Sydney Grammar School

FORM VI

MATHEMATICS EXTENSION 2

Tuesday 9th August 2016

General Instructions

- Reading time - 5 minutes
- Writing time - 3 hours
- Write using black pen.
- Board-approved calculators and templates may be used.

Total-100 Marks

- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 90 Marks

- Questions 11-16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet

Examiner

- Candidature - 72 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The value of i^{2016} is:
(A) i
(B) -1
(C) $-i$
(D) 1

QUESTION TWO

At time t a particle is at position x and travelling with velocity v. Which of the following expressions is NOT equal to the acceleration of the particle?
(A) $\frac{d^{2} x}{d t^{2}}$
(B) $\frac{d v}{d t}$
(C) $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$
(D) $\left(\frac{d x}{d t}\right)^{2}$

QUESTION THREE

Which expression is equal to $\int \frac{1}{x^{2}+2 x+3} d x$?
(A) $\tan ^{-1}\left(\frac{x+1}{2}\right)+C$
(B) $\tan ^{-1}\left(\frac{x+1}{\sqrt{2}}\right)+C$
(C) $\frac{1}{2} \times \tan ^{-1}\left(\frac{x+1}{2}\right)+C$
(D) $\frac{1}{\sqrt{2}} \times \tan ^{-1}\left(\frac{x+1}{\sqrt{2}}\right)+C$

QUESTION FOUR

The sketch above shows cyclic quadrilateral $A B C D$ with $\angle B A C=30^{\circ}, \angle A D B=40^{\circ}$ and $\angle C B D=50^{\circ}$. From this information, the size of $\angle A B D$ is:
(A) 20°
(B) 40°
(C) 60°
(D) 65°

QUESTION FIVE

Which of the following Argand diagrams shows the solutions of $z^{5}-i=0$?
(A)

(B)

(C)

(D)

QUESTION SIX

A certain function $f(x)$ has the following properties: $f(0)=1$ and $\lim _{x \rightarrow \infty} f(x)=3$.
Which of the following is possible for all values of x ?
(A) $f^{\prime \prime}(x)>0$ and $f^{\prime}(x)>0$
(B) $f^{\prime \prime}(x)>0$ and $f^{\prime}(x)<0$
(C) $f^{\prime \prime}(x)<0$ and $f^{\prime}(x)>0$
(D) $f^{\prime \prime}(x)<0$ and $f^{\prime}(x)<0$

QUESTION SEVEN

The polynomial $P(z)$ has real coefficients and $P(0)=-1$. The imaginary number α and the real number β satisfy:

$$
P(\alpha)=0, \quad P(\beta)=0 \quad \text { and } \quad P^{\prime}(\beta)=0 .
$$

The degree of $P(z)$ is at least:
(A) 2
(B) 3
(C) 4
(D) 5

QUESTION EIGHT

Above is the graph of $y=f(x)$. The correct graph of $y=|f(-x)|$ is:
(A)

(B)

(C)

(D)

QUESTION NINE

Let $z=\cos \theta+i \sin \theta$, where θ is acute. The value of $\arg \left(z^{2}+1\right)$ is:
(A) $\frac{\theta}{2}$
(B) θ
(C) 2θ
(D) 4θ

QUESTION TEN

The Argand diagram above shows the square $A B C D$ in the first quadrant. The point A represents the complex number z and the point C represents w. Which of the following represents the point B ?
(A) $\frac{z+w}{2}+\frac{i(z-w)}{2}$
(B) $\frac{z+w}{2}-\frac{i(z-w)}{2}$
(C) $\frac{z-w}{2}+\frac{i(z+w)}{2}$
(D) $\frac{z-w}{2}-\frac{i(z+w)}{2}$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Express $\frac{5-i}{2+i}$ in the form $x+i y$, where x and y are real.
(b) Consider the region in the Argand diagram where $|z-2 i| \leq 1$ and $\operatorname{Re}(z) \leq 0$.
(i) Sketch the region.
(ii) What range of values does $\arg (z)$ take?
(c) Use the substitution $t=\tan \left(\frac{x}{2}\right)$ to help evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sin x+\cos x} d x$.
(d)

The graph of $y=e^{-x^{2}}$ is shown above. Draw a one-third page sketch of the graph of $y=\left(1-x^{2}\right) e^{-x^{2}}$,
without the aid of calculus. Show all intercepts.
(e) The region in the first quadrant below $y=4 x-x^{3}$ is rotated about the y-axis to form a solid. Use the method of cylindrical shells to find the volume of this solid.

QUESTION TWELVE (15 marks) Use a separate writing booklet.
(a) The equation $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$ represents a hyperbola. Find the eccentricity e.
(b) Find the gradient of the tangent to the curve $x^{2}-2 x y+3 y^{2}=11$ at the point $(2,-1)$.
(c) Let $P(z)=z^{4}+2 z^{3}+3 z^{2}+4 z+2$.
(i) Show that $z=-1$ is a double root of $P(z)=0$.
(ii) The other two roots are complex. Use the sum and product of roots to find them.
(d) A 1 kg object is moving along the x-axis and is subject to a resistive force of $\frac{1}{3} v^{3}+v$, where v is its velocity in metres per second. That is, its equation of motion is

$$
v \frac{d v}{d x}=-\frac{1}{3} v^{3}-v
$$

Initially the object is at the origin, and its velocity is $3 \mathrm{~m} / \mathrm{s}$.
Find v as a function of x.
(e)

