thursday 1st August 2013

## General Instructions

- Reading time - 5 minutes
- Writing time - 3 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.


## Total - 100 Marks

- All questions may be attempted.


## Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.


## Section II - 90 Marks

- Questions 11-16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.


## Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.


## Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet


## Examiner

- Candidature - 68 boys


## SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

## QUESTION ONE

Which function is a primitive of $\frac{2 x}{2 x-1}$ ?
(A) $x+\ln (2 x-1)$
(B) $\quad \ln (2 x-1)$
(C) $x+\frac{1}{2} \ln (2 x-1)$
(D) $\frac{1}{2} \ln (2 x-1)$

## QUESTION TWO

Which expression is a correct factorisation of $z^{3}-i$ ?
(A) $(z-i)\left(z^{2}+i z+1\right)$
(B) $(z+i)\left(z^{2}-i z-1\right)$
(C) $(z+i)(z-i)^{2}$
(D) $(z+i)^{3}$

## QUESTION THREE

If $f(x)$ is an odd function, which statement is true?
(A) $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$
(B) $\int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x$
(C) $\int_{-2 a}^{a} f(x) d x=\int_{-a}^{2 a} f(x) d x$
(D) $\quad \int_{-a}^{2 a} f(x) d x=\int_{a}^{2 a} f(x) d x$

## QUESTION FOUR



The points $P$ and $Q$ in the first quadrant represent the complex numbers $z_{1}$ and $z_{2}$ respectively, as shown in the diagram above. Which statement about the complex number $z_{2}-z_{1}$ is true?
(A) It is represented by the vector $Q P$.
(B) Its principal argument lies between $\frac{\pi}{2}$ and $\pi$.
(C) Its real part is positive.
(D) Its modulus is greater than $\left|z_{1}+z_{2}\right|$.

## QUESTION FIVE

An ellipse has foci at $(-6,0)$ and $(6,0)$, and its directrices have equations $x=-8$ and $x=8$. What is the eccentricity of the ellipse?
(A) $\frac{1}{2} \sqrt{3}$
(B) $\frac{1}{3} \sqrt{3}$
(C) $\frac{2}{3} \sqrt{3}$
(D) $3 \sqrt{3}$

## QUESTION SIX

The polynomial $P(x)=x^{3}+3 x^{2}-24 x+28$ has a double zero. What is the value of the double zero?
(A) $\quad-7$
(B) $\quad-4$
(C) 4
(D) 2

## QUESTION SEVEN



The diagram above shows the region bounded by the curve $y=\sqrt{x}$ and the $x$-axis, from $x=0$ to $x=4$. The region is rotated about the line $x=6$ to form a solid of revolution. Which integral gives the volume of the solid?
(A) $\quad \int_{0}^{2} \pi\left(4-y^{2}\right)\left(8-y^{2}\right) d y$
(B) $\int_{0}^{2} 4 \pi\left(5-y^{2}\right) d y$
(C) $\quad \int_{0}^{2} \pi\left(4-y^{2}\right)\left(6-y^{2}\right) d y$
(D) $\quad \int_{0}^{2} \pi\left(2-y^{2}\right)\left(6-y^{2}\right) d y$

## QUESTION EIGHT

The curve defined by the equation $x^{2}-x y+2 y^{2}=4$ passes through the point $P(1,-1)$. What is the gradient of the tangent to the curve at $P$ ?
(A) $\frac{1}{2}$
(B) $\quad-\frac{1}{5}$
(C) $\frac{3}{5}$
(D) $\frac{3}{4}$

## QUESTION NINE



In the diagram above, the relationship between the functions $f(x)$ and $g(x)$ could be represented by:
(A) $\quad g(x)=(f(x))^{2}$
(B) $\quad g(x)=\log _{e} f(x)$
(C) $\quad g(x)=\sqrt{f(x)}$
(D) $\quad g(x)=|f(x)|$

## QUESTION TEN

Without attempting to evaluate the integrals, determine which of the following inequalities is FALSE:
(A) $\int_{1}^{2} \frac{1}{1+x} d x<\int_{1}^{2} \frac{1}{x} d x$
(B) $\quad \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x}{x} d x<\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{x} d x$
(C) $\int_{0}^{\frac{\pi}{4}} \tan ^{2} x d x<\int_{0}^{\frac{\pi}{4}} \tan ^{3} x d x$
(D) $\int_{1}^{2} e^{-x^{2}} d x<\int_{0}^{1} e^{-x^{2}} d x$

## SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Solve the quadratic equation $4 z^{2}+4 z+5=0$.
(b) Find the real values of $x$ and $y$ for which $\frac{x}{i}-\frac{y}{1+i}=-1-3 i$.
(c) Find $\int \frac{3 x}{2 x^{2}-5 x+2} d x$.
(d) Find $\int \frac{1}{\sqrt{x^{2}+6 x+34}} d x$.
(e) Evaluate $\int_{0}^{\frac{\pi}{3}} \tan ^{4} x d x$.
(f) (i) Use the substitution $u=a-x$ to prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$.
(ii) Hence find the value of $\int_{0}^{1} x(1-x)^{7} d x$.

