## SYDNEY GRAMMAR SCHOOL



| CANDIDATE NUMBER |  |  |  |  |  |  |  |
|------------------|--|--|--|--|--|--|--|

2020 Trial HSC Examination

# **Form VI Mathematics Extension 2**

## Wednesday 12th August 2020

| General<br>Instructions | <ul> <li>Reading time — 10 minutes</li> <li>Working time — 3 hours</li> <li>Attempt all questions.</li> <li>Write using black pen.</li> <li>Calculators approved by NESA may be used.</li> <li>A loose reference sheet is provided separate to this paper.</li> </ul>                                        |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Marks: 100        | -                                                                                                                                                                                                                                                                                                            |
|                         | <ul> <li>Section I (10 marks) Questions 1–10</li> <li>This section is multiple-choice. Each question is worth 1 mark.</li> <li>Record your answers on the provided answer sheet.</li> </ul>                                                                                                                  |
|                         | <ul> <li>Section II (90 marks) Questions 11–16</li> <li>Relevant mathematical reasoning and calculations are required.</li> <li>Start each question in a new booklet.</li> </ul>                                                                                                                             |
| Collection              | <ul> <li>If you use multiple booklets for a question, place them inside the first booklet for the question.</li> <li>Arrange your solutions in order.</li> <li>Write your candidate number on this page and on the multiple choice sheet.</li> <li>Place everything inside this question booklet.</li> </ul> |

## Checklist

- Reference sheet
- Multiple-choice answer sheet
- 6 booklets per boy
- Candidature: 78 pupils

## Section I

Questions in this section are multiple-choice. Choose a single best answer for each question and record it on the provided answer sheet.

- 1. Which of the following is the converse of  $\sim P \Rightarrow Q$ ?
  - (A)  $\sim Q \Rightarrow P$ (B)  $Q \Rightarrow \sim P$ (C)  $P \Rightarrow Q$ (D)  $\sim P \Rightarrow \sim Q$
- 2. Which of the following is a primitive of  $\tan^4 2x \sec^2 2x$ ?
  - (A)  $\tan^5 2x$ (B)  $\frac{1}{2} \tan^5 2x$ (C)  $\frac{1}{5} \tan^5 2x$ (D)  $\frac{1}{10} \tan^5 2x$
- 3. What is the smallest positive value of  $\theta$  such that  $e^{i\theta} \times e^{2i\theta} = i$ ?
  - (A)  $\frac{\pi}{12}$ (B)  $\frac{\pi}{6}$ (C)  $\frac{\pi}{3}$ (D)  $\frac{5\pi}{6}$

4. What is the approximate size of the angle between the vectors  $\begin{bmatrix} 2\\ -3\\ 1 \end{bmatrix}$  and  $\begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$ ?

- (A)  $57^{\circ}$
- (B)  $93^{\circ}$
- (C)  $123^{\circ}$
- (D) 158°

5. What are the zeros of the polynomial  $P(x) = x^3 - 3x^2 + x + 5$ ?

(A) 1, -2 + i, -2 - i(B) 1, 2 + i, 2 - i(C) -1, -2 + i, -2 - i(D) -1, 2 + i, 2 - i

6. Which expression is equivalent to  $\int (\ln x)^2 dx$ ?

(A) 
$$x (\ln x)^2 - 2 \int \ln x \, dx$$
  
(B)  $(\ln x)^2 - 2 \int \ln x \, dx$   
(C)  $x (\ln x)^2 - 2 \int x \ln x \, dx$   
(D)  $2 \int \ln x \, dx$ 

- 7. The displacement x of a particle in metres after t seconds is given by  $x = 2 + 4 \sin^2 t$ . How far will the particle travel in the first  $2\pi$  seconds?
  - (A) 0 metres
  - (B) 2 metres
  - (C) 8 metres
  - (D) 16 metres
- 8. The polynomial P(z) has real coefficients. The complex number  $\alpha$  is of the form a + ib, where a and b are both real, non-zero and distinct.

If P(a), P'(a), P(b), P'(b) and  $P(\alpha)$  are all zero, what is the minimum degree of P(z)?

- (A) 4
- (B) 5
- (C) 6
- (D) 7

9. Without evaluating the integrals, which of the following integrals has the largest value?

(A) 
$$\int_{-\pi}^{\pi} x \cos x \, dx$$
  
(B)  $\int_{-1}^{1} \ln(x^2 + 1) \, dx$   
(C)  $\int_{0}^{1} (2^{-x} - 1) \, dx$   
(D)  $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (\sin^{-1} x)^3 \, dx$ 

10. A complex number z is defined such that  $|z - 1| = |z + 2 - i\sqrt{3}|$ . What is the value of  $\operatorname{Arg}(z)$  when |z| is a minimum?

(A) 
$$\frac{\pi}{6}$$
  
(B)  $\frac{\pi}{3}$   
(C)  $\frac{2\pi}{3}$   
(D)  $\frac{5\pi}{6}$ 

#### End of Section I

#### The paper continues in the next section

## Section II

This section consists of long-answer questions. Marks may be awarded for reasoning and calculations. Marks may be lost for poor setting out or poor logic. Start each question in a new booklet.

## QUESTION ELEVEN (15 marks)Start a new answer booklet. Marks (a) Express $\frac{1-8i}{2-i}$ in the form a+ib, where a and b are real. 2(b) Find: (i) $\int x \cos x \, dx$ 2(ii) $\int \frac{dx}{x^2 + 4x + 8}$ 2(c) Find any values of $\lambda$ for which the vectors $\begin{bmatrix} -2\\ \lambda\\ 2\lambda \end{bmatrix}$ and $\begin{bmatrix} 4\\ \lambda\\ -1 \end{bmatrix}$ are perpendicular. 2 2 (d) (i) Find the constants A, B and C such that $\frac{5x^2 - x + 5}{(x^2 + 2)(x - 1)} = \frac{Ax + B}{x^2 + 2} + \frac{C}{x - 1}.$ (ii) Hence find $\int \frac{5x^2 - x + 5}{(x^2 + 2)(x - 1)} dx$ . 23 (e) Three lines have equations: $y = px + b_1$ $y = qx + b_2$

$$v = rx + b_3$$

where  $p, q, r, b_1, b_2$  and  $b_3$  are real constants and p, q and r are distinct.

Use proof by contradiction to show algebraically that these lines cannot be perpendicular to one another.