An artist has created a sculpture which has a square base with side length 6 cm and a circular top with radius 3 cm . The height of the solid is 4 cm . A cross-section at height h is shown shaded grey, and a separate top view of the cross-section is shown on the right. This cross-section is a square with the corners replaced by quadrants of radius r. The radius r varies in direct proportion with h. That is, $r=k h$ for some constant k.
(i) Show that the area A of the cross-section is given by

$$
A=36+\frac{9}{16}(\pi-4) h^{2} .
$$

(ii) Hence find the exact volume of the solid.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet. Marks
(a) (i) Suppose that $y=f(x)$ has a stationary point at $x=a$, and that both $f(a) \neq 0$ and $f^{\prime \prime}(a) \neq 0$. Let $g(x)=\frac{1}{f(x)}$.
(α) Prove that the graph of $y=g(x)$ also has a stationary point at $x=a$.
(β) Show that at the stationary point the sign of $g^{\prime \prime}(a)$ is opposite to $f^{\prime \prime}(a)$.
(ii)

The graph of $y=f(x)$ is shown above. You may assume that both $f^{\prime \prime}(1) \neq 0$ and $f^{\prime \prime}(3) \neq 0$.
Use the results of part (i) to help sketch the graph of $y=\frac{1}{f(x)}$. Clearly show the behaviour at any turning points, and any other significant features.
(b)

The diagram above shows an ellipse with foci at S and S^{\prime}. Let the length of the major axis be $2 a$. The tangents from points P and Q on the ellipse meet at T. Extend $S^{\prime} P$ to A with $P A=P S$, and extend $S^{\prime} Q$ to B with $Q B=Q S$.
In this question you may assume the reflection property of the ellipse.
(i) Prove that $A T=S T$.
(ii) Explain why $S^{\prime} A=2 a$.
(iii) Hence prove that $S^{\prime} T$ bisects $\angle P S^{\prime} Q$.
(c)

The diagram above shows a circle with a chord $A B$ of fixed length. A variable point C lies on the major arc $A B$. The angle bisector of $\angle B A C$ meets the circle again at P, and the angle bisector of $\angle A B C$ meets the circle at Q. Let $\angle B A P=\alpha, \angle A B Q=\beta$ and $\angle A C B=\gamma$.
Copy or trace the diagram into your writing booklet.
(i) Show that $\angle P C Q=\alpha+\beta+\gamma$.
(ii) Hence prove that $\angle P C Q$ is constant, regardless of the location of point C.
(iii) Give a reason why the length of $P Q$ is constant.

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.
(a) Let $z=\cos \theta+i \sin \theta$. Then, by de Moivre's theorem, it is known that

$$
z^{n}+z^{-n}=2 \cos n \theta \quad \text { and } \quad z^{n}-z^{-n}=2 i \sin n \theta
$$

Use these two results to show that

$$
16 \cos ^{3} \theta \sin ^{2} \theta=2 \cos \theta-\cos 3 \theta-\cos 5 \theta
$$

(b) (i) Solve $z^{5}=1$.
(ii) Let α be the complex root in the first quadrant of the Argand diagram.

Show that $\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1=0$.
(iii) Find a quadratic equation which has roots $\left(\alpha^{4}+\alpha\right)$ and $\left(\alpha^{3}+\alpha^{2}\right)$.
(iv) Solve this equation and hence evaluate $\cos \frac{2 \pi}{5}$.
(c) The polynomial $P(z)=z^{4}-2 z^{3}+2 z^{2}-10 z+25$ has two complex zeroes α and $i \alpha$.
(i) By considering the equations $P(z)=0$ and $P(i z)=0$, show that α is a root of

$$
(1+i) z^{2}-2 z+5(1-i)=0
$$

(ii) Solve the above quadratic and thus find all the zeroes of $P(z)$.

QUESTION FIFTEEN (15 marks) Use a separate writing booklet.
(a) Find the locus of z given that $\frac{z-1}{z+1}$ is imaginary.
(b)

The diagram above shows the hyperbola \mathcal{H} with vertices at $A(a, 0)$ and $A^{\prime}(-a, 0)$, and centre $O(0,0)$. The point $P(a \sec \theta, b \tan \theta)$ is in the first quadrant and on \mathcal{H}. Let F be the foot of the perpendicular from P to the x-axis. The asymptote $y=\frac{b}{a} x$ intersects $A P$ at $Q(a \mu, b \mu)$ and intersects $A^{\prime} P$ at $Q^{\prime}(a \lambda, b \lambda)$. You may assume $\mu>\lambda$. The perpendiculars from Q and Q^{\prime} meet the x-axis at R and R^{\prime} respectively.
(i) Show that $Q^{\prime} Q=(\mu-\lambda) \sqrt{a^{2}+b^{2}}$.
(ii) You may assume that $\triangle A F P||\mid \triangle A R Q$. Use the ratios of matching sides to express $\frac{\mu}{\mu-1}$ in terms of θ alone.
(iii) Find a similar ratio for λ.
(iv) Multiply your results for parts (ii) and (iii) and hence show that the length of $Q^{\prime} Q$ is constant.
(c) By considering $\left(x-\frac{1}{x}\right)^{2}$, show that $a+\frac{1}{a} \geq 2$ whenever $a>0$.
(d) A 1 kg mass is projected vertically upward from ground level with initial velocity V_{0}. As it moves it is influenced by gravity $g \mathrm{~m} / \mathrm{s}^{2}$ and an air resistance equal to $k v$, where v is its velocity in metres per second and k is a positive constant. Let y be its height above ground level after t seconds, with upwards as positive. You may assume that the equation of motion is

$$
\ddot{y}=-g-k v .
$$

(i) Show that the velocity at time t is given by

$$
v(t)=\frac{g}{k}\left(\left(1+\frac{k}{g} V_{0}\right) e^{-k t}-1\right) .
$$

(ii) Show that the time T taken to reach the maximum height satisfies

$$
e^{k T}=1+\frac{k}{g} V_{0}
$$

(iii) From part (i), the velocity s seconds before it reaches the maximum height is

$$
v(T-s)=\frac{g}{k}\left(\left(1+\frac{k}{g} V_{0}\right) e^{-k(T-s)}-1\right) .
$$