QUESTION TWELVE (15 marks) Use a separate writing booklet.
(a) Shade the region in the Argand diagram where $|z+3 i|>2|z|$.
(b) (i) Express $-2+2 i$ in modulus-argument form.
(ii) Simplify $(-2+2 i)^{8 k}$, where $k$ is an integer.
(c) A complex number $z$ satisfies $\arg (z-1)=\frac{\pi}{6}$.
(i) Sketch the locus of $z$.
(ii) Show that $|z-5| \geq 2$.
(d)


In the diagram above, $\mathcal{S}$ is a sphere of radius $r$. The point $C$ is the centre of the sphere. A typical horizontal cross-section $h$ units above $C$ is shown.
(i) Find the area of this cross-section as a function of $h$.
(ii) Hence prove that the volume of $\mathcal{S}$ is $\frac{4}{3} \pi r^{3}$.
(e) The polynomial $P(x)=x^{4}-4 x^{3}+10 x^{2}-12 x-40$ has zeroes $\alpha, \beta, \gamma$ and $\delta$.
(i) Find a polynomial with zeroes $\alpha-1, \beta-1, \gamma-1$ and $\delta-1$.
(ii) Hence find the zeroes of $P(x)$.
(a) (i) Write down the equation of a line with gradient $m$ that passes through the point $T(-4 c, 2 c)$.
(ii) Solve the equation in part (i) simultaneously with the equation $x y=c^{2}$ to obtain a quadratic equation in $x$.
(iii) Hence find the gradients of the two tangents to the rectangular hyperbola $x y=c^{2}$ that pass through the point $T(-4 c, 2 c)$.
(b) Consider the polynomial $P(z)=z^{4}+(1-2 i) z^{2}-2 i$.
(i) Show that $P(i)=0$.
(ii) Explain why $P(-i)$ must also be zero.
(iii) Suppose that the other two zeroes of $P(z)$ are $w$ and $-w$.

Use the product of the zeroes to find $w$.
(c) (i) Find $\int x \cos 2 x d x$.
(ii)


The diagram above shows the region bounded by the curve $y=\sin ^{2} x$, the $x$-axis and the line $x=\frac{\pi}{2}$. The region is rotated about the $y$-axis through $360^{\circ}$. Use the method of cylindrical shells to find the exact volume of the solid formed.
(a) An object of mass 2 kg is projected vertically upwards at $20 \mathrm{~m} / \mathrm{s}$ and experiences air resistance of magnitude $\frac{1}{10} v^{2}$ Newtons, where $v$ is the speed of the object after $t$ seconds. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Show that the maximum height reached by the object is $10 \ln 3$ metres.
(ii) Find the speed of the object, correct to three significant figures, at the instant it reaches half its maximum height.
(b) Let $I_{n}=\int_{1}^{e}(1+\ln x)^{n} d x$, where $n \geq 0$.
(i) Use integration by parts to show that $I_{n}=\left(2^{n}\right) e-1-n I_{n-1}$.
(ii) Hence find the exact value of $\int_{1}^{e}(2+\ln x)(1+\ln x)^{2} d x$.
(c)


The diagram above shows the graph of the odd function $y=f(x)$, where

$$
f(x)=\frac{3 x}{x^{2}-4}
$$

Sketch the graphs of each of the following functions on large separate diagrams, showing the $x$-intercepts and asymptotes. You are NOT expected to find any stationary points.
(i) $y=\frac{1}{f(x)}$
(ii) $y=\log _{e} f(x)$
(iii) $y=x+f(x)$

QUESTION FIFTEEN (15 marks) Use a separate writing booklet.
(a)


In the diagram above $A B C D$ is a cyclic quadrilateral whose diagonals are perpendicular and intersect at $P$. Let $M$ be the midpoint of $A B$, and suppose that $M P$ produced meets $D C$ at $Q$. Let $\angle P A M=\alpha$.
(i) Explain why $A M=P M$.
(ii) Prove that $M Q \perp D C$.

QUESTION FIFTEEN (Continued)
(b)


In the Argand diagram above, $O A B C$ is a rhombus with $\angle C O A=\frac{\pi}{3}$. The points $A$ and $C$ represent the complex numbers $w_{1}$ and $w_{2}$ respectively.
(i) Explain why $w_{2}=w_{1} \operatorname{cis} \frac{\pi}{3}$.
(ii) Write down, in terms of $w_{1}$ only, the complex numbers represented by the vectors $O B$ and $A C$.
(iii) By considering $i\left(w_{1}+w_{2}\right)$, show that the diagonals $O B$ and $A C$ of the rhombus are perpendicular.
(c)


The diagram above shows the tangent at a point $P(a \sec \theta, b \tan \theta)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meeting the asymptotes of the hyperbola at $A$ and $B$. The points $S$ and $S^{\prime}$ are the foci of the hyperbola.
(i) Show that the tangent at $P$ has equation $b x \sec \theta-a y \tan \theta=a b$.
(ii) Show that $O A \times O B=a^{2}+b^{2}$, where $O$ is the origin.
(iii) Extend $A O$ to $A^{\prime}$ so that $O A^{\prime}=O B$ and extend $B O$ to $B^{\prime}$ so that $O B^{\prime}=O A$. Explain why the points $A, B, A^{\prime}$ and $B^{\prime}$ are concyclic.
(iv) Hence show that the points $A, S, B$ and $S^{\prime}$ are concyclic.

