

2020 Trial HSC Examination

Form VI Mathematics Extension 2

Wednesday 12th August 2020

General Instructions

Total Marks: 100

- Reading time - 10 minutes
- Working time - 3 hours
- Attempt all questions.
- Write using black pen.
- Calculators approved by NESA may be used.
- A loose reference sheet is provided separate to this paper.

Section I (10 marks) Questions 1-10

- This section is multiple-choice. Each question is worth 1 mark.
- Record your answers on the provided answer sheet.

Section II (90 marks) Questions 11-16

- Relevant mathematical reasoning and calculations are required.
- Start each question in a new booklet.

Collection

- If you use multiple booklets for a question, place them inside the first booklet for the question.
- Arrange your solutions in order.
- Write your candidate number on this page and on the multiple choice sheet.
- Place everything inside this question booklet.

Checklist

- Reference sheet
- Multiple-choice answer sheet
- 6 booklets per boy
- Candidature: 78 pupils

Section I

Questions in this section are multiple-choice.
Choose a single best answer for each question and record it on the provided answer sheet.

1. Which of the following is the converse of $\sim P \Rightarrow Q$?
(A) $\sim Q \Rightarrow P$
(B) $Q \Rightarrow \sim P$
(C) $P \Rightarrow Q$
(D) $\sim P \Rightarrow \sim Q$
2. Which of the following is a primitive of $\tan ^{4} 2 x \sec ^{2} 2 x$?
(A) $\tan ^{5} 2 x$
(B) $\frac{1}{2} \tan ^{5} 2 x$
(C) $\frac{1}{5} \tan ^{5} 2 x$
(D) $\frac{1}{10} \tan ^{5} 2 x$
3. What is the smallest positive value of θ such that $e^{i \theta} \times e^{2 i \theta}=i$?
(A) $\frac{\pi}{12}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{5 \pi}{6}$
4. What is the approximate size of the angle between the vectors $\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$?
(A) 57°
(B) 93°
(C) 123°
(D) 158°
5. What are the zeros of the polynomial $P(x)=x^{3}-3 x^{2}+x+5$?
(A) $1,-2+i,-2-i$
(B) $1,2+i, 2-i$
(C) $-1,-2+i,-2-i$
(D) $-1,2+i, 2-i$
6. Which expression is equivalent to $\int(\ln x)^{2} d x$?
(A) $x(\ln x)^{2}-2 \int \ln x d x$
(B) $(\ln x)^{2}-2 \int \ln x d x$
(C) $x(\ln x)^{2}-2 \int x \ln x d x$
(D) $2 \int \ln x d x$
7. The displacement x of a particle in metres after t seconds is given by $x=2+4 \sin ^{2} t$. How far will the particle travel in the first 2π seconds?
(A) 0 metres
(B) 2 metres
(C) 8 metres
(D) 16 metres
8. The polynomial $P(z)$ has real coefficients. The complex number α is of the form $a+i b$, where a and b are both real, non-zero and distinct.
If $P(a), P^{\prime}(a), P(b), P^{\prime}(b)$ and $P(\alpha)$ are all zero, what is the minimum degree of $P(z)$?
(A) 4
(B) 5
(C) 6
(D) 7
9. Without evaluating the integrals, which of the following integrals has the largest value?
(A) $\int_{-\pi}^{\pi} x \cos x d x$
(B) $\int_{-1}^{1} \ln \left(x^{2}+1\right) d x$
(C) $\int_{0}^{1}\left(2^{-x}-1\right) d x$
(D) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(\sin ^{-1} x\right)^{3} d x$
10. A complex number z is defined such that $|z-1|=|z+2-i \sqrt{3}|$.

What is the value of $\operatorname{Arg}(z)$ when $|z|$ is a minimum?
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{3}$
(C) $\frac{2 \pi}{3}$
(D) $\frac{5 \pi}{6}$

End of Section I

The paper continues in the next section

Section II

This section consists of long-answer questions.
Marks may be awarded for reasoning and calculations.
Marks may be lost for poor setting out or poor logic.
Start each question in a new booklet.

QUESTION ELEVEN (15 marks) Start a new answer booklet.
Marks
(a) Express $\frac{1-8 i}{2-i}$ in the form $a+i b$, where a and b are real.
(b) Find:
(i) $\int x \cos x d x$
(ii) $\int \frac{d x}{x^{2}+4 x+8}$
(c) Find any values of λ for which the vectors $\left[\begin{array}{c}-2 \\ \lambda \\ 2 \lambda\end{array}\right]$ and $\left[\begin{array}{c}4 \\ \lambda \\ -1\end{array}\right]$ are perpendicular.
(d) (i) Find the constants A, B and C such that

$$
\frac{5 x^{2}-x+5}{\left(x^{2}+2\right)(x-1)}=\frac{A x+B}{x^{2}+2}+\frac{C}{x-1} .
$$

(ii) Hence find $\int \frac{5 x^{2}-x+5}{\left(x^{2}+2\right)(x-1)} d x$.
(e) Three lines have equations:

$$
\begin{aligned}
& y=p x+b_{1} \\
& y=q x+b_{2} \\
& y=r x+b_{3}
\end{aligned}
$$

where p, q, r, b_{1}, b_{2} and b_{3} are real constants and p, q and r are distinct.
Use proof by contradiction to show algebraically that these lines cannot be perpendicular to one another.

QUESTION TWELVE (15 marks) Start a new answer booklet.
(a) Sketch the region in the complex plane which simultaneously satisfies

$$
|z|<\sqrt{2} \text { and } 0 \leq \arg (z) \leq \frac{\pi}{4}
$$

Clearly label the coordinates of any corners of the region, indicating if they are included in the region.
(b) Using the substitution $t=\tan \frac{x}{2}$, or otherwise, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\sin x+2 \cos x}$.
(c) Use proof by contraposition to show that for $x \in \mathbf{Z}$, if $x^{2}-6 x+5$ is even, then x is odd.
(d) (i) By solving the equation $z^{3}+1=0$, find the three cube roots of -1 .
(ii) Let ω be a non-real cube root of -1 . Show that $\omega^{2}=\omega-1$.
(iii) Hence simplify $(1-\omega)^{6}$.
(e) If x and y are positive real numbers, then $x+y \geq 2 \sqrt{x y}$. (Do NOT prove this.)

If a and b are positive real numbers, show that $(a+b)\left(\frac{1}{a}+\frac{1}{b}\right) \geq 4$.