It can be shown that $v(T+s)$ is the velocity s seconds after it reaches the maximum height, and that $v(T+s)$ is negative to indicate downwards velocity. (Do NOT show this.)

Use part (c) to help show that $v(T-s)+v(T+s) \geq 0$.

QUESTION SIXTEEN (15 marks) Use a separate writing booklet.
(a) (i) Find the values of A, B and C such that

$$
\frac{1}{x^{3}+x^{2}+x+1}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1} .
$$

(ii) Find and simplify $I(N)=\int_{0}^{N} \frac{d x}{x^{3}+x^{2}+x+1}$.
(iii) Hence evaluate $\int_{0}^{\infty} \frac{d x}{x^{3}+x^{2}+x+1}$.
(b) Let $I_{n}=\int_{0}^{1} x^{n} e^{-x} d x$, where $n \geq 0$ is an integer.
(i) Use integration by parts to show that $I_{n}=\frac{1}{n+1}\left(e^{-1}+I_{n+1}\right)$.
(ii) Use induction to show that

$$
I_{0}=e^{-1}\left(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}\right)+\frac{1}{n!} I_{n} \quad \text { for } n \geq 1
$$

(iii) You may assume that $\lim _{n \rightarrow \infty} I_{n}=0$ and that the series in part (ii) converges to a limit. Use these assumptions to show that

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots
$$

(iv) Suppose that e is rational. That is, suppose that $e=\frac{p}{q}$, where p and q are integers with $p>0$ and $q \geq 2$. Use part (iii) to show that

$$
p(q-1)!=\left(\sum_{k=0}^{q} \frac{q!}{k!}\right)+\frac{1}{q+1}+\frac{1}{(q+1)(q+2)}+\ldots
$$

(v) Let $f=\frac{1}{q+1}+\frac{1}{(q+1)(q+2)}+\frac{1}{(q+1)(q+2)(q+3)}+\ldots$

By comparing f with a suitable geometric progression, show that $0<f<\frac{1}{2}$.
(vi) Hence prove that e is in fact irrational.

END OF EXAMINATION

SGS Trial 2016 Form VI Mathematics Extension 2. . Page 14

BLANK PAGE

SGS Trial 2016 Form VI Mathematics Extension 2. . Page 15

BLANK PAGE

SGS Trial 2016 Form VI Mathematics Extension 2 Page 16

BLANK PAGE

Multiple Choice (with comments on errors)

Q 1 (D) $2016=4 \times 504+0$ so $i^{2016}=i^{0}=1$.
(A) $i^{2017}=i$
(B) $i^{2018}=-1$
(C) $i^{2019}=-i$

Q 2 (D) This is v^{2}, and $v^{2} \neq a$.
(A) acceleration
(B) acceleration
(C) acceleration

Q 3 (D) $x^{2}+2 x+3=(x+1)^{2}+(\sqrt{2})^{2}$ then use the formula for $\tan ^{-1}, a=\sqrt{2}$
(A) a wrong, wrong formula
(B) wrong formula
(C) a wrong

Q 4 (C) $\angle C A D=50^{\circ}$ (angle in same segment)
$\angle D B A=60^{\circ} \quad$ (angle sum of $\triangle A B D$)
(A) $\angle B D C=30^{\circ}$ but opposite angles of $A B C D$ are NOT equal.
(B) Incorrect angle sum of triangle
(D) The diagram is not to scale.

Q 5 (B) One solution must be $z=i$. The others are equally spaced from this.
(A) $z^{5}-1=0$
(C) $z^{5}+1=0$
(D) $z^{5}+i=0$

Q 6 (C) $f(0)<\lim _{x \rightarrow \infty} f(x)$ so $f^{\prime}(x)>0$
thus $f^{\prime}(x)>0$ and $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$ so $f^{\prime \prime}(x)<0$
(See the example graph on the right.)
The other options are wrong because:

(A) $f^{\prime \prime}(x)>0$
(B) $f^{\prime \prime}(x)>0$ and $f^{\prime}(x)<0$
(D) $f^{\prime}(x)<0$

Q 7 (C) β is a double root, and for real coefficients complex roots come in pairs.
(A) not just α and β
(B) omitted $\bar{\alpha}$ or omitted β as double root
(D) $P(0)=-1$ does not imply an extra zero

Q 8 (B) reflect in y axis, $y=|f|>0$, no restriction on x.
(A) $y<0$
(C) restriction on x
(D) restriction on $x, y<0$