QUESTION SIXTEEN (15 marks) Use a separate writing booklet.
(a) Let $z=\cos \theta+i \sin \theta$ and suppose that $n$ is a positive integer.
(i) Show that $z^{n}+z^{-n}=2 \cos n \theta$.
(ii) Hence use the identity $2 \cos A \sin B=\sin (A+B)-\sin (A-B)$ to show that

$$
\left(z^{2 n}+z^{2 n-2}+z^{2 n-4}+\cdots+z^{-2 n}\right) \sin \theta=\sin (2 n+1) \theta
$$

(iii) Use part (ii) and the identity $\cos 3 A=4 \cos ^{3} A-3 \cos A$ to deduce that

$$
8 \cos ^{3} 2 \theta+4 \cos ^{2} 2 \theta-4 \cos 2 \theta-1=\frac{\sin 7 \theta}{\sin \theta}
$$

(iv) Hence show that $\cos \frac{2 \pi}{7}$ is a root of the equation $8 x^{3}+4 x^{2}-4 x-1=0$.
(b) (i) Use a suitable double angle formula to show that $\tan \frac{\pi}{8}=\sqrt{2}-1$.
(ii) Find $\cos 4 \theta$ in terms of $\cos \theta$.
(iii) Let $I=\int_{-1}^{1} \frac{1}{\sqrt{1+x}+\sqrt{1-x}+2} d x$.
( $\alpha$ ) Show, by using the substitution $x=\sin 4 \theta$, that

$$
I=\int_{0}^{\frac{\pi}{8}} \frac{2 \cos 4 \theta}{\cos ^{2} \theta} d \theta
$$

$(\beta)$ Hence find the exact value of $I$.
(c) (i) Explain why

$$
\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\cdots+\left(\frac{1}{2 k-1}-\frac{1}{2 k}\right)>\frac{k}{(2 k+1)(2 k+2)}
$$

(ii) Prove by mathematical induction, or otherwise, that for all $n \geq 2$,

$$
n\left(1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n-1}\right)>(n+1)\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2 n}\right)
$$

## END OF EXAMINATION

SGS Trial 2013 .............. Form VI Mathematics Extension $2 . . . . . . . . . .$. . Page 13

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE : $\ln x=\log _{e} x, x>0$


2013
Trial Examination
FORM VI
MATHEMATICS EXTENSION 2
Thursday 1st August 2013

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Candidate number:

## Question One

A
B
C

D $\bigcirc$

## Question Two

A $\bigcirc$
B
$\bigcirc$
$\mathrm{C} \bigcirc$
D $\bigcirc$

Question Three
AB
$\mathrm{C} \bigcirc$
D

## Question Four

A


B $\bigcirc$


D


## Question Five

AB $\bigcirc$
$\mathrm{C} \bigcirc$
D $\bigcirc$

Question Six
A $\bigcirc$
B$\mathrm{C} \bigcirc$
D $\bigcirc$

## Question Seven

A
B


D $\bigcirc$

## Question Eight

A
B
C
D $\bigcirc$

## Question Nine

A $\bigcirc$
B
$\bigcirc$
C

D

## Question Ten

AB$\mathrm{C} \bigcirc$
D $\bigcirc$

Extension 2 TRIAL HSC 2013
Multiple Choice
(1)

$$
\begin{align*}
\int \frac{2 x}{2 x-1} d x & =\int\left(1+\frac{1}{2 x-1}\right) d x \\
& =x+\frac{1}{2} \ln (2 x-1)+c
\end{align*}
$$

(2)

$$
\begin{align*}
z^{3-i} & =z^{3}+i^{3} \\
& =(z+i)\left(z^{2}-i z-1\right)  \tag{B}\\
\int_{-a}^{2 a} f(x) d x & =\int_{-a}^{a} f(x) d x+\int_{a}^{2 a} f(x) d x \\
& =0+\int_{a}^{2 a} f(x) d x \tag{D}
\end{align*}
$$

(3)

So $8 e^{2}=6$

$$
\begin{equation*}
e=\frac{\sqrt{3}}{2} \tag{A}
\end{equation*}
$$

(6)

$$
\begin{align*}
P^{\prime}(x) & =3\left(x^{2}+2 x-8\right) \\
& =3(x+4)(x-2) \\
P(-4) & \neq 0  \tag{D}\\
P(2) & =0
\end{align*}
$$