QUESTION THIRTEEN (16 marks) Start a new answer booklet.
(a)

The diagram above shows the points O, A, B, M and N on the complex plane. These points correspond to the complex numbers $0, a, b, m$ and n respectively. The triangles $O A B$ and $O M N$ are equilateral. Let $\alpha=e^{\frac{i \pi}{3}}$.
(i) Explain why $m=\alpha n$.
(ii) Use complex numbers to show that $A M=B N$.
(b) Two of the zeros of $P(x)=x^{4}-12 x^{3}+54 x^{2}-108 x+85$ are $a+i b$ and $2 a+i b$, where a and b are real and $b>0$.
(i) Find the values of a and b.
(ii) Hence or otherwise express $P(x)$ as the product of quadratic factors with real coefficients.
(c) Two lines are defined by $\underset{\sim}{v}=\left[\begin{array}{c}2 \\ -1 \\ -5\end{array}\right]+\lambda\left[\begin{array}{c}4 \\ -2 \\ -5\end{array}\right]$ and $\underset{\sim}{u}=\left[\begin{array}{c}4 \\ -3 \\ 3\end{array}\right]+\mu\left[\begin{array}{c}-5 \\ 3 \\ 1\end{array}\right]$, where $\lambda, \mu \in \mathbf{R}$.

Show that the two lines intersect at a single point.

QUESTION THIRTEEN (Continued)

(d)

The diagram above shows $\triangle A B C$, where A, B and C have position vectors $\underset{\sim}{a}, \underset{\sim}{b}$ and $\underset{\sim}{c}$ respectively. The points P, Q and R bisect the intervals $A B, B C$ and $C A$ respectively.
(i) Show that $\overrightarrow{A Q}=\frac{1}{2}(\underset{\sim}{c}+\underset{\sim}{b})-\underset{\sim}{a}$.
(ii) Show that $\overrightarrow{A Q}+\overrightarrow{B R}+\overrightarrow{C P}=\underset{\sim}{0}$.
(e) A sequence a_{n} is defined recursively by $a_{n}=a_{n-1}+3 n^{2}$, where $a_{0}=0$. Use mathematical induction to show that $a_{n}=\frac{n(n+1)(2 n+1)}{2}$ for all integers $n \geq 0$.

QUESTION FOURTEEN (14 marks) Start a new answer booklet. Marks
(a) The polynomial $P(x)=x^{5}+p x^{4}+q x^{3}+(2 q-1) x^{2}+4 p x+r$, where $p, q, r \in \mathbf{R}$, has a zero of $x=-1$ with multiplicity 3 .
(i) Find the values of p, q and r.
(ii) Hence find the other zeros of $P(x)$.
(b) Let $I_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x$, for integers $n \geq 0$.
(i) Show that $I_{n}=n\left(\frac{\pi}{2}\right)^{n-1}-n(n-1) I_{n-2}$ for $n \geq 2$.
(ii) Hence evaluate $\int_{0}^{\frac{\pi}{2}} x^{2} \sin x d x$.
(c) Let $z=e^{i \theta}$.
(i) Show that $z^{n}-\frac{1}{z^{n}}=2 i \sin (n \theta)$.
(ii) Show that $\left(z-\frac{1}{z}\right)^{5}=\left(z^{5}-\frac{1}{z^{5}}\right)-5\left(z^{3}-\frac{1}{z^{3}}\right)+10\left(z-\frac{1}{z}\right)$.
(iii) Hence find $\int \sin ^{5} \theta d \theta$.

QUESTION FIFTEEN (16 marks) Start a new answer booklet.

Marks
(a) Find $\int \frac{\sqrt{x}}{1+x} d x$.
(b) Use mathematical induction to show that for all odd integers $n \geq 1,4^{n}+5^{n}+6^{n}$ is divisible by 15 .
(c) A package with mass $m \mathrm{~kg}$ is dropped from a stationary hovering helicopter. As the package falls vertically it experiences a force due to gravity of 10 m Newtons. When a parachute on the package is deployed, it experiences a resistive force of magnitude $m k v$ Newtons, where v is the velocity of the package in metres per second and k is a positive constant.

The vertical displacement of the package y metres from the position where the parachute is deployed satisfies

$$
m \ddot{y}=10 m-m k v
$$

where the downwards direction is taken as positive.
(i) Let v_{T} be the terminal velocity of the package with the parachute deployed. Find v_{T} in terms of k.
(ii) The parachute on the package is deployed when its velocity reaches $\frac{20}{k} \mathrm{~ms}^{-1}$.
(α) Show that $y=\frac{1}{k^{2}}\left(20-k v+10 \ln \left|\frac{10}{10-k v}\right|\right)$.
(β) In the time that it takes the package to fall 50 m after the parachute is deployed, its velocity decreases by 25%. Find the value of k, giving your answer correct to two decimal places.
(d) Two lines r_{1} and r_{2} have equations

$$
\underset{\sim}{r_{1}}=\left[\begin{array}{l}
0 \\
5 \\
4
\end{array}\right]+\lambda\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right] \text { and }{\underset{\sim}{r}}_{2}=\left[\begin{array}{c}
-2 \\
4 \\
1
\end{array}\right]+\mu\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right] \text {, where } \lambda, \mu \in \mathbf{R} .
$$

The point A lies on the first line with parameter $\lambda=p$, and the point B lies on the second line with parameter $\mu=q$.
(i) Write $\overrightarrow{A B}$ as a column vector, writing the components in terms of p and q.
(ii) Calculate the value of $|\overrightarrow{A B}|$ when $\overrightarrow{A B}$ is perpendicular to both ${\underset{\sim}{r}}^{r_{1}}$ and r_{\sim}.
(iii) State the range of values that $|\overrightarrow{A B}|$ can take as p and q vary.

QUESTION SIXTEEN (14 marks) Start a new answer booklet.
(a) (i) The function $f(x)$ is continuous for all $x \in \mathbf{R}$.

Use the substitution $x=\pi-u$ to show that

$$
\begin{equation*}
\int_{0}^{\pi} x f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x \tag{3}
\end{equation*}
$$

(ii) Hence evaluate $\int_{0}^{\pi}(1+2 x) \frac{\sin ^{3} x}{1+\cos ^{2} x} d x$.
(b) An object of unit mass is attached to a spring. When the object is pulled and released, it experiences a force proportional to its displacement x metres, where $x=0$ is taken as the centre of motion. The object moves in simple harmonic motion and the acceleration of the object is given by $\ddot{x}=-P^{2} x$ for some constant $P>0$.
When the spring and object are submerged in a liquid, the object also experiences a resistive force proportional to its velocity. Thus, the acceleration of the object is given by

$$
\begin{equation*}
\ddot{x}=-P^{2} x-Q \dot{x} \tag{*}
\end{equation*}
$$

for some constant $Q>0$.
The spring is stretched and the object is released. A timer is started once the object reaches $x=A$, where $A>0$. That is, $x=A$ when $t=0$. A graph of the displacement of the object submerged in liquid after t seconds is shown as follows:

The following questions relate to the motion of the object while it is submerged in liquid and $t \geq 0$.
(i) Show that $x=A e^{-k t} \cos n t$ is a solution to the differential equation $(*)$ if $k=\frac{1}{2} Q$ and $n=\frac{1}{2} \sqrt{4 P^{2}-Q^{2}}$. You may assume that $4 P^{2}-Q^{2}>0$.
(ii) Let x_{r} be the displacement of the object the r th time that it is instantaneously at rest.