Q 9 (B) angles in a rhombus
Alternatively $z^{2}+1=(\cos 2 \theta+1)+i \sin 2 \theta$

$$
\begin{aligned}
& =2 \cos ^{2} \theta+2 i \sin \theta \cos \theta \\
& =2 \cos \theta(\cos \theta+i \sin \theta) \\
& (\mathrm{C}) \arg \left(z^{2}\right) \\
\text { (D) } \arg (z+1) & \text { (z) } \left.z^{4}\right)
\end{aligned}
$$

Q 10 (A) Let M be the mid-point of $A C$ then $\frac{z+w}{2}=\overrightarrow{O M}$ and $\frac{z-w}{2}=\frac{1}{2} \overrightarrow{C A}$.

$$
\text { So } \overrightarrow{O B}=\overrightarrow{O M}+\overrightarrow{M B}=\overrightarrow{O M}+i \times \frac{1}{2} \overrightarrow{C A}
$$

(B) point D
(C) $i \times \overrightarrow{O D}$
(D) $-i \times \overrightarrow{O B}$
(a) Realise the denominator using its conjugate:

$$
\begin{aligned}
\frac{5-i}{2+i} & =\frac{5-i}{2+i} \times \frac{2-i}{2-i} \\
& =\frac{9-7 i}{5} \quad \text { or } \quad \frac{9}{5}-\frac{7}{5} i
\end{aligned}
$$

(b) (i)

Inside and on the circle centre $2 i$, radius 1 and in the left half-plane.

(c) From $t=\tan \frac{\theta}{2}$

$$
\begin{aligned}
& d \theta \\
\text { at } & =\frac{2}{1+t^{2}} d t . \\
\text { at } \quad \theta & =0, \quad t=0, \\
\text { so } \int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sin \theta+\cos \theta} d \theta & =\int_{0}^{1} \frac{1}{1+\frac{2 t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}} \times \frac{2}{1+t^{2}} d t \\
& =\int_{0}^{1} \frac{1}{(1+t)} d t \\
& =[\log (1+t)]_{0}^{1} \\
& =\log 2
\end{aligned}
$$

(d)

Intercepts shown at $(0,1),(-1,0)$ and $(1,0)$.
Even and horizontal asymptote shown.
(e)

$$
\begin{aligned}
V & =2 \pi \int_{0}^{2} x \times y d x \\
& =2 \pi \int_{0}^{2} 4 x^{2}-x^{4} d x \\
& =2 \pi\left[\frac{4 x^{3}}{3}-\frac{x^{5}}{5}\right]_{0}^{2} \\
& =64 \pi\left(\frac{1}{3}-\frac{1}{5}\right)-0
\end{aligned}
$$

so $\quad V=\frac{128 \pi}{15}$.

$$
\text { so } \quad V=\frac{}{15}
$$

Total for Question 11: $\overline{15 \text { Marks }}$

QUESTION TWELVE (15 marks)

(a)

For the hyperbola $5=4\left(e^{2}-1\right)$

$$
\begin{array}{lrl}
\text { so } & e^{2} & =\frac{9}{4} \\
\text { thus } & e & =\frac{3}{2}
\end{array}
$$

(b) Differentiate $x^{2}-2 x y+3 y^{2}=11$ implicitly to get

$$
2 x-2 y-2 x y^{\prime}+6 y^{\prime} y=0
$$

or

$$
(3 y-x) y^{\prime}=y-x
$$

so $y^{\prime}=\frac{y-x}{3 y-x}$
and at $(2,-1)$

$$
y^{\prime}=\frac{3}{5}
$$

(c) (i) Now $P^{\prime}(z)=4 z^{3}+6 z^{2}+6 z+4$, so

$$
\begin{aligned}
P(-1) & =1-2+3-4+2 \\
& =0
\end{aligned}
$$

and $P(-1)=-4+6-6+4$

$$
=0
$$

Hence $z=-1$ is a double root.
(ii) Let one root be α
then $\bar{\alpha}$ is also a root (real coefficients)
product of roots: $\alpha \times \bar{\alpha} \times(-1) \times(-1)=2$
so

$$
|\alpha|^{2}=2
$$

sum of roots: $\quad \alpha+\bar{\alpha}+(-1)+(-1)=-2$
so

$$
\begin{aligned}
\operatorname{Re}(\alpha) & =0 \\
\alpha & =i \sqrt{2}
\end{aligned}
$$

and the roots are $(-1),(-1), i \sqrt{2}$ and $-i \sqrt{2}$.
(d)

$$
\begin{aligned}
v \frac{d v}{d x} & =-\frac{1}{3} v^{3}-v \\
\text { so } \quad \frac{d x}{d v} & =\frac{-3}{v^{2}+3}
\end{aligned}
$$

Integrate this result to get

$$
x=-\frac{3}{\sqrt{3}} \tan ^{-1} \frac{v}{\sqrt{3}}+C
$$

At $t=0, x=0$ and $v=3$ so

$$
0=-\sqrt{3} \tan ^{-1} \sqrt{3}+C
$$

or $\quad C=\frac{\pi}{\sqrt{3}}$ \square
So $\quad x=\frac{\pi}{\sqrt{3}}-\sqrt{3} \tan ^{-1} \frac{v}{\sqrt{3}}$
thus $\tan ^{-1} \frac{v}{\sqrt{3}}=\frac{\pi}{3}-\frac{x}{\sqrt{3}}$
hence $\quad v=\sqrt{3} \tan \left(\frac{\pi}{3}-\frac{x}{\sqrt{3}}\right)$
(e) (i)

It should be clear that $r=\frac{3}{4} h$.
Thus Area $=$ square - corners + circle

$$
\begin{aligned}
& =6 \times 6-4 \times r^{2}+\pi r^{2} \\
& =36+(\pi-4) r^{2} \\
& =36+(\pi-4) \frac{9}{16} h^{2}
\end{aligned}
$$

(ii)

$$
\text { Hence } \begin{aligned}
V & =\int_{0}^{4}\left(36+(\pi-4) \frac{9}{16} h^{2}\right) d h \\
& =\left[36 h+(\pi-4) \frac{3}{16} h^{3}\right]_{0}^{4} \\
& =144+12(\pi-4)-0 \\
& =12(8+\pi)
\end{aligned}
$$

QUESTION THIRTEEN (15 marks)

(a) (i) (α) In the following, write f for $f(x)$.