**QUESTION TWELVE** (15 marks) Start a new answer booklet.

(a) Sketch the region in the complex plane which simultaneously satisfies

 $|z| < \sqrt{2}$  and  $0 \le \arg(z) \le \frac{\pi}{4}$ .

Clearly label the coordinates of any corners of the region, indicating if they are included in the region.

(b) Using the substitution 
$$t = \tan \frac{x}{2}$$
, or otherwise, evaluate  $\int_0^{\frac{\pi}{2}} \frac{dx}{2 + \sin x + 2\cos x}$ . 3

- (c) Use proof by contraposition to show that for  $x \in \mathbb{Z}$ , if  $x^2 6x + 5$  is even, then x is odd.
- (d) (i) By solving the equation  $z^3 + 1 = 0$ , find the three cube roots of -1.
  - (ii) Let  $\omega$  be a non-real cube root of -1. Show that  $\omega^2 = \omega 1$ .
  - (iii) Hence simplify  $(1 \omega)^6$ .
- (e) If x and y are positive real numbers, then  $x + y \ge 2\sqrt{xy}$ . (Do NOT prove this.)

If a and b are positive real numbers, show that  $(a+b)\left(\frac{1}{a}+\frac{1}{b}\right) \ge 4$ .

Marks

2

2

1

## **QUESTION THIRTEEN** (16 mar

(a)

(16 marks) St

Start a new answer booklet.



The diagram above shows the points O, A, B, M and N on the complex plane. These points correspond to the complex numbers 0, a, b, m and n respectively. The triangles OAB and OMN are equilateral. Let  $\alpha = e^{\frac{i\pi}{3}}$ .

- (i) Explain why  $m = \alpha n$ .
- (ii) Use complex numbers to show that AM = BN.
- (b) Two of the zeros of  $P(x) = x^4 12x^3 + 54x^2 108x + 85$  are a + ib and 2a + ib, where a and b are real and b > 0.
  - (i) Find the values of a and b.
  - (ii) Hence or otherwise express P(x) as the product of quadratic factors with real coefficients.

(c) Two lines are defined by 
$$\underline{v} = \begin{bmatrix} 2\\-1\\-5 \end{bmatrix} + \lambda \begin{bmatrix} 4\\-2\\-5 \end{bmatrix}$$
 and  $\underline{u} = \begin{bmatrix} 4\\-3\\3 \end{bmatrix} + \mu \begin{bmatrix} -5\\3\\1 \end{bmatrix}$ , where  $\lambda, \mu \in \mathbf{R}$ . 3

Show that the two lines intersect at a single point.

#### Question Thirteen continues over the page

Marks

1

3

### QUESTION THIRTEEN (Continued)

(d)



The diagram above shows  $\triangle ABC$ , where A, B and C have position vectors  $\underline{a}$ ,  $\underline{b}$  and  $\underline{c}$  respectively. The points P, Q and R bisect the intervals AB, BC and CA respectively.

- (i) Show that  $\overrightarrow{AQ} = \frac{1}{2}(\underline{c} + \underline{b}) \underline{a}$ .
- (ii) Show that  $\overrightarrow{AQ} + \overrightarrow{BR} + \overrightarrow{CP} = 0$ .
- (e) A sequence  $a_n$  is defined recursively by  $a_n = a_{n-1} + 3n^2$ , where  $a_0 = 0$ . Use mathematical induction to show that  $a_n = \frac{n(n+1)(2n+1)}{2}$  for all integers  $n \ge 0$ .

**QUESTION FOURTEEN** (14 marks) Start a new answer booklet.

- (a) The polynomial  $P(x) = x^5 + px^4 + qx^3 + (2q-1)x^2 + 4px + r$ , where  $p, q, r \in \mathbf{R}$ , has a zero of x = -1 with multiplicity 3.
  - (i) Find the values of p, q and r.
  - (ii) Hence find the other zeros of P(x).

(b) Let 
$$I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx$$
, for integers  $n \ge 0$ .  
(i) Show that  $I_n = n \left(\frac{\pi}{2}\right)^{n-1} - n(n-1)I_{n-2}$  for  $n \ge 2$ .

(ii) Hence evaluate 
$$\int_0^{\frac{\pi}{2}} x^2 \sin x \, dx$$
. 2

(c) Let  $z = e^{i\theta}$ .

(i) Show that 
$$z^n - \frac{1}{z^n} = 2i\sin(n\theta)$$
. 1

(ii) Show that 
$$\left(z - \frac{1}{z}\right)^5 = \left(z^5 - \frac{1}{z^5}\right) - 5\left(z^3 - \frac{1}{z^3}\right) + 10\left(z - \frac{1}{z}\right).$$
 1

(iii) Hence find 
$$\int \sin^5 \theta \, d\theta$$
. 3

Marks

3

2

Marks

3

3

2

1

3

1

**QUESTION FIFTEEN** (16 marks)

Start a new answer booklet.

(a) Find 
$$\int \frac{\sqrt{x}}{1+x} dx$$
.

- (b) Use mathematical induction to show that for all **odd** integers  $n \ge 1$ ,  $4^n + 5^n + 6^n$  is divisible by 15.
- (c) A package with mass m kg is dropped from a stationary hovering helicopter. As the package falls vertically it experiences a force due to gravity of 10m Newtons. When a parachute on the package is deployed, it experiences a resistive force of magnitude mkv Newtons, where v is the velocity of the package in metres per second and k is a positive constant.

The vertical displacement of the package y metres from the position where the parachute is deployed satisfies

 $m\ddot{y} = 10m - mkv\,,$ 

where the downwards direction is taken as positive.

- (i) Let  $v_T$  be the terminal velocity of the package with the parachute deployed. Find  $v_T$  1 in terms of k.
- (ii) The parachute on the package is deployed when its velocity reaches  $\frac{20}{k}$  ms<sup>-1</sup>.

(
$$\alpha$$
) Show that  $y = \frac{1}{k^2} \left( 20 - kv + 10 \ln \left| \frac{10}{10 - kv} \right| \right).$ 

- ( $\beta$ ) In the time that it takes the package to fall 50 m after the parachute is deployed, its velocity decreases by 25%. Find the value of k, giving your answer correct to two decimal places.
- (d) Two lines  $r_1$  and  $r_2$  have equations

$$r_{1} = \begin{bmatrix} 0\\5\\4 \end{bmatrix} + \lambda \begin{bmatrix} -1\\4\\3 \end{bmatrix} \text{ and } r_{2} = \begin{bmatrix} -2\\4\\1 \end{bmatrix} + \mu \begin{bmatrix} -1\\2\\2 \end{bmatrix}, \text{ where } \lambda, \mu \in \mathbf{R}.$$

The point A lies on the first line with parameter  $\lambda = p$ , and the point B lies on the second line with parameter  $\mu = q$ .