(7)

$$
\begin{align*}
A(y) & =\pi(R-r)(R+r), \text { where }\left\{\begin{array}{l}
R=6-x \\
r=2
\end{array}\right. \\
& =\pi(4-x)(8-x)  \tag{A}\\
& =\pi\left(4-y^{2}\right)\left(8-y^{2}\right)
\end{align*}
$$

(8) $2 x-y-x \cdot \frac{d y}{d x}+4 y \cdot \frac{d y}{d x}=0$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y-2 x}{4 y-x}, m=\frac{-1-2}{-4-1} \tag{c}
\end{equation*}
$$

(9)
(c)
(10)

Written Response
(II) $(a)$

$$
\begin{aligned}
& 4 z^{2}+4 z+5=0 \\
& z=\frac{-4 \pm 8 i}{8} \\
&=-\frac{1}{2} \pm i
\end{aligned}
$$

(b)

$$
\begin{gathered}
\frac{x}{i}-\frac{y}{1+i}=-1-3 i \\
-i x-\frac{y(1-i)}{2}=-1-3 i \\
-y+i(y-2 x)=-2-6 i \\
y=2 \text { and } x=4
\end{gathered}
$$

(c)

$$
\begin{aligned}
\int \frac{3 x}{2 x^{2}-5 x+2} d x & =\int\left(\frac{2}{x-2}-\frac{1}{2 x-1}\right) d x \\
& =2 \ln |x-2|-\frac{1}{2} \ln |2 x-1|+c
\end{aligned}
$$

(d)

$$
\begin{aligned}
\int \frac{1}{\sqrt{x^{2}+6 x+34}} d x & =\int \frac{1}{\sqrt{(x+3)^{2}+25}} d x \\
& =\ln \left|(x+3)+\sqrt{x^{2}+6 x+34}\right|+c
\end{aligned}
$$

(e)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{3}} \tan ^{4} x d x & =\int_{0}^{\frac{\pi}{3}} \tan ^{2} x\left(\sec ^{2} x-1\right) d x \\
& =\int_{0}^{\frac{\pi}{3}} \tan ^{2} x \sec ^{2} x d x-\int_{0}^{\frac{\pi}{3}}\left(\sec ^{2} x-1\right) d x \\
& =\left[\frac{1}{3} \tan ^{3} x\right]_{0}^{\frac{\pi}{3}}-[\tan x-x]_{0}^{\frac{\pi}{3}} \\
& =\frac{1}{3} \cdot 3 \sqrt{3}-\left(\sqrt{3}-\frac{\pi}{3}\right) \\
& =\frac{\pi}{3}
\end{aligned}
$$

$$
\begin{aligned}
& (f) \int_{0}^{(i)} f(x) d x \\
& =\int_{a}^{a} f(a-u)--d u \\
& =\int_{0}^{a} f(a-u) d u \\
& =\int_{0}^{a} f(a-x) d x
\end{aligned}
$$

(dumny variable)
(12) (a) Let $z=x+i y$.

Then $x^{2}+(y+3)^{2}>4\left(x^{2}+y^{2}\right)$

$$
\begin{gathered}
6 y+9>3 x^{2}+3 y^{2} \\
x^{2}+y^{2}-2 y<3 \\
x^{2}+(y-1)^{2}<4
\end{gathered}
$$


(b) $(i)-2+2 i=2 \sqrt{2}$ cis $\frac{3 \pi}{4}$

(ii)

$$
\begin{aligned}
(-2+2 i)^{8 k} & =(2 \sqrt{2})^{8 k} \text { cis }\left(\frac{3 \pi}{4} \cdot 8 k\right) \\
& =2^{8 k} \cdot 2^{4 k} \text { cis }(6 \pi k) \\
& =2^{12 k} \text { cis } 6 \pi k \\
& =2^{12 k} \quad, k \in \mathbb{Z}
\end{aligned}
$$

(shown on diagram)
be the minimum
(c)

(ii) Let $d$ be the minimum value of $|z-5|$.

$$
\left.\begin{array}{rl}
d & =4 \sin \frac{\pi}{6} \\
& =2
\end{array}\right\}
$$

So $|z-5| \geqslant 2$.
(d)

(i)

$$
\begin{aligned}
A(h) & =\pi R^{2} \\
& =\pi\left(r^{2}-h^{2}\right)
\end{aligned}
$$

(ii)

$$
\left.\begin{array}{rl}
V & =2\left(r \pi\left(r^{2}-h^{2}\right) d h\right. \\
& =2 \pi\left[r^{2} h-\frac{1}{3} h^{3}\right]_{0}^{r} \\
& =2 \pi\left(r^{3}-\frac{1}{3} r^{3}\right) \\
& =2 \pi \cdot \frac{2}{3} r^{3} \\
& =\frac{4}{3} \pi r^{3}
\end{array}\right\}
$$