Here $g(x)=\frac{1}{f}$
so $\quad \frac{d g}{d x}=\frac{-1}{f^{2}} \times f^{\prime} \quad$ (by the chain rule)
Thus $g^{\prime}(a)=-\frac{f^{\prime}(a)}{(f(a))^{2}}$

$$
=0 \quad\left(\text { since } f^{\prime}(a)=0\right)
$$

(β) The product rule is easier, but most candidates used the quotient rule.

$$
\begin{aligned}
g^{\prime \prime} & =-\frac{f^{2} f^{\prime \prime}-f^{\prime} \times 2 f^{\prime} f}{f^{4}} \quad \text { (by the quotient rule) } \\
& =\frac{2\left(f^{\prime}\right)^{2}-f^{\prime \prime} f}{f^{3}} \\
\text { hence } g^{\prime \prime}(a) & =\frac{0-f^{\prime \prime}(a) f(a)}{(f(a))^{3}} \\
& =-\frac{f^{\prime \prime}(a)}{(f(a))^{2}}
\end{aligned}
$$

The denominator is a square, so is positive, hence $g^{\prime \prime}(a)$ has opposite sign to $f^{\prime \prime}(a)$.
(ii)

Vertical and horizontal asymptotes
Correct behaviour at turning points
(b) (i) In $\triangle A P T$ and $\triangle S P T$

$$
\begin{align*}
\angle A P T & =\angle S P T & & \text { (reflection property of ellipse) } \\
A P & =P S & & \text { (given) } \\
P T & =P T & & (\text { common }) \tag{SAS}
\end{align*}
$$

thus $\triangle A P T \equiv \triangle S P T$
hence $\quad A T=S T \quad$ (matching sides congruent triangles)
\qquad
(ii)

$$
\begin{aligned}
S^{\prime} A & =S^{\prime} P+P A \\
& =S^{\prime} P+P S \quad \text { (by construction) } \\
& =2 a \quad \text { (property of ellipse) }
\end{aligned}
$$

(iii) (α)

Likewise, $S^{\prime} B=2 a$ and $B T=S T$
Hence in $\triangle S^{\prime} A T$ and $\triangle S^{\prime} B T$

$$
\begin{aligned}
S^{\prime} T & =S^{\prime} T \quad \text { (common) } \\
A T & =B T=S T \quad \text { (proven) } \\
S^{\prime} A & =S^{\prime} B=2 a \quad \text { (proven) }
\end{aligned}
$$

thus $\triangle S^{\prime} A T \equiv \triangle S^{\prime} B T \quad$ (SSS)
Hence $\angle A S^{\prime} T=\angle B S^{\prime} T$ (matching angles of congruent triangles.)
(c) (i)

$$
\begin{aligned}
\angle B C P & =\angle B A P \quad \text { (angles in the same segment) } \\
& =\alpha \\
\angle Q C A & =\angle Q B A \quad \text { (angles in the same segment) } \\
& =\beta
\end{aligned}
$$

Hence $\angle Q C P=\alpha+\beta+\gamma$ (adjacent angles).
(ii)

$$
2 \alpha+2 \beta+\gamma=\pi \quad \text { (angle sum of } \triangle A B C)
$$

so

$$
\alpha+\beta=\frac{1}{2}(\pi-\gamma)
$$

Thus $\quad \angle Q C P=\frac{1}{2}(\pi-\gamma)+\gamma$

$$
=\frac{1}{2}(\pi+\gamma)
$$

But γ is constant (angle in the major segment)
hence $\quad \angle Q C P=\frac{1}{2}(\pi+\gamma)$ is constant
(iii) $\angle P C Q$ is constant hence
$Q P$ is also constant (equal angles subtend equal chords)
(a) Using the given results:

$$
\begin{aligned}
16 \cos ^{3} \theta \sin ^{2} \theta & =16\left(\frac{z+z^{-1}}{2}\right)^{3}\left(\frac{z-z^{-1}}{2 i}\right)^{2} \\
& =-\frac{1}{2}\left(z^{3}+3 z+3 z^{-1}+z^{-3}\right)\left(z^{2}-2+z^{-2}\right) \\
& =-\frac{1}{2}\left(z^{5}+z^{3}-2 z-2 z^{-1}+z^{-3}+z^{-5}\right) \\
& =-\frac{1}{2}\left(-2\left(z+z^{-1}\right)+\left(z^{3}+z^{-3}\right)+\left(z^{5}+z^{-5}\right)\right) \\
& =-\frac{1}{2}(-2 \cos \theta+2 \cos 3 \theta+2 \cos 5 \theta) \\
& =2 \cos \theta-\cos 3 \theta-\cos 5 \theta .
\end{aligned}
$$