- (i) Write  $\overrightarrow{AB}$  as a column vector, writing the components in terms of p and q.
- (ii) Calculate the value of  $|\overrightarrow{AB}|$  when  $\overrightarrow{AB}$  is perpendicular to both  $r_1$  and  $r_2$ .
- (iii) State the range of values that  $\left|\overrightarrow{AB}\right|$  can take as p and q vary.

**QUESTION SIXTEEN** (14 marks) Start a new answer booklet.

(a) (i) The function f(x) is continuous for all  $x \in \mathbf{R}$ . Use the substitution  $x = \pi - u$  to show that

$$\int_0^{\pi} x f(\sin x) \, dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) \, dx \, .$$

- (ii) Hence evaluate  $\int_0^{\pi} (1+2x) \frac{\sin^3 x}{1+\cos^2 x} \, dx \, .$
- (b) An object of unit mass is attached to a spring. When the object is pulled and released, it experiences a force proportional to its displacement x metres, where x = 0 is taken as the centre of motion. The object moves in simple harmonic motion and the acceleration of the object is given by  $\ddot{x} = -P^2 x$  for some constant P > 0.

When the spring and object are submerged in a liquid, the object also experiences a resistive force proportional to its velocity. Thus, the acceleration of the object is given by

$$\ddot{x} = -P^2 x - Q\dot{x} \qquad (*)$$

for some constant Q > 0.

The spring is stretched and the object is released. A timer is started once the object reaches x = A, where A > 0. That is, x = A when t = 0. A graph of the displacement of the object submerged in liquid after t seconds is shown as follows:



The following questions relate to the motion of the object while it is submerged in liquid and  $t \ge 0$ .

- (i) Show that  $x = Ae^{-kt} \cos nt$  is a solution to the differential equation (\*) if  $k = \frac{1}{2}Q$  and  $3 = \frac{1}{2}\sqrt{4P^2 Q^2}$ . You may assume that  $4P^2 Q^2 > 0$ .
- (ii) Let  $x_r$  be the displacement of the object the *r*th time that it is instantaneously at rest. 2 Show that  $x_1 = -Ae^{\frac{k\alpha}{n}}\cos\alpha \times e^{-\frac{k\pi}{n}}$ , where  $\alpha = \tan^{-1}\left(\frac{k}{n}\right)$ .
- (iii) The value of the coefficient P relates to the stiffness of the spring, while the value of [4] the coefficient Q relates to the viscosity of the liquid. Show that the total distance that the object will move while submerged in a liquid for  $t \ge 0$  is dependent only on the value of the ratio  $\frac{P}{Q}$ .

### — END OF PAPER —

Marks

2

BLANK PAGE

## SYDNEY GRAMMAR SCHOOL





| 2020 | Trial HSC | Examination |
|------|-----------|-------------|
|------|-----------|-------------|

## Form VI Mathematics Extension 2

Wednesday 12th August 2020

- Fill in the circle completely.
- Each question has only one correct answer.

| Question One   |      |              |      |  |  |  |
|----------------|------|--------------|------|--|--|--|
| A $\bigcirc$   | В () | С ()         | D () |  |  |  |
| Question Two   |      |              |      |  |  |  |
| A $\bigcirc$   | В () | С ()         | D () |  |  |  |
| Question Three |      |              |      |  |  |  |
| A $\bigcirc$   | В () | С ()         | D () |  |  |  |
| Question Four  |      |              |      |  |  |  |
| A $\bigcirc$   | В () | С ()         | D () |  |  |  |
| Question Five  |      |              |      |  |  |  |
| A $\bigcirc$   | В () | С ()         | D () |  |  |  |
| Question Six   |      |              |      |  |  |  |
| A 🔿            | В () | $C \bigcirc$ | D () |  |  |  |
| Question Seven |      |              |      |  |  |  |
| A $\bigcirc$   | В () | С ()         | D () |  |  |  |
| Question Eight |      |              |      |  |  |  |
| A 🔿            | В () | $C \bigcirc$ | D () |  |  |  |
| Question Nine  |      |              |      |  |  |  |
| A 🔿            | В () | $C \bigcirc$ | D () |  |  |  |
| Question Ten   |      |              |      |  |  |  |
| A $\bigcirc$   | В () | С ()         | D () |  |  |  |

BLANK PAGE

Maths Ext. 2 Trial - Solutions Q⇒~P is the converse of ~P⇒Q ...(B) MC  $\int \tan^{4}2x \operatorname{sec}^{2}2x dx = \frac{1}{2} \int \tan^{4}2x \times \frac{d}{dx} (\tan 2x) dx$ (2)  $= \frac{1}{10} \tan^{5}2x + c$  $e^{i\theta} \times e^{2i\theta} = e^{3i\theta} \qquad i = e^{i\frac{\pi}{2}}$  $\Rightarrow 3i\theta = i\frac{\pi}{2}$ 3  $\theta = \frac{\pi}{6}$ Let  $a = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$   $b = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ . (4)  $a \cdot b = 2 - 6 - 1$ = -5  $|a| = \sqrt{4 + 9 + 1} = \sqrt{14} + 9 + 1 = \sqrt{14} + \sqrt{14} +$  $\cos\theta = \frac{a \cdot b}{|a| \times |b|}$ - - 5 J14 x JL Sum of zeros must be 3, ruling out A × C Product of zeros must be -5 -1×(2+i)(2-i) = 4-i<sup>2</sup> (5) =-5 : (D)