Show that $x_{1}=-A e^{\frac{k \alpha}{n}} \cos \alpha \times e^{-\frac{k \pi}{n}}$, where $\alpha=\tan ^{-1}\left(\frac{k}{n}\right)$.
(iii) The value of the coefficient P relates to the stiffness of the spring, while the value of the coefficient Q relates to the viscosity of the liquid.

Show that the total distance that the object will move while submerged in a liquid for $t \geq 0$ is dependent only on the value of the ratio $\frac{P}{Q}$.

BLANK PAGE

2020 Trial HSC Examination
Form VI Mathematics Extension 2

Wednesday 12th August 2020

- Fill in the circle completely.
- Each question has only one correct answer.

Question One

A$B \bigcirc$
C
D

Question Two
$\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D

Question Three

A
B $\mathrm{C} \bigcirc$
D

Question Four

AB

$\mathrm{C} \bigcirc$
D

Question Five

A
B
$\mathrm{C} \bigcirc$
D

Question Six

A
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Seven

$A \bigcirc$
$B \bigcirc$
$\mathrm{C} \bigcirc$
D

Question Eight

A$B \bigcirc$
$\mathrm{C} \bigcirc$
D

Question Nine
A
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Ten
A \bigcirc
$B \bigcirc$
$\mathrm{C} \bigcirc$
D

BLANK PAGE

Maths Ext. 2 Trial - Solutions
MC $Q \Rightarrow \sim P$ is the copverse of $\sim P \Rightarrow Q$
(2)

$$
\begin{aligned}
\int \tan ^{4} 2 x \sec ^{2} 2 x d x & =\frac{1}{2} \int \tan ^{4} 2 x \times \frac{d}{d x}(\tan 2 x) d x \\
& =\frac{1}{10} \tan ^{5} 2 x+c
\end{aligned}
$$

\therefore (D)
(3)

$$
\begin{aligned}
e^{i \theta} \times e^{2 i \theta} & =e^{3 i \theta} \quad i=e^{i \frac{\pi}{2}} \\
\Rightarrow 3 i \theta & =\frac{i \pi}{2} \\
\theta & =\frac{\pi}{6}
\end{aligned}
$$

\therefore (B)
(4) Let $\underset{\sim}{a}=\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right], \quad \underset{\sim}{b}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$.
\therefore (c) $/ \theta \doteqdot 123^{\circ}$
(5) Sum of zevos must be 3 , ruling out $A \times C$ Product of zevos must be -5

$$
\begin{aligned}
-1 \times(2+i)(2-i) & =4-i^{2} \\
\therefore \text { (D) } & =-5
\end{aligned}
$$

(6)

$$
\begin{aligned}
\int(\ln x)^{2} d x & =\int(\ln x)^{2} \times \frac{d}{d x}(x) d x \\
& =x(\ln x)^{2}-\int 2 \ln x \times \frac{1}{x} \times x d x \\
& =x(\ln x)^{2}-2 \int \ln x d x
\end{aligned}
$$

\therefore (A)
(7)

$$
\begin{aligned}
x & =2+4 \sin ^{2} t \\
& =2+4 \times \frac{1}{2}(1-\cos 2 t) \\
& =4-2 \cos 2 t \\
\text { Period } & =\frac{2 \pi}{2} \\
& =\pi
\end{aligned}
$$

\therefore In 2π seconds, particle travels 2 full cycles with amplitude 2 metres.

$$
\int \bigcap
$$

$$
2 \times 8=16
$$

\therefore D
(8) $\quad P(a)=p^{\prime}(a)=0$, so a is a double zero
$P(b)=P^{\prime}(b)=0$, so b is a double zero.
Since $P(z)$ has real coefficients and $P(\alpha)=0, P(\bar{\alpha})=0$.
$\therefore \alpha$ and $\bar{\alpha}$ are zeros
\therefore minimum degree is 6
\therefore (c)
(9) $x \cos x \rightarrow$ odd

$$
\left(\sin ^{-1} x\right)^{3} \rightarrow \text { odd }
$$

$2^{-x}-1 \leqslant 0$ for $0 \leqslant x \leqslant 4$
$\ln \left(x^{2}+1\right) \geqslant 0$ for $-1 \leq x \leq 1$
\therefore (B)
(10) z lies on the perpendicular bisector between 1 and

$|z|$ is a minimum when z can be represented by D, where OD LFC.
$\therefore O D \| A B$ and $\arg (z)=\frac{5 \pi}{6}$ when $|z|$ is a minimum.
\therefore (D)
(11) (a)

$$
\begin{aligned}
\frac{1-8 i}{2-i} \times \frac{2+i}{2+i} & =\frac{2+i-16 i+8}{4+1} \\
& =2-3 i
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\int x \cos x d x & =\int x \cdot \frac{d}{d x}(\sin x) d x \\
& =x \sin x-\int \sin x d x \\
& =x \sin x+\cos x+c
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int \frac{d x}{x^{2}+4 x+8} & =\int \frac{d x}{(x+2)^{2}+4} \\
& =\frac{1}{2} \tan ^{-1}\left(\frac{x+2}{2}\right)+c
\end{aligned}
$$

(c) $\left[\begin{array}{c}-2 \\ \lambda \\ 2 \lambda\end{array}\right] \cdot\left[\begin{array}{c}4 \\ \lambda \\ -1\end{array}\right]=0$

$$
\begin{aligned}
& \therefore-8+\lambda^{2}-2 \lambda \\
&=0 \\
& \lambda^{2}-2 \lambda-8=0 \\
&(\lambda-4)(\lambda+2)=0 \\
& \therefore \quad \lambda=4 \text { or }-2
\end{aligned}
$$