(b) (i) By de Moivre,

$$
\begin{array}{rlrl}
\operatorname{cis} 5 \theta & =\operatorname{cis} 2 n \pi \quad \text { where } z=\operatorname{cis} \theta \\
& \text { so } & 5 \theta & =2 n \pi \\
& \text { or } & \theta & =\frac{2 n \pi}{5} . \\
& \text { Hence } & z & =1, \operatorname{cis} \frac{2 \pi}{5}, \overline{\operatorname{cis} \frac{2 \pi}{5}}, \operatorname{cis} \frac{4 \pi}{5}, \overline{\operatorname{cis} \frac{4 \pi}{5}}
\end{array}
$$

(ii)

$$
\begin{array}{lrl}
\alpha^{5}-1 & =0 & \\
\text { so } \quad(\alpha-1)\left(\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1\right)=0 & (\text { GP theory }) \\
\text { hence } \quad \alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1=0 & (\text { since } \alpha \neq 1)
\end{array}
$$

(iii)

Sum of roots: $\quad \alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha=-1 \quad$ (from part (ii))
Product of roots: $\quad\left(\alpha^{4}+\alpha\right)\left(\alpha^{3}+\alpha^{2}\right)=\alpha^{7}+\alpha^{6}+\alpha^{4}+\alpha^{3}$

$$
\begin{aligned}
& =\alpha^{2}+\alpha+\alpha^{4}+\alpha^{3} \quad\left(\text { since } \alpha^{5}=1\right) \\
& =-1 \quad(\text { by part }(\text { ii }))
\end{aligned}
$$

Hence a quadratic equation is $z^{2}+z-1=0$.
(iv)

$$
\Delta=5
$$

$$
\text { so } \quad z=\frac{-1 \pm \sqrt{5}}{2}
$$

But α is in the first quadrant so take the positive solution.
Thus $\alpha^{4}+\alpha=2 \cos \frac{2 \pi}{5}=\frac{-1+\sqrt{5}}{2}$
hence $\cos \frac{2 \pi}{5}=\frac{\sqrt{5}-1}{4}$
(c) (i) Since $P(\alpha)=0$ and $P(i \alpha)=0, \alpha$ is a solution of

$$
\begin{array}{rlr}
z^{4}-2 z^{3}+2 z^{2}-10 z+25 & =0 \\
\text { and } \quad z^{4}+2 i z^{3}-2 z^{2}-10 i z+25 & =0 \tag{2}
\end{array}
$$

Subtracting [1] from [2], α is a solution of

$$
\begin{aligned}
& \left.\quad \begin{array}{rl}
(2 i+2) z^{3}-4 z^{2}-(10 i-10) z & =0 \\
\text { or } \quad 2 z\left((1+i) z^{2}-2 z+5(1-i)\right) & =0 \\
\text { thus } \quad(1+i) z^{2}-2 z+5(1-i) & =0 \quad(\text { since } P(0) \neq 0)
\end{array}, \begin{array}{rl}
\\
\text { then }
\end{array}\right)
\end{aligned}
$$

(ii) The discriminant is

$$
\begin{aligned}
& \Delta=4-4 \times(1+i) \times 5(1-i) \\
& =(6 i)^{2} \\
& \text { so } \quad z=\frac{2 \pm 6 i}{2(1+i)} \\
& =\frac{1+3 i}{1+i} \quad \text { or } \quad \frac{1-3 i}{1+i} \\
& =\frac{4+2 i}{2} \quad \text { or } \quad \frac{-2-4 i}{2} \\
& =2+i \quad \text { or } \quad-1-2 i
\end{aligned}
$$

The other roots are conjugates $(P(z)$ has real coefficients) thus $z=2+i, 2-i,-1+2 i,-1-2 i$

Total for Question 14: $\overline{15 \text { Marks }}$

QUESTION FIFTEEN (15 marks)

(a) There are two obvious methods to do this question. Here is the first.

$$
\begin{aligned}
\frac{z-1}{z+1} & =\frac{(z-1)(\bar{z}+1)}{|z+1|^{2}} \\
& =\frac{|z|^{2}-1+z-\bar{z}}{|z+1|^{2}} \\
& =\frac{|z|^{2}-1}{|z+1|^{2}}+\frac{2 i y}{|z+1|^{2}} \quad \text { (or equivalent) }
\end{aligned}
$$

This is imaginary if $|z|^{2}-1=0$
provided that $y \neq 0$.

That is, a circle centre the origin and radius 1 , omitting the x-intercepts.
The other method is to note that $\arg \left(\frac{z-1}{z+1}\right)= \pm \frac{\pi}{2}$.
(b) (i)

$$
\begin{aligned}
\left(Q^{\prime} Q\right)^{2} & =(a \mu-a \lambda)^{2}+(b \mu-b \lambda)^{2} \\
& =a^{2}(\mu-\lambda)^{2}+b^{2}(\mu-\lambda)^{2} \\
& =(\mu-\lambda)^{2}\left(a^{2}+b^{2}\right)
\end{aligned}
$$

$$
\text { so } \quad Q^{\prime} Q=(\mu-\lambda) \sqrt{a^{2}+b^{2}} \quad(\text { since } \mu>\lambda) .
$$