6  $\int (\ln x)^2 dx = \int (\ln x)^2 \times \frac{d}{dx}(x) dx$  $= x (\ln x)^2 - \int 2 \ln x \times \frac{1}{x} \times x \, dx$  $= -\infty(\ln x)^2 - 2 \int \ln x \, dx$ :. (A) 🗸 (7)  $x = 2 + 49in^{2}t$  $= 2 + 4 \times \frac{1}{2} (1 - \cos 2t)$ = 4 - 2 cos 2 t  $Period = \frac{2\pi}{2}$ = T : In 2TT seconds, particle travels 2 full cycles with amplitude 2 metres. 2×8=16 :. (D) (8) P(a) = P'(a) = 0 so a is a double zero P(b) = P'(b) = 0' so b is a double zero. Since P(z) has real coefficients and P(x) = 0,  $P(\overline{x}) = 0$ . .. a and a are zeros :- minimum degree is 6 :- (C) (9) ICOSI -> odo  $(\sin^{-1}x)^3 \rightarrow \text{odd}$  $2^{-x} - 1 \leq 0$  for  $0 \leq x \leq 4$  $\ln(x^2+1) > 0$  for  $-1 \le x \le 1$ :. (B

2 lies on the perpendicular bisector between 1 and -2+is (10)In 1313 m<sub>ae</sub> 2 . -216 = - 5 F B ....  $m_{cD} = \sqrt{3}$ > LCFO = I and 0 Re F LOAB = I 121 is a minimum when Z can be represented where OD LFC. by D,  $arg(z) = \frac{\pi}{6}$  when : OD || AB and av 121 is a minimum, • •  $(\mathcal{D})$ 

(1) (a) 
$$\frac{1-8i}{2-i} \times \frac{2+i}{2+i} = \frac{2+i-16i+8}{4+1}$$
  

$$= 2-3i$$
  
(b) (i) 
$$\int x\cos z \, dz = \int \alpha \cdot \frac{d}{2\pi} (\sin z) \, dz$$
  

$$= x\sin z + \cos z + c$$
  
(ii) 
$$\int \frac{dx}{x^2+4x+8} = \int \frac{dx}{(x+2)^2+4}$$
  

$$= \frac{1}{2} \tan^{-1} (\frac{x+2}{2}) + c$$
  
(c) 
$$\begin{bmatrix} -2\\ \lambda\\ 2\lambda \end{bmatrix} \cdot \begin{bmatrix} 4\\ \lambda\\ -1 \end{bmatrix} = 0$$
  

$$\begin{bmatrix} \lambda -2\\ \lambda -4 \end{bmatrix} (\lambda + 2) = 0$$
  

$$\begin{bmatrix} \lambda -2\\ \lambda -4 \end{bmatrix} \cdot \begin{bmatrix} 4\\ \lambda\\ -1 \end{bmatrix} = 0$$
  

$$\begin{bmatrix} \lambda -2\\ \lambda -4 \end{bmatrix} (\lambda + 2) = 0$$
  

$$\therefore \lambda = 4 \text{ or } -2$$
  
(d) (i) 
$$\frac{5x^2 - x + 5}{(x^2+2)(x-1)} = -\frac{Ax + B}{x^2 + 2} + \frac{C}{x-1}$$
  

$$\begin{bmatrix} 2x^2 - x + 5 = (Ax + B)(x-1) + c(x^2 + 2) \\ 1et x = 0: \qquad 5 = -6 + 2c \\ 6 = 1 \end{bmatrix}$$
  
(ii) 
$$\int \frac{5x^2 - x + 5}{(x^2+2)(x-1)} \, dx = \int (\frac{2x}{x^2+2} + \frac{3}{x-1}) \, dx$$
  

$$= \int (\frac{2x}{(x^2+2)(x-1)} + \frac{1}{(x^2+2)(x-1)} \, dx$$
  

$$= \int (\frac{2x}{(x^2+2)(x-1)} + \frac{1}{(x^2+2)(x-1)} \, dx$$

 $(i) (e) \quad Assume \quad \text{that the lines } y = px + b_1, \quad y = qx + b_2, \quad y = rx + b_3$ are perpendicular. Then pq = -1 () pr = -1 (2) q,r = -1 (3)  $(1) \times (2): \quad \rho^2 q r = 1 \quad (4)$ Sub. (3) into (2):  $p^2x-1=1$   $p^2=-1$ => contradiction, since  $p \in \mathbb{R}$  V 3 lines of the form y=mx+b can't be perpendicular.

 $(a) |z| < \sqrt{2}$ ,  $0 \le \arg(z) \le \frac{\pi}{4}$ Im one mark for correctly identify coch vegion 52 Re including boundaries. - 52 5 (b) $\frac{dx}{2 + \sin x + 2\cos x}$ Let t=lan=  $\frac{db}{dx} = \frac{1}{2} \sec^2 \frac{\alpha}{2}$  $= \frac{1}{2} (1 + \tan^{2} \frac{x}{2})$   $: dx = \frac{2dt}{1 + t^{2}}$ When x = 0, t = 0  $x = \frac{x}{2}, t = 1$  $= \int_{0}^{1} \frac{2dt}{1+t^{2}}$   $= \int_{0}^{1} \frac{2}{2}t + \frac{2}{1+t^{2}} + \frac{2(1-t^{2})}{1+t^{2}}$  $= \int \frac{2dt}{2+2t^2+2t+2-2t^2}$  $= \int \frac{2dt}{2t+4}$  $= \int \frac{dt}{t+2} V$  $= \left[ \ln (t+2) \right]_{0}^{1}$ =  $\ln 3 - \ln 2$ 

(c) Proof by contraposition: If x is even, then  $x^2-bx+5$  is odd. Let x = 2n, where  $n \in \mathbb{Z}^+$  so that x is even.  $x^2 - 6x + 5 = (2n)^2 - 6(2n) + 5$ correctly identifying  $= 4n^2 - 12n + 5$  $= 2(2n^2-6n+2)+1$ = 2 M + I, where M is an integer. which is odd. :- by contraposition, if  $x^2 - 6x + 5$  is even, x is odd. (d)(i) $z^{3}+1=0$ Let  $z = cis\theta$ then by De Moivre's theorem:  $cis 3\theta = -1$ = cist : 30 = T, 3T, 5T $\theta = \frac{T}{3}, T, \frac{5T}{3}$ So the cube roots of -1 are cis I, cis II = -1, cis II (ŭ)  $z^{3} + | = 0$  $(7+1)(7^2-7+1) = 0$ As -1 is a zero of Z+1, if w = cis = or cis =,  $w^2 - w + l = 0$  $\omega^2 = \omega - 1$  $(1-w)^{b} = (-(w-1))^{b}$ (\``)  $= (-\omega^2)^{b}$  $= W^{12}$ = (w<sup>3</sup>)<sup>4</sup> = (-1)4