(d) (i)

$$
\begin{aligned}
\frac{5 x^{2}-x+5}{\left(x^{2}+2\right)(x-1)} & =\frac{A x+B}{x^{2}+2}+\frac{C}{x-1} \\
5 x^{2}-x+5 & =(A x+B)(x-1)+C\left(x^{2}+2\right)
\end{aligned}
$$

$$
\text { Let } x=1: \quad 5-1+5=3 C
$$

$c=3$
Equate coed. of x^{2} :
\checkmark (any 1 value)

$$
5=A+C
$$

$$
\therefore A=2
$$

Let $x=0$:

$$
\begin{aligned}
& 5=-B+2 C \\
& B=1
\end{aligned}
$$

\checkmark (all values)
(ii)

$$
\begin{aligned}
& \int \frac{5 x^{2}-x+5}{\left(x^{2}+2\right)(x-1)} d x=\int\left(\frac{2 x+1}{x^{2}+2}+\frac{3}{x-1}\right) d x \\
&=\int\left(\frac{2 x}{x^{2}+2}+\frac{1}{x^{2}+2}+\frac{3}{x-1}\right) d x \\
& \sqrt{(\text { any one correct }} \begin{aligned}
\text { integral }) & =\ln \left(x^{2}+2\right)+\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)+3 \ln |x-1|+c
\end{aligned}
\end{aligned}
$$

(11) (e) Assume that the lines $y=p x+b_{1}, y=q x+b_{2}, y=r x+b_{3}$ ave perpendicular.
Then

$$
\begin{aligned}
& p q=-1 \\
& p r=-1 \\
& q r=-1
\end{aligned}
$$

(1)
(2)
(1) \times (2): $\quad p^{2} q r=1$
sub. (3) into (4): $\begin{aligned} & p^{2} x-1=1 \\ & p^{2}=-1\end{aligned}$
\Rightarrow contradiction, since $p \in \mathbb{R}$
$\therefore 3$ lines of the form $y=m x+b$ can't be perpendicular.
(12) (a) $|z|<\sqrt{2}, 0 \leq \arg (z) \leq \frac{\pi}{4}$

(b)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\sin x+2 \cos x} \\
& \text { Let } t=\tan \frac{x}{2} \\
& \frac{d t}{d x}=\frac{1}{2} \sec ^{2} \frac{x}{2} \\
& =\int_{0}^{1} \frac{\frac{2 d t}{1+t^{2}}}{2+\frac{2 t}{1+t^{2}}+\frac{2\left(1-t^{2}\right)}{1+t^{2}}} \sqrt{ } \\
& =\frac{1}{1}\left(1+\tan ^{2} \frac{x}{2}\right) \\
& \therefore d x=\frac{2 d t}{1+t^{2}} \\
& \text { When } \\
& x=0, t=0 \\
& =\int_{0}^{1} \frac{2 d t}{2+2 t^{2}+2 t+2-2 t^{2}} \\
& =\int_{0}^{1} \frac{2 d t}{2 t+4} \\
& =\int_{0}^{1} \frac{d t}{t+2} \\
& =[\ln (t+2)]_{0}^{1} \\
& =\ln 3-\ln 2
\end{aligned}
$$

(c) Proof by contraposition: If x is even, then $x^{2}-6 x+5$ is odd. Let $x=2 n$, where $n \in \mathbb{Z}^{+}$so that x is/even.

$$
\begin{aligned}
x^{2}-6 x+5 & =(2 n)^{2}-6(2 n)+5 \\
& =4 n^{2}-12 n+5 \\
& =2\left(2 n^{2}-6 n+2\right)+1
\end{aligned}
$$

$=2 M+1$, where M is an integer.
which is odd.
\therefore by contraposition, if $x^{2}-6 x+5$ is even, x is odd.
(d)(i)

$$
z^{3}+1=0
$$

Let $z=\operatorname{cis} \theta$
then by De Moire's theorem:

$$
\operatorname{cis} 3 \theta=-1
$$

$$
\begin{aligned}
\operatorname{cis} 3 \theta & =-1 \\
& =\operatorname{cis} \pi \\
\therefore 3 \theta & =\pi, 3 \pi, 5 \pi \\
\theta & =\frac{\pi}{3}, \pi, \frac{5 \pi}{3}
\end{aligned}
$$

So the cube roots of -1 are $\operatorname{cis} \frac{\pi}{3}, \operatorname{cis} \pi=-1, \operatorname{cis} \frac{5 \pi}{3}$
(ii)

$$
\begin{aligned}
& z^{3}+1=0 \\
& (z+1)\left(z^{2}-z+1\right)=0
\end{aligned}
$$

As -1 is a zero of $z+1$, if $\omega=\operatorname{cis} \frac{\pi}{3}$ or cis $\frac{5 \pi}{3}$,

$$
\begin{aligned}
\omega^{2}-\omega+1 & =0 \\
\omega^{2} & =\omega-1
\end{aligned}
$$

(iii)

$$
\begin{aligned}
(1-w)^{6} & =(-(w-1))^{6} \\
& =\left(-w^{2}\right)^{6} \\
& =w^{12} \\
& =\left(w^{3}\right)^{4} \\
& =(-1)^{4} \\
& =1
\end{aligned}
$$

(e) $x+y \geqslant 2 \sqrt{x y}$

Let $x=a, \quad y=b: \quad a+b \geqslant 2 \sqrt{a b}$
Let $x=\frac{1}{a}, y=\frac{1}{b}$:

$$
\begin{aligned}
& \frac{1}{a}+\frac{1}{b} \geqslant 2 \sqrt{\frac{1}{a} \times \frac{1}{b}} \\
& \frac{1}{a}+\frac{1}{b} \geqslant \frac{2}{\sqrt{a b}}
\end{aligned}
$$

(1) \times (2):

$$
\begin{aligned}
(a+b)\left(\frac{1}{a}+\frac{1}{b}\right) & \geqslant 2 \sqrt{a b} \times \frac{2}{\sqrt{a b}} \\
& \geqslant 4
\end{aligned}
$$

(13) (a)(i) As $\triangle O M N$ is equilateral, $\angle M O N=\frac{\pi}{3}$ and $|\mathrm{m}|=|\mathrm{n}|$.

So m can be obtained by rotating n anticlecclewise about the origin by $\frac{\pi}{3}$.

$$
\text { i.e. } \quad \begin{aligned}
m & =n \times \operatorname{cis} \frac{\pi}{3} \\
& =\alpha n
\end{aligned}
$$

(ii) $m=\alpha n$

Similarly, $a=\alpha b$.
must be specific about nature of, rotation

$$
\begin{aligned}
A M & =|a-m| \\
& =|\alpha b-\alpha n| \\
& =|\alpha| \times|b-n| \\
& =1 \times B N \\
\therefore A M & =B N
\end{aligned}
$$

(b) $P(x)=x^{4}-12 x^{3}+54 x^{2}-108 x+85$
(i) As the coefficients of $P(z)$ ave veal, $a-i b$ and $2 a-i b$ are also zeros of $P(z)$.