(e)

$$
\text { (i) } \begin{aligned}
P(x+1)= & (x+1)^{4}-4(x+1)^{3}+10(x+1)^{2}-12(x+1)-40 \\
= & x^{4}+4 x^{3}+6 x^{2}+4 x+1-4 x^{3}-12 x^{2}-12 x-4 \\
& +10 x^{2}+20 x+10-12 x-12-40 \\
= & x^{4}+4 x^{2}-45
\end{aligned}
$$

(ii) $P(x+1)=\left(x^{2}+9\right)\left(x^{2}-5\right)$ and so has zeroes $\pm 3 i$ and $\pm \sqrt{5}$. So $P(x)$ has zeroes $1 \pm 3 i$ and $1 \pm \sqrt{5}$.
$(13)(a)(i) y-2 c=m(x+4 c)$
(ii)

$$
\begin{aligned}
& y=m x+2 c(2 m+1) \\
& x y=c^{2} \text { (2) }
\end{aligned}
$$

Subst (1) into (2): $m x^{2}+2 c(2 m+1) x-c^{2}=0$
(iii) Line (1) is a tangent to curve (2)
when $\Delta=0$.
So $4 c^{2}(2 m+1)^{2}+4 c^{2} m=0$

$$
\begin{gathered}
4 m^{2}+5 m+1=0 \\
(4 m+1)(m+1)=0 \\
m=-\frac{1}{4} \text { or }-1
\end{gathered}
$$

(b)

$$
\left.\begin{array}{rl}
P(z) & =z^{4}+(1-2 i) z^{2}-2 i \\
P(i) & =i^{4}+(1-2 i) i^{2}-2 i \\
& =1-1+2 i-2 i \\
& =0
\end{array}\right\}
$$

(i)
(ii) $P(z)$ is even, since it only involves even powers of $z$.
(iii) Product of zeroes is $-2 i$.

So $i^{2} \omega^{2}=-2 i$

$$
\omega^{2}=2 i
$$

Let $\omega=x+i y$.
Then $x^{2}-y^{2}=0$ and $x y=1$.
So $w=1+i$ (or $-1-i$ ).
(13)

$$
\text { (c) (i) } \begin{aligned}
& \int x \cos 2 x d x \\
= & u v-\int v u^{\prime} \\
= & \frac{1}{2} x \sin 2 x-\int \frac{1}{2} \sin 2 x d x \\
= & \frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x+c
\end{aligned}
$$

Let $u=x$.
Then $u^{\prime}=1$.
Let $v^{\prime}=\cos 2 x$.
Then $v=\frac{1}{2} \sin 2 x$.
(ii)

$$
\begin{aligned}
V & =\int_{0}^{\frac{\pi}{2}} 2 \pi r h d x \text {, where } r=x \text { and } h=y= \\
& =2 \pi \int_{0}^{\frac{\pi}{2}} x \sin ^{2} x d x \\
& =2 \pi \int_{0}^{\frac{\pi}{2}} \frac{1}{2} x(1-\cos 2 x) d x \\
& =2 \pi \int_{0}^{\frac{\pi}{2}} \frac{1}{2} x d x-2 \pi \int_{0}^{\frac{\pi}{2}} \frac{1}{2} x \cos 2 x d x \\
& =\pi\left[\frac{1}{2} x^{2}\right]_{0}^{\frac{\pi}{2}}-\pi\left[\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x\right]_{0}^{\frac{\pi}{2}} \\
& =\pi \cdot \frac{\pi^{2}}{8}-\pi\left(-\frac{1}{4}-\frac{1}{4}\right) \\
& =\pi\left(\frac{\pi^{2}}{8}+\frac{1}{2}\right) \\
& =\frac{1}{8} \pi\left(\pi^{2}+4\right) \text { units } 3
\end{aligned}
$$

$(14)(a)(i)$

$$
\begin{aligned}
m \ddot{x} & =-m g-\frac{v^{2}}{10} \\
2 \ddot{x} & =-20-\frac{v^{2}}{10} \\
\ddot{x} & =\frac{-200-v^{2}}{20} \\
v \cdot \frac{d v}{d x} & =\frac{-200-v^{2}}{20} \\
\frac{d x}{d v} & =\frac{-20 v}{200+v^{2}} \\
x & =-10 \int \frac{2 v}{200+v^{2}} d v \\
& =-10 \ln \left(200+v^{2}\right)+c
\end{aligned}
$$

When $t=0, x=0$ and $v=20$.

$$
\begin{gathered}
\text { So } c=10 \ln 600 . \\
\text { so } x=10 \ln \left(\frac{600}{200+v^{2}}\right) .
\end{gathered}
$$