(e) x+y Z 2 Jazy Let x=q, y=b:  $a+b \neq 2 \overline{ab}$  () Let x=a, y=b:  $a+b \geq 2 \sqrt{a+b}$ 1+1 2 2 a+6 2 Jab (2)  $(D \times Q)$ :  $(a+b)(\frac{1}{a}+\frac{1}{b}) \ge 2 \sqrt{ab} \times \frac{2}{\sqrt{ab}}$ 74

3) (a) (i) As DOMN is equilateral, LMON= 3 and Im/=Inl. So m can be obtained by rotating about the origin by  $\frac{1}{3}$ . i.e.  $m = n \times cis \frac{1}{3}$ n anti-clackwise - «N must be specific about nature of (ii)  $m = \alpha n$ Similarly, a= «b. rotation AM = |a - m| $= |\alpha b - \alpha n|$  $= |\alpha| \times |b - n|$  $= 1 \times BN$ : AM=BN (b) $P(x) = x^4 - 12x^3 + 54x^2 - 108x + 85$ (i) As the coefficients of P(z) are real, a-ib and 2a-ib ave also zeros of P(z). Sum of zeros:  $(a+ib)+(a-ib)+(2a+ib)+(2a-ib)=-\frac{-12}{4}$ 6a = 12a = 2 (atib)(a-ib)(2atib)(2a-ib) =  $\frac{85}{7}$ Product of zeros:  $\frac{(a^{2}+b^{2})(4a^{2}+b^{2})}{4a^{4}+5a^{2}b^{2}+b^{4}} = 85$  $b^4 + 20b^2 + 64 = 85$  $b^4 + 20b^2 - 21 = 0$  $(b^{2}+21)(b^{2}-1)=0$ b is real and b>0, b=1. Since : a=2, b=1 P(x) = (x - (2+i))(x - (2-i))(x - (4+i))(x - (4-i))=  $(x^2 - 4x + 5)(x^2 - 8x + 17)$ (ii)

 $\begin{array}{c|c} (13)(c) & v = 2+4\lambda \\ \hline & & -1-2\lambda \\ -5-5\lambda \end{array} & (1 = -3+3\mu) \\ \hline & & -3+\mu \end{array}$ Lines intersect if a solution to the system of equations exist:  $2+4\lambda = 4-5\mu$ 4×+5m-2=0 ()  $-1-2\lambda = -3+3\mu$ -21 - 311 + 2 =0 (2)  $-5-5\lambda = 3+\mu$  $5\lambda + \mu + 8 = 0$  (3)  $(1+2)(2): -\mu+2=0$  $\mu=2$ sub. into 0:  $4\lambda + 10 - 2 = 0$  $\lambda = -2$ Check (3): LHS = 5×-2+2+8 = 0 As the solution to () and (2) satisfies (3), the lines interact.

(d)(i)  $\overrightarrow{AQ} = \overrightarrow{AB} + \overrightarrow{BQ}$  $= (b-q) + \frac{1}{2}(c-b)$  $= b - a + \frac{1}{2} c - \frac{1}{2} b$  $= \frac{1}{2}(b + c) - q \quad \checkmark$ (ii) Similarly,  $\overrightarrow{BR} = \frac{1}{2}(a+c) - b$  $\overrightarrow{CP} = \frac{1}{2}(a+b) - c$  $\overrightarrow{AQ} + \overrightarrow{BR} + \overrightarrow{CP} = \frac{1}{2}(b + c) - a + \frac{1}{2}(a + c) - b + \frac{1}{2}(a + b) - c$ = 0 (e)  $a_n = a_{n-1} + 3n^2$ ,  $a_n = 0$ .  $a_n = \frac{n(n+1)(2n+1)}{2}$ Prove true for n=0: Qo=0 (given) Using formula:  $a_0 = o(0+i)(2x0+i)$ 2 = 0  $\therefore$  true for n = 0 V Assume true for some n = k, i-e,  $a_{\mu} = \frac{k(k+1)(2k+1)}{2}$ Prove true for n=k+1:  $RTP: \qquad Q_{k+1} = \frac{(k+1)(k+2)(2(k+1)+1)}{2}$ = (k+1)(k+2)(2k+3) $LHS = a_{R+1}$ =  $a_{R} + 3(R+1)^{2}$  (from definition)  $= \frac{k(k+1)(2k+1)}{2} + 3(k+1)^{2} \quad (from assumption)$ 

(13(e) contd.  $k(k+1)(2k+1) + 6(k+1)^{2}$  $\frac{2}{(k+1)[k(2k+1) + 6(k+1)]}$ 2  $\frac{(k+1)(2k^2+7k+6)}{2}$ <u>(k+1)(k+2)(2k+3)</u> 2 RHS  $\frac{1}{2} = \frac{n(n+1)(2n+1)}{2} \quad for integers n \ge 1 \quad by \quad mathematical induction.$ 

)(a)(i)  $P(x) = x^{5} + px^{4} + qx^{3} + (2q-1)x^{2} + 4px + r$  $P'(x) = 5x^{4} + 4px^{3} + 3qx^{2} + 2(2q-1)x + 4p$   $P'(x) = 20x^{3} + 12px^{2} + 6qx + 2(2q-1)$ P''(-1) = 0: -20 + 12p - 6q + 4q - 2 = 0 12p - 2q = 22  $6p - q = 11 \quad (1)$  P'(-1) = 0: 5 - 4p + 3q - 2(2q - 1) + 4p = 0 5 + 3q - 4q + 2 = 0 q = 7Sub. into (1): 6p - 7 = 11 6p = 18 $6\rho = 18$ p = 3-1 + p - q + (2q - 1) - 4p + r = 0-1 + 3 - 7 + 2x 7 - 1 - 4x 3 + r = 0 P(-1)=0: r=4The coefficients of P(x) are real, so let the (ii) be -1, -1, -1, at ib, a-ib, a, b & R. Ze103 Sum of zeros: -3 + 2a = -3a = 0Product of zeros: (-1) × (a+ib)(a-ib) = -4  $-(a^2+b^2)=-4$  $6^2 = 4$  (a = 0) 6 = ±2 .. the other zeros are 2i and -2i