Sum of zeros: $(a+i b)+(a-i b)+(2 a+i b)+(2 a-i b)=-\frac{-12}{1}$

$$
6 a=12
$$

$$
\begin{gathered}
a=2 \\
(a+i b)(a-i b)(2 a+i b)(2 a-i b)=\frac{85}{1} \\
\left(a^{2}+b^{2}\right)\left(4 a^{2}+b^{2}\right)=85 \\
4 a^{4}+5 a^{2} b^{2}+b^{4}=85 \\
b^{4}+20 b^{2}+64=85 \\
b^{4}+20 b^{2}-21=0 \\
\left(b^{2}+21\right)\left(b^{2}-1\right)=0
\end{gathered}
$$

Product of zeros:

Since b is real and $b>0, b=1$.

$$
\therefore a=2, b=1
$$

(ii)

$$
\begin{aligned}
P(x) & =(x-(2+i))(x-(2-i))(x-(4+i))(x-(4-i)) \\
& =\left(x^{2}-4 x+5\right)\left(x^{2}-8 x+17\right)
\end{aligned}
$$

(13)(c) $\underset{\sim}{v}=\left[\begin{array}{c}2+4 \lambda \\ -1-2 \lambda \\ -5-5 \lambda\end{array}\right], \underset{\sim}{u}=\left[\begin{array}{c}4-5 \mu \\ -3+3 \mu \\ 3+\mu\end{array}\right]$

Lines intersect if a solution to the system of equations exist:

$$
\begin{gathered}
2+4 \lambda=4-5 \mu \\
4 \lambda+5 \mu-2=0 \\
-1-2 \lambda=-3+3 \mu \\
-2 \lambda-3 \mu+2=0 \\
-5-5 \lambda=3+\mu \\
5 \lambda+\mu+8=0
\end{gathered}
$$

(1) $+2 \sqrt{2}$:

$$
\begin{array}{r}
-\mu+2=0 \\
\mu=2
\end{array}
$$

sab. into (1):

$$
\begin{gathered}
4 \lambda+10-2=0 \\
\lambda=-2
\end{gathered}
$$

Check (3):

$$
\begin{aligned}
\text { CHS } & =5 x-2+2+8 \\
& =0
\end{aligned}
$$

As the solution to (1) and (2) satisfies (3), the lines intersect.
(13) $(d)(i)$

$$
\begin{aligned}
\overrightarrow{A Q} & =\overrightarrow{A B}+\overrightarrow{B Q} \\
& =(\underset{\sim}{b}-a)+\frac{1}{2}(\underset{\sim}{c}-\underset{\sim}{b}) \\
& =\underset{\sim}{b}-\underset{\sim}{a}+\frac{1}{2} \underline{c}-\frac{1}{2} \underset{\sim}{b} \\
& =\frac{1}{2}(\underset{\sim}{b}+\underset{\sim}{c})-\underline{a}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \text { Similarly, } \overrightarrow{B R} \\
& \quad \begin{aligned}
& \frac{1}{2}(a+c)-\underset{c}{c} \\
& \overrightarrow{C P}=\frac{1}{2}(a+c)-\underset{\sim}{c} \\
& \overrightarrow{A Q}+\overrightarrow{B R}+\overrightarrow{C P}=\frac{1}{2}(\underset{\sim}{b}+\underset{\sim}{c})-\underset{\sim}{a}+\frac{1}{2}(a+\underset{\sim}{c})-\underset{\sim}{b}+\frac{1}{2}\left(a+\frac{b}{2}\right)-\underline{c} \\
&=\underset{\sim}{0}
\end{aligned} .
\end{aligned}
$$

(e) $a_{n}=a_{n-1}+3 n^{2}, \quad a_{0}=0 . \quad a_{n}=\frac{n(n+1)(2 n+1)}{2}$

Prove true for $n=0: \quad a_{0}=0$ (given)
Using formula: $\quad a_{0}=\frac{0(0+1)(2 \times 0+1)}{2}$

$$
=0
$$

\therefore true for $n=0$
Assume true for some $n=k$, ie, $a_{k}=\frac{k(k+1)(2 k+1)}{2}$ Prove true for $n=k+1$:

$$
\begin{aligned}
\text { RIP: } \quad a_{k+1} & =\frac{(k+1)(k+2)(2(k+1)+1)}{2} \\
& =\frac{(k+1)(k+2)(2 k+3)}{2} \\
\text { LIS } & =a_{k+1} \\
& =a_{k}+3(k+1)^{2} \quad \text { (from definition) } \\
& =\frac{k(k+1)(2 k+1)}{2}+3(k+1)^{2} \quad \text { (from assumption) }
\end{aligned}
$$

(13)(e) cord.

$$
\begin{aligned}
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{2} \\
& =\frac{(k+1)[k(2 k+1)+6(k+1)]}{2} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{2} \\
& =\frac{(k+1)(k+2)(2 k+3)}{2} \\
& =\text { RUS }
\end{aligned}
$$

$\therefore a_{n}=\frac{n(n+1)(2 n+1)}{2}$ for integers $n \geqslant 1$ by mathematical induction.
(14) (a) (i)

$$
\begin{gathered}
p(x)=x^{5}+p x^{4}+q x^{3}+(2 q-1) x^{2}+4 p x+r \\
\left.P^{\prime}(x)=5 x^{4}+4 p x^{3}+3 q x^{2}+2(2 q-1) x+4 p\right] \\
p^{\prime \prime}(x)=20 x^{3}+12 p x^{2}+6 q x+2(2 q-1) \\
P^{\prime \prime}(-1)=0: \quad-20+12 p-6 q+4 q-2=0 \\
12 p-2 q=22 \\
6 p-q=11 \\
p^{\prime}(-1)=0: \quad \begin{array}{c}
5-4 p e+3 q-2(2 q-1)+4 \\
5+3 q-4 q+2=0 \\
\\
5=7
\end{array}
\end{gathered}
$$

sub. into (1):

$$
\begin{aligned}
& 6 p-7=11 \\
& 60=18
\end{aligned}
$$

$$
\begin{aligned}
6 p & =18
\end{aligned}
$$

$$
p=3
$$

$$
\begin{gathered}
P(-1)=0: \quad-1+p-q+(2 q-1)-4 p+r=0 \\
-1+3-1+2 \times 7-1-4 \times 3+r=0 \\
r=4
\end{gathered}
$$

(ii) The coefficients of $P(x)$ ane real, so let the zeros be $-1,-1,-1, a+i b, a-i b, a, b \in \mathbb{R}$.