So when $v=0, x=10 \ln 3$.
So the maximum height is $10 \ln 3$ metres.
(ii) When $x=5 \ln 3,5 \ln 3=10 \ln \left(\frac{600}{200+v^{2}}\right)$

$$
\begin{aligned}
& e^{\frac{1}{2} \ln 3}=\frac{600}{200+v^{2}} \\
& \frac{200+v^{2}}{600}=\frac{1}{\sqrt{3}} \\
& 200+v^{2}=200 \sqrt{3} \\
& v^{2}=200(\sqrt{3}-1)=146.41 \ldots \\
& \text { So } v \doteqdot 12.1 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) (i) } I_{n}=[u v]_{1}^{e}-\int_{1}^{e} v u^{\prime} \\
& =\left\{\begin{array}{l}
=\left[x(1+\ln x)^{n}\right]_{1}^{e}-n \int_{1}^{e}(1+\ln x)^{n-1} d x \\
\end{array}=e \cdot 2^{2}-1 \cdot 1-n \cdot I_{n-1}\right. \\
& =\left(2^{n}\right) e-1-n I_{n-1}
\end{aligned} .
$$

Let $u=(1+\ln x)^{n}$.
Then $u^{\prime}=\frac{n}{x}(1+\ln x)^{n-1}$.
Let $v^{\prime}=1$.
Then $v=x$.

$$
\left.\begin{array}{rl}
(14)(b)(i i) & \int_{1}^{e}(2+\ln x)(1+\ln x)^{2} d x \\
= & \int_{1}^{e}(1+(1+\ln x))(1+\ln x)^{2} d x \\
= & I_{2}+I_{3}
\end{array}\right\}
$$

Now, $I_{0}=\int_{1}^{e} d x=e-1$

$$
I_{1}=2 e-1-(e-1)=e
$$

$$
\begin{aligned}
& I_{2}=4 e-1-2 e=2 e-1 \\
& I_{3}=8 e-1-3(2 e-1)=2 e+2
\end{aligned}
$$

So $\int_{1}^{e}(2+\ln x)(1+\ln x)^{2} d x=4 e+1$.
 if either the open circles or the oblique asymptote are omitted.

$(15)(a)$

(i) $\angle A P B=\frac{\pi}{2}$, so it is an angle in a semicircle with diameter $A B$.
So $M$ is the centre of the semicircle.
so $A M$ and $P M$ are equal radii.
(ii) $A M=P M($ from (i) $)$,
so $\angle A P M=\alpha$ (base angles of isosceles triangle),
so $\angle C P Q=\alpha$ (vertically opposite).
Now, $\angle A B D=\frac{\pi}{2}-\alpha$ (angle sum of $\triangle A P B$ ),
so $\angle A C D=\frac{\pi}{2}-\alpha$ (angles at circumference on same arc) $\}$
so $\angle M Q C=\frac{\pi}{2}$ (angle sum of $\triangle P Q C$ )
so $M Q \perp D C$.
$(15)(b)$

(i) $\overrightarrow{O C}$ is the anticlockwise rotation of $\overrightarrow{O A}$ through $\frac{\pi}{3}$ about 0 . So $\omega_{2}=w_{1} .1$ cis $\frac{\pi}{3}$

$$
=\omega_{1} \text { cis } \frac{\pi}{3} .
$$

(ii)

$$
\text { i) } \begin{aligned}
\overrightarrow{O B} \text { represents } \begin{aligned}
& w_{1}+w_{2}=w_{1}+w_{1} \operatorname{cis} \frac{\pi}{3} \\
&=w_{1}\left(1+\operatorname{cis} \frac{\pi}{3}\right) \\
& \text { and } \overrightarrow{A C} \text { represents } \begin{aligned}
w_{2}-w_{1} & =w_{1} \operatorname{cis} \frac{\pi}{3}-\omega_{1} \\
& =w_{1}\left(\operatorname{cis} \frac{\pi}{3}-1\right) .
\end{aligned}
\end{aligned} \text {. }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
i\left(w_{1}+w_{2}\right) & =i w_{1}\left(1+\operatorname{cis} \frac{\pi}{3}\right) \\
& =i w_{1}\left(\frac{3}{2}+\frac{\sqrt{3}}{2} i\right) \\
& =w_{1}\left(-\frac{\sqrt{3}}{2}+\frac{3}{2} i\right) \\
& =\sqrt{3} w_{1}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
& =\sqrt{3} w_{1}\left(\operatorname{cis} \frac{\pi}{3}-1\right) \\
& =\sqrt{3}\left(w_{2}-w_{1}\right)
\end{aligned}
$$

So $w_{2}-w_{1}=\frac{1}{\sqrt{3}} i\left(w_{1}+w_{2}\right)$.
So $w_{2}-w_{1}=\left(w_{1}+w_{2}\right) \cdot$ cis $\frac{\pi}{2}$, where $r=\frac{1}{\sqrt{3}}$.
So $A C$ and $O B$ are perpendicular.
$(15)(c)$

(i)

$$
\begin{aligned}
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta} & =\frac{b \sec ^{2} \theta}{a \sec \theta \tan \theta} \\
& =\frac{b \sec \theta}{a \tan \theta}
\end{aligned}
$$