(ii) In $\triangle A F P||\mid \triangle A Q R$

$$
\begin{aligned}
\frac{Q R}{A R} & =\frac{P F}{A F} \quad(\text { matching sides of similar triangles) } \\
\text { so } \quad \frac{b \mu}{a \mu-a} & =\frac{b \tan \theta}{a \sec \theta-a} \\
\text { thus } \frac{\mu}{\mu-1} & =\frac{\tan \theta}{\sec \theta-1}
\end{aligned}
$$

(iii) In $\triangle A^{\prime} F P| | \triangle A^{\prime} Q^{\prime} R^{\prime} \quad$ (AA)

$$
\begin{aligned}
\frac{Q^{\prime} R^{\prime}}{A^{\prime} R^{\prime}} & =\frac{P F}{A^{\prime} F} \quad(\text { matching sides of similar triangles) } \\
\text { so } \quad \frac{b \lambda}{a \lambda+a} & =\frac{b \tan \theta}{a \sec \theta+a} \\
\text { thus } \frac{\lambda}{\lambda+1} & =\frac{\tan \theta}{\sec \theta+1}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\frac{\mu}{\mu-1} \times \frac{\lambda}{\lambda+1} & =\frac{\tan \theta}{\sec \theta-1} \times \frac{\tan \theta}{\sec \theta+1} \\
& =\frac{\tan ^{2} \theta}{\sec ^{2} \theta-1} \\
& =1
\end{aligned}
$$

$$
\text { thus } \quad \lambda \mu=(\mu-1)(\lambda+1)
$$

$$
\text { or } \quad \lambda \mu=\lambda \mu+\mu-\lambda-1
$$

so

$$
\mu-\lambda=1
$$

hence

$$
Q^{\prime} Q=\sqrt{a^{2}+b^{2}}
$$

which is independent of the location of P on \mathcal{H}.
(c) Squares of real numbers are positive, so

$$
\begin{aligned}
\left(x-\frac{1}{x}\right)^{2} & \geq 0 \\
\text { thus } \quad x^{2}+\frac{1}{x^{2}} & \geq 2
\end{aligned}
$$

Now put $a=x^{2}$ to get the result

$$
a+\frac{1}{a} \geq 2
$$

(d) (i) Rearrange the given equation to get

$$
\frac{d t}{d v}=\frac{-1}{g+k v}
$$

thus $\quad t=-\frac{1}{k} \log (g+k v)+C \quad$ (for some constant C.)
At $t=0, v=V_{0}$ so

$$
C=\frac{1}{k} \log \left(g+k V_{0}\right)
$$

Thus $\quad t=\frac{1}{k} \log \left(g+k V_{0}\right)-\frac{1}{k} \log (g+k v)$
or $\quad e^{k t}=\frac{g+k V_{0}}{g+k v}$
so $\quad g+k v=g\left(1+\frac{k}{g} V_{0}\right) e^{-k t}$
hence $\quad v(t)=\frac{g}{k}\left(\left(1+\frac{k}{g} V_{0}\right) e^{-k t}-1\right)$
(ii) At the maximum height the velocity is zero, so

$$
\begin{array}{rlrl}
& & \left(1+\frac{k}{g} V_{0}\right) e^{-k T}-1 & =0 \\
& \text { or } & 1 & =\left(1+\frac{k}{g} V_{0}\right) e^{-k T} \\
\text { hence } & e^{k T} & =\left(1+\frac{k}{g} V_{0}\right)
\end{array}
$$

(iii)

$$
\begin{array}{rlr}
v(T-s)+v(T+S) & =\frac{g}{k}\left(\left(1+\frac{k}{g} V_{0}\right) e^{-k T+k s}-1\right)+\frac{g}{k}\left(\left(1+\frac{k}{g} V_{0}\right) e^{-k T-k s}-1\right) \\
& =\frac{g}{k}\left(\left(e^{k T} e^{-k T+k s}-1\right)+\left(e^{k T} e^{-k T-k s}-1\right)\right) \quad(\text { part (ii)) } \\
& =\frac{g}{k}\left(e^{k s}+e^{-k s}-2\right) \\
& =\frac{g}{k}\left(a+\frac{1}{a}-2\right) \quad\left(\text { where } a=e^{k s}\right) \\
& \geq \frac{g}{k}(2-2) \quad(\text { by part (c) }) \\
& \geq 0 . & \\
\end{array}
$$

Total for Question 15: $\overline{15 \text { Marks }}$

QUESTION SIXTEEN (15 marks)

(a) (i) The given equation will hold if

$$
1=A\left(x^{2}+1\right)+(B x+C)(x+1)
$$

at $x=-1$ this gives

$$
1=2 A \quad \text { so } \quad A=\frac{1}{2}
$$

equating coefficients of x^{2} gives

$$
0=A+B \quad \text { so } \quad B=-\frac{1}{2}
$$

and at $x=0$ the result is

$$
1=A+C \quad \text { so } \quad C=\frac{1}{2}
$$

[Only full marks if all three correct.]
(ii) From the results of part (i),

$$
\begin{aligned}
I(N) & =\frac{1}{2} \int_{0}^{N} \frac{1}{x+1}-\frac{x}{x^{2}+1}+\frac{1}{x^{2}+1} d x \\
& =\frac{1}{2}\left[\log (x+1)-\frac{1}{2} \log \left(x^{2}+1\right)+\tan ^{-1} x\right]_{0}^{N} \\
& =\frac{1}{2}\left(\log (N+1)-\frac{1}{2} \log \left(N^{2}+1\right)+\tan ^{-1} N\right) \\
& =\frac{1}{4}\left(\log \left(\frac{(N+1)^{2}}{N^{2}+1}\right)+2 \tan ^{-1} N\right)
\end{aligned}
$$