Sum of zeros: $-3+2 a=-3$

$$
a=0
$$

Product of zeros: $(-1)^{3} \times(a+i b)(a-i b)=-4$

$$
\begin{aligned}
-\left(a^{2}+b^{2}\right) & =-4 \\
b^{2} & =4 \quad(a=0) \\
b & = \pm 2
\end{aligned}
$$

\therefore the other zeros are $2 i$ and $-2 i$
(14) (a) Alternate solution

$$
p(x)=x^{5}+p x^{4}+q x^{3}+(2 q-1) x^{2}+4 p x+r
$$

Let the zeros be $\alpha, \beta,-1,-1,-1$.
Product of zeros:

$$
\begin{align*}
-\alpha \beta & =-r \\
\alpha \beta & =r \tag{1}
\end{align*}
$$

Zeros four at a time:

$$
\begin{array}{r}
\alpha \beta+\alpha \beta+\alpha \beta-\alpha-\beta=4 p \tag{2}\\
3 \alpha \beta-\alpha-\beta=4 p
\end{array}
$$

Zeros three at a time:

$$
\begin{align*}
-\alpha \beta-\alpha \beta-\alpha \beta+\alpha+\alpha+\alpha+\beta+\beta+\beta-1 & =-(2 q-1) \\
-3 \alpha \beta+3 \alpha+3 \beta-1 & =-(2 q-1) \\
3 \alpha \beta-3 \alpha-3 \beta+1 & =2 q-1 \tag{3}
\end{align*}
$$

$$
\begin{array}{r}
\alpha \beta-\alpha-\alpha-\alpha-\beta-\beta+1+1+1=q \\
\alpha \beta-3 \alpha-3 \beta+3=q \tag{4}
\end{array}
$$

Sum of zeros:

$$
\text { (2) }+4 \times \text { (5): } \quad \begin{gathered}
\alpha+\beta-3=-\rho \\
3 \alpha \beta-\alpha-\beta+4(\alpha+\beta-3)=0
\end{gathered}
$$

$$
\begin{equation*}
\alpha \beta+\alpha+\beta-4=0 \tag{6}
\end{equation*}
$$

sub. (4) into (3):
(7) -(6):

$$
\begin{array}{r}
3 \alpha \beta-3 \alpha-3 \beta+1= \tag{8}\\
\alpha \beta+3 \alpha+3 \beta-4 \\
2 \alpha+2 \beta=0 \\
\therefore \alpha+\beta=0
\end{array}
$$

sub. into (6):

$$
\begin{align*}
\alpha \beta-4 & =0 \\
\alpha \beta & =4 \tag{9}
\end{align*}
$$

substituting (8) and (9) into (1), (4), and (5) gives:

$$
\left.\begin{array}{l}
r=4 \\
q=4-3 \times 0+3=7 \\
p=3-0=3
\end{array}\right]
$$

(ii) From (8): $\beta=-\alpha$
sub. into (9):
$-\alpha^{2}=4$
$\alpha^{2}=-4$

$$
\alpha= \pm 2 i
$$

\therefore the other zeros are $2 i$ and $-2 i$
(14) (b) (i)

$$
\begin{aligned}
I_{n} & =\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x \\
& =\int_{0}^{\frac{\pi}{2}} x^{n} \cdot \frac{d}{d x}(-\cos x) d x \\
& =\left[-x^{n} \cos x\right]_{0}^{\frac{\pi}{2}}+n \int_{0}^{\frac{\pi}{2}} x^{n-1} \cos x d x \quad \sqrt{\frac{\pi}{2}} x^{n-1} \times \frac{d}{d x}(\sin x) d x \\
& =0+n \int_{0}^{\frac{\pi}{2}} \\
& =n\left(\left[x^{n-1} \sin x\right]_{0}^{\frac{\pi}{2}}-(n-1) \int_{0}^{\frac{\pi}{2}} x^{n-2} \sin x d x\right) \\
\therefore I_{n} & =n\left(\left(\frac{\pi}{2}\right)^{n-1}-(n-1) I_{n-2}\right) \\
& =n\left(\frac{\pi}{2}\right)^{n-1}-n(n-1) I_{n-2} \quad
\end{aligned}
$$

(ii)

$$
\begin{aligned}
I_{0} & =\int_{0}^{\frac{\pi}{2}} \sin x d x \\
& =[-\cos x]_{0}^{\frac{\pi}{2}} \\
& =0-(-1) \\
& =1 \\
\int_{0}^{\frac{\pi}{2}} x^{2} \sin x d x & =I_{2} \\
& =2\left(\frac{\pi}{2}\right)^{2-1}-2 \times 1 \times 1 \\
& =\pi-2
\end{aligned}
$$

(c)(i)

$$
\begin{aligned}
z^{n}-\frac{1}{z^{n}} & =e^{i n \theta}-\frac{1}{e^{i n \theta}} \quad \text { (by De Moire's theorem) } \\
& =e^{i n \theta}-e^{-i n \theta} \\
& =\cos (n \theta)+i \sin (n \theta)-(\cos (-n \theta)+i \sin (-n \theta)) \\
& =\cos (n \theta)+i \sin (n \theta)-\cos (n \theta)+i \sin (n \theta)
\end{aligned}
$$

$=2 i \sin (n \theta) \quad$ as cosine even, sine odd. (relatively lenient here)
(if) (c) (ii)

$$
\begin{aligned}
\left(z-\frac{1}{z}\right)^{5}= & \binom{5}{0} z^{5}+\binom{5}{1} z^{4}\left(-\frac{1}{z}\right)^{1}+\binom{5}{2} z^{3}\left(-\frac{1}{2}\right)^{2}+\binom{5}{3} z^{2}\left(-\frac{1}{z}\right)^{3} \\
& +\binom{5}{4} z\left(-\frac{1}{z}\right)^{4}+\binom{5}{5}\left(-\frac{1}{z}\right)^{5} \\
= & z^{5}-5 z^{3}+10 z-10 \times \frac{1}{z}+5 \times \frac{1}{z^{3}}-\frac{1}{z^{5}} \\
= & \left(z^{5}-\frac{1}{z^{5}}\right)-5\left(z^{3}-\frac{1}{z^{3}}\right)+10\left(z-\frac{1}{z}\right)
\end{aligned}
$$

(iii) Substituting result from part (i) into identity in part (ii):

$$
\begin{aligned}
(2 i \sin \theta)^{5} & =2 i \sin 5 \theta-5(2 i \sin 3 \theta)+10(2 i \sin \theta) \\
32 i \sin ^{5} \theta & =2 i \sin 5 \theta-10 i \sin 3 \theta+20 i \sin \theta \\
\therefore \sin ^{5} \theta & =\frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta)
\end{aligned}
$$

So $\int \sin ^{5} \theta d \theta=\frac{1}{16}\left(-\frac{1}{5} \cos 5 \theta+\frac{5}{3} \cos 3 \theta-10 \cos \theta\right)+c$

$$
=-\frac{1}{80} \cos 5 \theta+\frac{5}{48} \cos 3 \theta-\frac{5}{8} \cos \theta+c
$$