So the tangent at $P$ has equation

$$
y-b \tan \theta=\frac{b \sec \theta}{a \tan \theta}(x-a \sec \theta)
$$

$a y \tan \theta-a b \tan ^{2} \theta=b x \sec \theta-a b \sec ^{2} \theta$

$$
b x \sec \theta-a y \tan \theta=a b
$$

(ii) Solve the tangent equation simult aneously with $y=\frac{b x}{a}$ :

$$
\begin{aligned}
b x \sec \theta & -b x \tan \theta=a b \\
x & =\frac{a}{\sec \theta-\tan \theta} \cdot \frac{\sec \theta+\tan \theta}{\sec \theta+\tan \theta} \\
& =a(\sec \theta+\tan \theta)
\end{aligned}
$$

So $A=(a(\sec \theta+\tan \theta), b(\sec \theta+\tan \theta))$.

$$
\begin{gathered}
\text { So } A=(a(\sec \theta+\tan \theta), b(\sec \theta+\tan \theta)) \text {. } \\
\text { Similarly, } B=(a(\sec \theta-\tan \theta), b(\sec \theta-\tan \theta))
\end{gathered}
$$

So $O A^{2} \cdot O B^{2}=\left(a^{2}(\sec \theta+\tan \theta)^{2}+b^{2}(\sec \theta+\tan \theta)^{2}\right)$

$$
\begin{aligned}
= & \left(a^{2}(\sec \theta+\tan \theta)^{2}+b^{2}(\sec \theta+\tan \theta)\right) \\
& \cdot\left(a^{2}(\sec \theta-\tan \theta)^{2}+b^{2}(\sec \theta-\tan \theta)^{2}\right) \\
= & \left(a^{2}+b^{2}\right)(\sec \theta+\tan \theta)^{2} \cdot\left(a^{2}+b^{2}\right)(\sec \theta-\tan \theta)^{2} \\
= & \left(a^{2}+b^{2}\right)^{2}\left(\sec ^{2} \theta-\tan ^{2} \theta\right)^{2} .
\end{aligned}
$$

SO $O A . O B=a^{2}+b^{2}$.
(15)(c) (iii) $O A \cdot O A^{\prime}=O B \cdot O B^{\prime}$, by the definitions of $A^{\prime}$ and $B^{\prime}$.
So, by the converse of the intersecting chords thegfem, the points $A, B, A^{\prime}$ and $B^{\prime}$ are concyelic.
(iv)

$$
\begin{aligned}
O A \cdot O A^{\prime} & =O B \cdot O B^{\prime} \\
& =O A \cdot O B \\
& \left.=a^{2}+b^{2} \quad \text { (from }(i j)\right)
\end{aligned}
$$

But OS. OS $=a^{2} e^{2}$

$$
\left.=a^{2}+b^{2} \text { (since } b^{2}=a^{2}\left(e^{2}-1\right)\right) \text {. }
$$

So, by the converse of the intersecting chords theorem, $S$ and $S^{\prime}$ lie on the same circle as $A, B, A^{\prime}$ and $B^{\prime}$. So $A, B, S$ and $S^{\prime}$ are concylic.
$(16)(a)(i)$

$$
\left.\begin{array}{rl}
z^{n}+z^{-n} & =(\operatorname{cis} \theta)^{n}+(\operatorname{cis} \theta)^{-n} \\
& =\operatorname{cis} n \theta+\operatorname{cis}(-n \theta) \quad \text { (de Moire) } \\
& =\cos n \theta+i \sin n \theta+\cos n \theta-i \sin n \theta \\
& =2 \cos n \theta
\end{array}\right\}
$$

(ii)

$$
\begin{aligned}
\text { LAS }= & \left(\left(z^{2 n}+z^{-2 n}\right)+\left(z^{2 n-2}+z^{-(2 n-2)}\right)+\cdots+\left(z^{2}+z^{-2}\right)+z^{0}\right) \sin \theta \\
= & (2 \cos 2 n \theta+2 \cos (2 n-2) \theta+\ldots+2 \cos 2 \theta+1) \sin \theta \\
= & (\sin (2 n+1) \theta-\sin (2 n-1) \theta)+(\sin (2 n-1) \theta-\sin (2 n-3) \theta) \\
& \quad+\ldots+(\sin 3 \theta-\sin \theta)+\sin \theta \\
= & \sin (2 n+1) \theta=\text { RUS }
\end{aligned}
$$

(iii) Let $n=3$.

Then $(2 \cos 6 \theta+2 \cos 4 \theta+2 \cos 2 \theta+1) \sin \theta=\sin 7 \theta$

$$
\left.\begin{array}{l}
2\left(4 \cos ^{3} 2 \theta-3 \cos 2 \theta\right)+2\left(2 \cos ^{2} 2 \theta-1\right)+2 \cos 2 \theta+1=\frac{\sin 7 \theta}{\sin \theta} \\
8 \cos ^{3} 2 \theta+4 \cos ^{2} 2 \theta-4 \cos 2 \theta-1=\frac{\sin 7 \theta}{\sin \theta} .
\end{array}\right\}
$$

(iv) Let $\theta=\frac{\pi}{7}$.