(14) (a) Alternate solution  $P(x) = x^{5} + \rho x^{4} + q x^{3} + (2q-1)x^{2} + 4\rho x + v$ Let the zeros be  $\alpha, \beta, -1, -1, -1$ . Correctly obtaining 4 equations Product of zeros:  $-\alpha\beta = -r$  $\alpha\beta = r$  $\bigcirc$ Zevos four at a time:  $\alpha\beta + \alpha\beta + \alpha\beta - \alpha - \beta = 4\rho$   $3\alpha\beta - \alpha - \beta = 4\rho$ 2) Zeros three at a time:  $-\alpha\beta - \alpha\beta - \alpha\beta + \alpha + \alpha + \alpha + \beta + \beta + \beta - 1 = -(2q - 1)$  $-3\alpha\beta + 3\alpha + 3\beta - 1 = -(2q - 1)$  $3\alpha\beta - 3\alpha - 3\beta + 1 = 2q - 1$ 3) Zevos a time: two at  $\alpha\beta - \alpha - \alpha - \alpha - \beta - \beta - \beta + 1 + 1 + 1$ = 9  $\alpha\beta - 3\alpha - 3\beta + 3 = 9,$ (4) Sum of zeros: 5  $\alpha + \beta - 3$  $3\alpha\beta - \alpha - \beta + 4(\alpha + \beta - 3)$ (2) + 4 x(S): sub (4) into (3):  $3\alpha\beta - 3\alpha - 3\beta + 1 =$ = 0  $2(\alpha\beta - 3\alpha - 3\beta + 3) - 1$ = 0 (7)  $\alpha\beta + 3\alpha + 3\beta - 4$  $2\alpha + 2\beta = 0$ (6) : 8  $\alpha\beta - 4 = 0$ sub. Into (6: (9) XB 4 = and (9) into (1), (4), and (5) gives: Substituting 4-3×0+3=7 3-0 5 (ii) From 8:  $\beta = -\alpha$  $-\alpha^2 = 4$ sub. into (D: αz --4 the other zeros 1.  $\alpha = \pm 2i$ 20 and -20 are

 $(14) (b)(i) \qquad I_n = \int x^n \sin x \, dx$  $= \int_{-\infty}^{\frac{1}{2}} x^{n} \cdot \frac{d}{dx} (-\cos x) dx$ =  $\left[ -x^{n} \cos x \right]_{0}^{\frac{1}{2}} + n \int_{0}^{\frac{1}{2}} x^{n-1} \cos x dx$ = 0 + n  $\int_{-\infty}^{\frac{1}{2}} \chi^{n-1} \times \frac{d}{dx} (\sin x) dx$ =  $n\left( \left[ x^{n-1} \sin x \right]_{0}^{\frac{1}{2}} - (n-1) \int_{0}^{\frac{1}{2}} x^{n-2} \sin x \, dx \right)$  $\frac{1}{2} = \prod_{n=1}^{n} \left( \left( \frac{T}{2} \right)^{n-1} - (n-1) I_{n-2} \right)$  $= n \left(\frac{\pi}{2}\right)^{n-1} - n(n-1)I_{n-2}$ (ii)  $I_0 = \int_{-\infty}^{\frac{1}{2}} \sin x \, dx$  $= \left[ - \cos x \right]^{\frac{1}{2}}$ 0 - (-1) = | V  $\int_{-\infty}^{\frac{\pi}{2}} x^2 \sin x \, dx = I_2$  $= 2(\frac{\pi}{2})^{2-1} - 2 \times | \times |$ =  $\pi - 2$  $z^{n} - \frac{1}{z^{n}} = e^{in\theta} - \frac{1}{e^{in\theta}}$  (by De Moivre's Hearem) (c)(i)  $= e^{in\theta} - e^{-in\theta}$  $= \cos(n\theta) + i\sin(n\theta) - (\cos(-n\theta) + i\sin(-n\theta))$   $= \cos(n\theta) + i\sin(n\theta) - \cos(n\theta) + i\sin(n\theta)$   $= 2i\sin(n\theta)$   $= 2i\sin(n\theta)$   $= 2i\sin(n\theta)$ (relatively lenient here)

 $(4) (1) (1) (2 - \frac{1}{2})^{5} = (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5)^{2} + (5$  $+\binom{5}{4} \neq \left(-\frac{1}{2}\right)^4 + \binom{5}{5}\left(-\frac{1}{2}\right)^5$  $= z^{5} - 5z^{3} + 10z - 10 \times L + 5 \times L - \frac{1}{z^{3}} - \frac{1}{z^{5}}$  $= \left( \frac{2^{5}}{2^{5}} - \frac{1}{3^{5}} \right) - 5\left( \frac{2^{3}}{2^{3}} - \frac{1}{3^{3}} \right) + 10\left( \frac{2}{2} - \frac{1}{2^{5}} \right) \vee$ Substituting vesult from part (i) into identity in port (ii):  $\begin{pmatrix} \vdots \\ \vdots \end{pmatrix}$  $(2i\sin\theta)^5 = 2i\sin5\theta - 5(2i\sin3\theta) + 10(2i\sin\theta)$  $32\hat{\upsilon}\sin^{5}\theta = 2\hat{\upsilon}\sin^{5}\theta - 10\hat{\upsilon}\sin^{3}\theta + 20\hat{\upsilon}\sin^{9}\theta$  $\therefore \sin^{5}\theta = \frac{1}{16}(\sin^{5}\theta - 5\sin^{3}\theta + 10\sin^{9}) \vee$ So  $\int \sin^{5}\theta \, d\theta = \frac{1}{16} \left( -\frac{1}{5} \cos 5\theta + \frac{5}{3} \cos 3\theta - 10 \cos \theta \right) + C \sqrt{2}$ =  $-\frac{1}{80} \cos 5\theta + \frac{5}{48} \cos 3\theta - \frac{5}{8} \cos \theta + C$ 