(15)
(a)

$$
\begin{aligned}
& \int \frac{\sqrt{x} d x}{1+x} \quad \text { Let } \quad \begin{array}{r}
u=\sqrt{x} \\
u^{2}=x
\end{array} \\
= & \int \frac{u \times 2 u d u}{1+u^{2}} \sqrt{2 u d u=d x} \\
= & 2 \int \frac{u^{2} d u}{1+u^{2}} \\
= & 2 \int\left(\frac{u^{2}+1}{1+u^{2}}-\frac{1}{1+u^{2}}\right) d u \\
= & 2 \int\left(1-\frac{1}{1+u^{2}}\right) d u \\
= & 2 u-2 \tan ^{-1}(u)+c \\
= & 2 \sqrt{x}-2 \tan ^{-1}(\sqrt{x})+c
\end{aligned}
$$

(b) * Rewrite problem as:

Show that $4^{2 n+1}+5^{2 n+1}+6^{2 n+1}$ is a multiple of 15 for all $n \geqslant 0$.
Prove true for $n=0$:

$$
4^{\prime}+5^{\prime}+6^{\prime}=15
$$

\therefore true when $n=0$.
Assume true for some $n=k$, where $k \geq 0$.

$$
\text { i.e. } \quad 4^{2 k+1}+5^{2 k+1}+6^{2 k+1}=15 M \text {, where } M \in \mathbb{Z} \text {. }
$$

Prove true for $n=k+1$:
RIP: $\quad 4^{2 k+3}+5^{2 k+3}+6^{2 k+3}$ is a multiple of 15 .

$$
\begin{aligned}
& 4^{2 k+3}+5^{2 k+3}+6^{2 k+3}=4^{2} \times 4^{2 k+1}+5^{2} \times 5^{2 k+1}+6^{2} \times 6^{2 k+1} \\
&=16\left(15 M-5^{2 k+1}-6^{2 k+1}\right)+25 \times 5^{2 k+1}+36 \times \times^{2 k+1} \\
&=16 \times 15 M+9 \times 5^{2 k+1}+20 \times 6^{2 k+1} \\
& \text { (from assumption) } \\
&=16 \times 15 M+45 \times 5^{2 k}+120 \times 6^{2 k} \\
&=15\left(16 M+3 \times 5^{2 k}+8 \times 6^{2 k}\right) \\
&=15 N \text {, when } N \in \mathbb{Z} \text { since } k \geqslant 0 \\
& 4^{n}+c^{n}+1^{n} \therefore \text { is }
\end{aligned}
$$

$\therefore 4^{n}+5^{n}+6^{n}$ is a multiple of 15 for all odd $n \geqslant 1$.
(15)(c)(i) $\ddot{y}=0$ when travelling at terminal velocity.

$$
\begin{aligned}
\therefore 10 m-m k v_{T} & =0 \\
v_{T} & =\frac{10}{k} m s^{-1}
\end{aligned}
$$

(ii) (α)

$$
\begin{aligned}
& m \ddot{y}=10 m-m k v \\
& \ddot{y}=10-k v \\
& v \cdot \frac{d v}{d y}=10-k v \\
& \frac{d y}{d v}=\frac{v}{10-k v} \\
& =-\frac{1}{k} \times \frac{-k v+10-10}{10-k v} \\
& \int-k d y=\int\left(1-\frac{10}{10-k v}\right) d v \quad \checkmark\left(\begin{array}{c}
\text { correctly rearranging } \\
\text { as separable } \mid v \\
\text { or equivalent }
\end{array}\right) \\
& -k y=\left(v+\frac{10}{k} \ln |10-k v|\right)+c
\end{aligned}
$$

when $y=0, N=\frac{20}{k}$

$$
\begin{aligned}
\therefore c & =-\frac{20}{k}-\frac{10}{k} \ln \left|10-k \times \frac{20}{k}\right| \\
& =-\frac{20}{k}-\frac{10}{k} \ln 10 \\
\therefore \quad-k y & =v+\frac{10}{k} \ln |10-k v|-\frac{20}{k}-\frac{10}{k} \ln 10 \\
k^{2} y & =-k v-10 \ln |10-k v|+20+10 \ln 10 \\
& =20-k v+10 \ln \left|\frac{10}{10-k v}\right| \\
\therefore y & =\frac{1}{k^{2}}\left(20-k v+10 \ln \left|\frac{10}{10-k v}\right|\right)
\end{aligned}
$$

(ß) When

$$
\begin{aligned}
y=50, \quad & =\frac{3}{4} \times \frac{20}{k} \\
& =\frac{15}{k} \\
50 & =\frac{1}{k^{2}}\left(20-k \times \frac{15}{k}+10 \ln \left|\frac{10}{10-k \times \frac{1}{k}}\right|\right) \\
50 & =\frac{1}{k^{2}}(20-15+10 \ln 2) \\
k^{2} & =\frac{5+10 \ln 2}{50}, \therefore k=0.49^{/}(2 \text { d.p. })
\end{aligned}
$$

(15)(d) (i)

$$
\begin{aligned}
& r_{\sim}=\left[\begin{array}{c}
-\lambda \\
5+4 \lambda \\
4+3 \lambda
\end{array}\right], \therefore \overrightarrow{O A}=\left[\begin{array}{c}
-p \\
5+4 p \\
4+3 p
\end{array}\right] \\
& r_{\sim}=\left[\begin{array}{c}
-2-\mu \\
4+2 \mu \\
1+2 \mu
\end{array}\right], \quad \therefore \overrightarrow{O B}=\left[\begin{array}{c}
-2-q \\
4+2 q \\
1+2 q
\end{array}\right] \\
& \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A} \\
&=\left[\begin{array}{l}
-2-q+p \\
-1+2 q-4 p \\
-3+2 q-3 p
\end{array}\right]
\end{aligned}
$$

(ii) $|\overrightarrow{A B}|$ is a minimum when $\overrightarrow{A B}$ is perpendicular to both lines.

$$
\left[\begin{array}{l}
\overrightarrow{A B} \cdot\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right]=0: \tag{1}\\
\overrightarrow{A B} \cdot\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right]=0:
\end{array}\right.
$$

$$
2+q-p-4+8 q-16 p-9+6 q-9 p=0
$$

$$
-11+15 q-26 p=0
$$

$$
\begin{array}{r}
2+q-p-2+4 q-8 p-6+4 q \\
-6+9 q-15 p=0 \\
3 q=5 p+2
\end{array}
$$

$$
\begin{align*}
& 3 q=5 p+2 \tag{2}\\
& 2-26 p=0
\end{align*}
$$

sub. into (1):

$$
\begin{gathered}
-11+5(5 p+2)-26 p=0 \\
-11+25 p+10-26 p=0 \\
p=-1
\end{gathered}
$$

sub. into (2):

$$
\begin{aligned}
3 q & =-5+2 \\
& =-3
\end{aligned}
$$

$$
q=-1
$$

When $p=-1, q=-1$:

$$
\begin{aligned}
\overrightarrow{A B} & =\left[\begin{array}{c}
-2-(-1)-1 \\
-1+2(-1)-4(-1) \\
-3+2(-1)-3(-1)
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 \\
1 \\
-2
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
|\overrightarrow{A B}| & =\sqrt{(-2)^{2}+1^{2}+(-2)^{2}} \\
& =\sqrt{9} \\
& =3 \text { units }
\end{aligned}
$$