Then $8 \cos ^{3} \frac{2 \pi}{7}+4 \cos ^{2} \frac{2 \pi}{7}-4 \cos \frac{2 \pi}{7}-1=\frac{\sin \pi}{\sin \frac{\pi}{7}}=0$.
So it follows that $\cos \frac{2 \pi}{7}$ is a root of the equation

$$
8 x^{3}+4 x^{2}-4 x-1=0
$$

$(16)(b)(i) \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
Let $\theta=\frac{\pi}{8}$.
Then $\tan \frac{\pi}{4}=\frac{2 t}{1-t^{2}}$, where $t=\tan \frac{\pi}{8}$

$$
\begin{gathered}
t^{2}+2 t-1=0 \\
(t+1)^{2}=2 \\
t= \pm \sqrt{2}-1
\end{gathered}
$$

But $t>0$, so $t=\tan \frac{\pi}{8}=\sqrt{2}-1$.
(ii)

$$
\begin{aligned}
\cos 4 \theta & =2 \cos ^{2} 2 \theta-1 \\
& =2\left(2 \cos ^{2} \theta-1\right)^{2}-1 \\
& =2\left(4 \cos ^{4} \theta-4 \cos ^{2} \theta+1\right)-1 \\
& =8 \cos ^{4} \theta-8 \cos ^{2} \theta+1
\end{aligned}
$$


$(16)$

$$
\begin{aligned}
(c)(i) L H S & =\frac{1}{1 \times 2}+\frac{1}{3 \times 4}+\frac{1}{5 \times 6}+\cdots+\frac{1}{(2 k-1)(2 k)} \\
& >\frac{1}{(2 k+1)(2 k+2)}+\frac{1}{(2 k+1)(2 k+2)}+\cdots+\frac{1}{(2 k+1)(2 k+2)}(\text { terms }) \\
& =\frac{k}{(2 k+1)(2 k+2)} \\
& =\text { RUS }
\end{aligned}
$$

(ii) Proof by induction:

When $n=2$, LHS $=2 \times \frac{4}{3}$

$$
\text { and } \begin{aligned}
\text { DHS } & =3 \times \frac{3}{4} \\
& =2 \frac{1}{4} .
\end{aligned}
$$

So the result is true when $n=2$.
Assume that the result is true for the positive integer $n=k$.
That is, ass mme that $k\left(1+\frac{1}{3}+\ldots+\frac{1}{2 k-1}\right)>(k+1)\left(\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2 k}\right)$.
Prove that the result is true for $n=k+1$.
That is, prove that

$$
\begin{aligned}
& \begin{array}{l}
\text { Lk+1) }
\end{array}\left(1+\frac{1}{3}+\cdots+\frac{1}{2 k-1}+\frac{1}{2 k+1}\right)>(k+2)\left(\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2 k}+\frac{1}{2 k+2}\right) . \\
&=(k+1)\left(\left(1+\frac{1}{3}+\cdots+\frac{1}{2 k-1}\right)+\frac{1}{2 k+1}\right) \\
&= k\left(1+\frac{1}{3}+\cdots+\frac{1}{2 k-1}\right)+1\left(1+\frac{1}{3}+\cdots \frac{1}{2 k-1}\right)+\frac{k+1}{2 k+1} \\
&>(k+1)\left(\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2 k}\right)+\left(\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2 k}+\frac{k}{(2 k+1)(2 k+2)}\right)+\frac{k+1}{2 k+1} \\
& \quad \text { (using*)} \\
&=(k+2)\left(\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2 k}\right)+\frac{k+(k+1)(2 k+2)}{(2 k+1)(2 k+2)} \\
&=(k+2)\left(\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2 k}\right)+\frac{(2 k+1)(k+2)}{(2 k+1)(2 k+2)} \\
&= \text { RUS }
\end{aligned}
$$

So, by mathematical induction, the result is true for all $n \geqslant 2$.
$(16)(c)(i i)$ otherwise:

$$
\begin{aligned}
1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n-1}> & >+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2 n} \\
= & \frac{1}{2}+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots+\frac{1}{2 n}\right) \\
> & \frac{1}{n}\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2 n}\right) \\
& +\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2 n}\right)
\end{aligned}
$$

since $\frac{n}{2}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\ldots+\frac{1}{2}$ ( $n$ terms)

$$
>\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2 n}
$$

so that $\frac{1}{2}>\frac{1}{n}\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2 n}\right)$.
So $1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n-1}>\left(\frac{1}{n}+1\right)\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2 n}\right)$

$$
=\frac{n+1}{n}\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2 n}\right),
$$

so $n\left(1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n-1}\right)>(n+1)\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2 n}\right)$.