 $(5) (a) \int \frac{\sqrt{x} \, dx}{1+x} \qquad \text{Let} \quad u = \sqrt{x}$  $u^2 = \infty$  $2u\,du=dx$  $= \int \frac{u \times 2u du}{1 + u^2} \sqrt{\frac{1}{2}}$  $= 2 \int \frac{u^2 du}{1 + u^2}$  $= 2 \int \left( \frac{u^2 + 1}{1 + u^2} - \frac{1}{1 + u^2} \right) du$  $= 2 \int \left( 1 - \frac{1}{1 + \mu^2} \right) d\mu$  $= 2u - 2 \tan^{-1}(u) + c$ = 25x - 2tan<sup>-1</sup>(5x) + c V (b) \* Rewrite problem as: Show that  $4^{2n+1} + 5^{2n+1} + 6^{2n+1}$ is a multiple of 15 for all nzo. Prove true for n=0: 4' +5' +6' = 15  $\therefore \quad \text{true when } n=0.$ Assume true for some n = k, where  $k \ge 0$ . i.e.  $4^{2k+1} + 5^{2k+1} + 6^{2k+1} = 15M$ , where  $M \in \mathbb{Z}$ . Prove true for n=let1: RTP: 4<sup>2k+3</sup> + 5<sup>2k+3</sup> + 6<sup>2k+3</sup> is a multiple of 15.  $4^{2k+3} + 5^{2k+3} + 6^{2k+3} = 4^2 \times 4^{2k+1} + 5^2 \times 5^{2k+1} + 6^2 \times 6^{2k+1}$  $= |6(15M - 5^{2k+1} - 6^{2k+1}) + 25x 5^{2k+1} + 36x 6^{2k+1}$ (from assumption) = 16x 15M + 9x 5<sup>2k+1</sup> + 20× 6<sup>2k+1</sup>  $= 16 \times 15M + 45 \times 5^{2k} + 120 \times 6^{2k}$ = 15 (16M + 3×5^{2k} + 8×6^{2k}) = 15 N, where NEZ since k=0 :. 4°+5°+6° is a multiple of 15 for all odd n >1.

$$\begin{array}{c} (\widehat{S}(\widehat{c})(i) & \widehat{y} = 0 & \text{when travelling at ferminal velocity,} \\ & \vdots & 10m - mkv_T = 0 & \\ & V_T = \frac{10}{R} & ms^{-1} & V \end{array} \\ (i)(\alpha) & m \, \widehat{y} = 10m - mkv & \\ & \widehat{y} = 10 - kv & \\ & V. \frac{dv}{dy} = 10 - kv & \\ & V. \frac{dv}{dy} = 10 - kv & \\ & \frac{du}{dy} = \frac{N}{10 - kv} & \\ & \frac{du}{dy} = \frac{N}{10 - kv} & \\ & \frac{dv}{dy} = \frac{N}{10 - kv} & \\ & \frac{dv}{dy} = \int (1 - \frac{10}{10 - kv}) dv & (as sparable UE) & \\ & -ky = \left(N + \frac{10}{10 - kv}\right) dv & (as sparable UE) & \\ & -ky = \left(N + \frac{10}{R}\ln|10 - kv|\right) + c & \\ & \text{when } y = 0, & N = \frac{3\alpha}{R} & \\ & \vdots & c = -\frac{2\alpha}{R} - \frac{10}{R}\ln|10 - kx\frac{s_0}{R}| & \\ & = -\frac{3\alpha}{R} - \frac{10}{R}\ln|0 - kv| + 20 + 10\ln|0 & \\ & \vdots & -ky = N + \frac{10}{R}\ln|0 - kv| - \frac{2\alpha}{R} - \frac{10}{R}\ln|0 & \\ & \frac{10}{R^2}y = -kv - 10\ln|10 - kv| + 20 + 10\ln|0 & \\ & = 20 - kv + 10\ln\left|\frac{10}{10 - kv}\right| & \\ & \frac{10}{R^2}y = -\frac{15}{R} & \\ & \frac{15}{R} & \\ & 50 = \frac{1}{R^2}(20 - kv + \frac{10}{R}\ln|10 - \frac{10}{R^2}m|) & \\ & & S0 = \frac{1}{R^2}(20 - 15 + 10\ln|2) & \\ & & k^2 = \frac{5 + 10\ln 2}{50} & \vdots & k = 0.49 & (2 d \cdot p) \end{array}$$

$$\begin{split} (\widehat{S}(\widehat{G})(i) & \zeta_{1} = \begin{bmatrix} -\lambda \\ 5+4\lambda \\ 4+3\lambda \end{bmatrix}, & \vdots & \overrightarrow{OR} = \begin{bmatrix} -p \\ 5+4p \\ 4+3p \end{bmatrix} \\ f_{3} = \begin{bmatrix} -2-ph \\ 4+2p \\ 1+2p \end{bmatrix}, & \vdots & \overrightarrow{OB} = \begin{bmatrix} -2-q \\ 4+2q \\ 1+2q \end{bmatrix} \\ & \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} \\ & = \begin{bmatrix} -2-q+p \\ -1+2q-qp \\ -3+2q-3p \end{bmatrix} \\ (ii) & |AB| \text{ is a minimum when } \overrightarrow{AB} \text{ is porparticular to both lines.} \\ & AB \cdot \begin{bmatrix} -1 \\ +1 \\ -3 \end{bmatrix} = 0; & 2+q-p-4+8q-16p-9+6q-9p=0 \\ & \overrightarrow{AB} \cdot \begin{bmatrix} -1 \\ +1 \\ -2 \end{bmatrix} = 0; & 2+q-p-2+4q-8p-6+4q-6p=0 \\ & \overrightarrow{AB} \cdot \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix} = 0; & 2+q-p-2+4q-8p-6+4q-6p=0 \\ & -6+4q-15p=0 \\ & -11+25p+10-26p=0 \\ & -11+25p+10-26$$

(15) (d) (iii) Note that  $|\vec{AB}|$  is a minimum when  $\vec{AB}$  is perpendicular to both  $r_1$  and  $r_2$ . As such,  $|\vec{AB}| = 3$  (with equality when p=-1 and q=-1)