(iii) Taking the limit of part (ii) as $N \rightarrow \infty$:

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d x}{x^{3}+x^{2}+x+1} & =\lim _{N \rightarrow \infty} I(N) \\
& =\lim _{N \rightarrow \infty} \frac{1}{4}\left(\log \left(\frac{(N+1)^{2}}{N^{2}+1}\right)+2 \tan ^{-1} N\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{4}\left(\log \left(\frac{\left(1+\frac{1}{N}\right)^{2}}{1+\frac{1}{N^{2}}}\right)+2 \tan ^{-1} N\right) \\
& =\frac{1}{4}\left(\log 1+2 \times \frac{\pi}{2}\right) \\
& =\frac{\pi}{4}
\end{aligned}
$$

(b) (i) Using integration by parts $\int v^{\prime} u d x=u v-\int u^{\prime} v d x$,
put $\quad u=e^{-x} \quad$ and $\quad v^{\prime}=x^{n}$
so $\quad u^{\prime}=-e^{-x} \quad$ and $\quad v=\frac{1}{n+1} x^{n+1}$
then $I_{n}=\left[\frac{x^{n+1} e^{-x}}{n+1}\right]_{0}^{1}+\int_{0}^{1} \frac{x^{n+1} e^{-x}}{n+1} d x$

$$
\begin{aligned}
& =\frac{e^{-1}-0}{n+1}+\frac{1}{n+1} \int_{0}^{1} x^{n+1} e^{-x} d x \\
& =\frac{1}{n+1}\left(e^{-1}+I_{n+1}\right)
\end{aligned}
$$

(ii) (A) When $n=1$

$$
\begin{aligned}
\mathrm{LHS} & =\frac{1}{1}\left(e^{-1}+I_{1}\right) \quad(\text { by part (i)) } \\
& =e^{-1} \times \frac{1}{1!}+\frac{1}{1!} \times I_{1} \\
& =\text { RHS }
\end{aligned}
$$

so the result is true for $n=1$.
(B) Assume the result is true when $n=k$. That is, assume that

$$
I_{0}=e^{-1}\left(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{k!}\right)+\frac{1}{k!} I_{k}
$$

Now prove the result is true when $n=k+1$. That is, prove that

$$
I_{0}=e^{-1}\left(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{k!}+\frac{1}{(k+1)!}\right)+\frac{1}{(k+1)!} I_{k+1}
$$

Now, by part (i), the result in ($\dagger \dagger$) becomes

$$
\begin{aligned}
I_{0} & =e^{-1}\left(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{k!}\right)+\frac{1}{k!} \times \frac{1}{k+1}\left(e^{-1}+I_{k+1}\right) \\
& =e^{-1}\left(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{k!}\right)+\frac{e^{-1}}{(k+1)!}+\frac{1}{(k+1)!} I_{k+1} \\
& =e^{-1}\left(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{k!}+\frac{1}{(k+1)!}\right)+\frac{1}{(k+1)!} I_{k+1}
\end{aligned}
$$

as required.
It follows from parts (A) and (B) by mathematical induction that the result is true for all positive integers n.
(iii) Take the limit as $n \rightarrow \infty$ as indicated to get

$$
\begin{aligned}
I_{0} & =e^{-1}\left(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots\right) \\
I_{0} & =\int_{0}^{1} e^{-x} d x \\
& =\left[e^{-x}\right]_{0}^{1} \\
& =-e^{-1}+1
\end{aligned}
$$

Hence $1-e^{-1}=e^{-1}\left(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots\right)$
so $\quad e-1=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots$
or

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots
$$

(iv) Let $e=\frac{p}{q}$ then

$$
\frac{p}{q}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{q!}+\frac{1}{(q+1)!}+\frac{1}{(q+2)!}+\ldots
$$

Now multiply both sides by q ! to get

$$
\begin{aligned}
\frac{p q!}{q} & =\underbrace{q!+\frac{q!}{1!}+\frac{q!}{2!}+\frac{q!}{3!}+\ldots+\frac{q!}{q!}}_{\left(\sum_{k=0}^{q} \frac{q!}{k!}\right)}+\frac{q!}{(q+1)!}+\frac{q!}{(q+2)!}+\ldots \\
\text { or } \quad p(q-1)! & =\quad+\frac{1}{q+1}+\frac{1}{(q+1)(q+2)}+\ldots
\end{aligned}
$$

(v) Let $f=\frac{1}{q+1}+\frac{1}{(q+1)(q+2)}+\frac{1}{(q+1)(q+2)(q+3)}+\ldots$ then

$$
\begin{array}{rlr}
f & <\frac{1}{q+1}+\frac{1}{(q+1)^{2}}+\frac{1}{(q+1)^{3}}+\ldots \quad \quad \text { (decrease denominators) } \\
& <\frac{1}{q+1} \times \frac{1}{1-\frac{1}{q+1}} \quad(\text { infinite sum of a GP) } \\
& <\frac{1}{q} & \\
& <\frac{1}{2} \quad(\text { since } q>2) & \boxed{V}
\end{array}
$$

Also $f>0$ since every term is positive. Hence $0<f<\frac{1}{2}$.
(vi) The LHS of part (iv) is an integer.

The RHS of part (iv) is an integer plus a fraction.
This is a contradiction and hence e is a irrational.
Total for Question 16: $\overline{15 \text { Marks }}$