(16/a)(i) ["x f(sinx) dx Let x = T - udx = -du  $When \quad x = 0, \quad u = \pi$   $x = \pi, \quad u = 0$ =  $(\pi - u) f(sin(\pi - u)) \times - 1 du$  $= \int_{-\infty}^{\pi} (\pi - u) f(\sin u) du \quad \text{since } \sin(\pi - u) = \sin u$  $= \pi \int f(\sin u) du - \int u f(\sin u) du$ =  $T \int f(\sin x) dx - \int x f(\sin x) dx$  (dummy variable  $= 2 \int x f(\sin x) dx = \pi \int f(\sin x) dx$  $\int x f(\sin x) dx = \frac{\pi}{2} \int f(\sin x) dx = \sqrt{2}$ (ii)  $\int_{1+2\pi}^{\pi} (1+2\pi) \frac{\sin^3 x}{1+\cos^2 x} d\pi = \int_{1+\cos^2 x}^{1+\sin^3 x} \frac{\sin^3 x}{1+\cos^2 x} d\pi + 2 \int_{1+\cos^2 x}^{1+\cos^3 x} \frac{\sin^3 x}{1+\cos^2 x} d\pi$ as  $\frac{3in^3x}{1+\cos^2x} = \frac{\sin^3x}{1+(1-\sin^3x)}$  using result from part(i):  $= \int_{0}^{\pi} \frac{\sin^{3}x \, dx}{1 + \cos^{2}x} + 2 \times \frac{\pi}{2} \int_{1 + \cos^{2}x}^{\pi} \frac{\sin^{3}x \, dx}{1 + \cos^{2}x}$  $= (1+\pi) \int_{-\pi}^{\pi} \frac{\sin x \cdot (1-\cos^{3} x) dx}{1+\cos^{2} x}$ Let u= cost  $= (1+\pi) \int_{1+u^{2}}^{-1} \frac{1-u^{2}}{1+u^{2}} x - du \qquad du = -\sin x dx$ x=0, u=1 $= (1+\pi) \int_{1+\mu^2}^{1-\mu^2} d\mu$  $x = \pi, u = -1$  $= (1+\pi) \int_{-1}^{1} \left( \frac{-(1+u^2)+2}{1+u^2} \right) du$  $= (1+\pi) \int (-1+\frac{2}{1+u^2}) du$ 

 $= (1+\pi) \left[ -u + 2 \tan^{-1}(u) \right]_{-1}$  $= (1+\pi)(-1+\frac{\pi}{2}-(1-\frac{\pi}{2}))$  $= (1+\pi)(\pi-2)$  V  $\begin{array}{ll} (b)(i) & x = Ae^{-kt} cosnt \\ \dot{x} = -kAe^{-kt} cosnt - nAe^{-kt} sinnt \end{array}$ = k2Ae-k6 cosnt + nkAe-kt sinnt + nkAe-kt sinnt  $= (Ak^{2} - An^{2})e^{-kt}\cos nt + (2Ank)e^{-kt}\sin nt$ Also,  $\ddot{\chi} = -\rho^2 \chi - Q\dot{\chi}$  $= -P^{2}Ae^{-kt}cosnt - Q(-kAe^{-kt}cosnt - nAe^{-kt}sinnt)$ =  $(-AP^{2} + AkQ)e^{-kt}cosnt + AnQ.e^{-kt}sinnt$  (2) As the expressions in the RHS of () and (2) must be equivalent, equate coefficients of e-et cos nt and e-et sin nt: 2Ank = AnQ  $\therefore k = \frac{1}{2}Q$  $Ak^2 - An^2 = -AP^2 + AkQ$  $(\frac{1}{2}Q)^2 - n^2 = -P^2 + \frac{1}{2}Q^2$  $h^2 = P^2 - \frac{1}{4}Q^2$  $= \frac{1}{4} \left( 4 P^2 - Q^2 \right)$ :.  $n = \frac{1}{2}\sqrt{4p^2 - Q^2}$ Also note that when t=0,  $x = A \times e^{\circ} \times cosO$ So the initial displacement is also satisfied.

(b) (ii) Particle is at rest when  $\dot{x} = 0$ : -Ake-kt cosnt - Ane-kt sinnt = 0 nsinnt = -kcosnt  $\tan nt = -\frac{k}{n}$ As k, n > 0, - k < 0. . for positive t:  $nt = \pi - tan^{-1}(\frac{k}{n}), 2\pi - tan^{-1}(\frac{k}{n}), 3\pi - tan^{-1}(\frac{k}{n}), ...$  $t = \frac{1}{n}(\pi - \alpha), \frac{1}{n}(2\pi - \alpha), \frac{1}{n}(3\pi - \alpha), \dots, \text{ where } \alpha = \tan^{-1}(\frac{k}{n})$ Particle first comes to rest when  $t = \pm (\pi - \alpha)$  $\therefore \quad \chi_{,} = A e^{-k \times \frac{1}{n} (\pi - \kappa)} \cos(n \times \frac{1}{n} (\pi - \kappa))$  $= A e^{-\frac{kT}{n} + \frac{k\alpha}{n}} \cos(\pi - \alpha)$ =  $-A e^{\frac{k\pi}{n}} \cos(x \times e^{-\frac{kT}{n}})$ , since  $\cos(\pi - \alpha) = -\cos(x)$ (iii) When  $t = \frac{1}{2}(2\pi - \alpha)$ :  $x_{2} = A e^{-k \times \pm (2\pi - \alpha)} \cos(n \times \pm (2\pi - \alpha)), \text{ (some correct)}$ =  $A e^{\frac{k\pi}{n}} \cos(2\pi - \alpha) \times e^{-\frac{2k\pi}{n}} \sqrt{(exploration)}$ =  $A e^{\frac{kx}{n}} \cos x \times e^{-\frac{2k\pi}{n}}$  since  $\cos(2\pi - \alpha) = \cos \alpha$ Note that for successive values of t, cos nt will a Hernale between  $\cos x$  and  $-\cos x$ . Each successive value of  $x_r$  can be found by multiplying the previous by  $-e^{-\frac{w}{2}}$ .  $\therefore |\mathcal{X}_r| = |\mathcal{X}_{r-1}| \times e^{-\frac{k\pi}{N}}, \text{ forming a GP.}$ (recognising geometric progression)

12 Let total distance travelled by D metres. Then  $D = A + 2|x_1| + 2|x_2| + 2|x_3| + ...$  $= A + 2 \left( |x_1| + |x_2| + |x_3| + \dots \right)$  $= A + 2 \times \frac{A e^{\frac{k}{k}} \cos \alpha e^{-\frac{k\pi}{n}}}{1 - e^{-\frac{k\pi}{n}}} \vee$  $= A \left( | + \frac{2Ae^{\frac{1}{2}} \cos \alpha}{2} \right)$ where  $\alpha = \tan^{-1}(\frac{k}{n})$ Note that for a given A, D is dependent on the. Now  $\mathbf{k} = \frac{1}{2}\mathbf{Q}$  $n = \frac{1}{2}\left[\frac{4p^2 - Q^2}{q^2}\right]$  $= \frac{4p^2 - Q^2}{Q^2}$ =  $\frac{1}{\left(\frac{P}{Q}\right)^2 - 1}$ : For a given A, D can be expressed as a function of The and the can be expressed as a function of  $\frac{P}{Q}$ . : The total distance travelled depends only on  $\frac{P}{Q}$ .