(15) (d)(iii) Note that $|\overrightarrow{A B}|$ is a minimum when $\overrightarrow{A B}$ is perpendicular to both ${\underset{\sim}{r}}_{1}$ and r_{2},
As such, $|\overrightarrow{A B}| \geqslant 3$ (with equality when $p=-1$ and $q=-1$)
(16)(a)(i)
(ii) $\int_{0}^{\pi}(1+2 x) \frac{\sin ^{3} x}{1+\cos ^{2} x} d x=\int_{0}^{\pi} \frac{\sin ^{3} x d x}{1+\cos ^{2} x}+2 \int_{0}^{\pi} x \frac{\sin ^{3} x d x}{1+\cos ^{2} x}$ as $\frac{\sin ^{3} x}{1+\cos ^{2} x}=\frac{\sin ^{3} x}{1+\left(1-\sin ^{2} x\right)}$, using result from part (i):

$$
\begin{aligned}
& =\int_{0}^{\pi} \frac{\sin ^{3} x d x}{1+\cos ^{2} x}+2 \times \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin ^{3} x d x}{1+\cos ^{3} x} \\
& =(1+\pi) \int_{0}^{\pi} \frac{\sin x \cdot\left(1-\cos ^{3} x\right) d x}{1+\cos ^{2} x}
\end{aligned}
$$

$$
=(1+\pi) \int_{1}^{-1} \frac{1-u^{2}}{1+u^{2}} x-d u
$$

Let $u=\cos x$

$$
d u=-\sin x d x
$$

$$
=(1+\pi) \int_{-1}^{1} \frac{1-u^{2}}{1+u^{2}} d u
$$

$$
x=0, a=1
$$

$$
x=\pi, u=-1
$$

$$
=(1+\pi) \int_{-1}^{1}\left(\frac{-\left(1+u^{2}\right)+2}{1+u^{2}}\right) d u
$$

$$
=(1+\pi)_{-1} \int_{1}^{1}\left(-1+\frac{2}{1+u^{2}}\right) d u
$$

$$
\begin{aligned}
& \int_{0}^{\pi} x f(\sin x) d x \\
& \text { Let } x=\pi-u \\
& d x=-d u \\
& =\int_{\pi}^{0}(\pi-u) f(\sin (\pi-u)) x-1 d u \\
& =\int_{0}^{\pi}(\pi-u) f(\sin u) d u \quad \text { since } \sin (\pi-u)=\sin u \\
& =\pi \int_{0}^{\pi} f(\sin u) d u-\int_{0}^{\pi} u f(\sin u) d u \\
& =\pi \int_{0}^{\pi} f(\sin x) d x-\int_{0}^{\pi} x f(\sin x) d x \quad\binom{\text { mum }}{\text { variables }} \\
& \therefore 2 \int_{0}^{\pi} x f(\sin x) d x=\pi \int_{0}^{\pi} f(\sin x) d x \\
& \int_{0}^{\pi} x f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =(1+\pi)\left[-u+2 \tan ^{-1}(u)\right]_{-1}^{1} \\
& =(1+\pi)\left(-1+\frac{\pi}{2}-\left(1-\frac{\pi}{2}\right)\right) \\
& =(1+\pi)(\pi-2)
\end{aligned}
$$

(16) (b) (i)

$$
\begin{align*}
x & =A e^{-k t} \cos n t \\
\dot{x} & =-k A e^{-k t} \cos n t-n A e^{-k t} \sin n t \\
\ddot{x} & =k^{2} A e^{-k t} \cos n t+n k A e^{-k t} \sin n t+n k A e^{-k t} \sin n t \\
& =\left(A k^{2}-A n^{2}\right) e^{-k t} \cos n t+(2 A n k) e^{-k t} \sin n t
\end{align*}
$$

Also,

$$
\begin{align*}
\ddot{x} & =-P^{2} x-Q \dot{x} \\
& =-P^{2} A e^{-k t} \cos n t-Q\left(-k A e^{-k t} \cos n t-n A e^{-k t} \sin n t\right) \sqrt{ } \\
& =\left(-A P^{2}+A k Q\right) e^{-k t} \cos n t+A n Q \cdot e^{-k t} \sin n t \tag{2}
\end{align*}
$$

As the expressions in the RHS of (1) and (2) must be equivalent, equate coefficients of $e^{-k t} \cos n t$ and $e^{-k t} \sin n t$:

$$
\begin{aligned}
2 A_{n} k & =A_{n} Q \\
\therefore k & =\frac{1}{2} Q \\
A k^{2}-A n^{2} & =-A P^{2}+A k Q \\
\left(\frac{1}{2} Q\right)^{2}-n^{2} & =-P^{2}+\frac{1}{2} Q^{2} \\
n^{2} & =P^{2}-\frac{1}{4} Q^{2} \\
& =\frac{1}{4}\left(4 P^{2}-Q^{2}\right) \\
\therefore n & =\frac{1}{2} \sqrt{4 P^{2}-Q^{2}}
\end{aligned}
$$

Also note that when $t=0, x=A \times e^{0} \times \cos 0$

$$
=A
$$

So the initial displacement is also satisfied.
(16) contd.
(b) (ii) Particle is at rest when $\dot{x}=0$:

$$
\begin{aligned}
&-A k e^{-k t} \cos n t-A n e^{-k t} \sin n t=0 \\
& n \sin n t=-k \cos n t \\
& \tan n t=-\frac{k}{n}
\end{aligned}
$$

As $k, n>0,-\frac{k}{n}<0$. \therefore for positive t :

$$
\begin{aligned}
n t & =\pi-\tan ^{-1}\left(\frac{k}{n}\right), 2 \pi-\tan ^{-1}\left(\frac{k}{n}\right), 3 \pi-\tan ^{-1}\left(\frac{k}{n}\right), \ldots \\
t & =\frac{1}{n}(\pi-\alpha), \frac{1}{n}(2 \pi-\alpha), \frac{1}{n}(3 \pi-\alpha), \ldots, \text { where } \alpha=\tan ^{-1}\left(\frac{k}{n}\right)
\end{aligned}
$$

particle first comes to rest when $t=\frac{1}{n}(\pi-\alpha)$

$$
\begin{aligned}
\therefore \quad x_{1} & =A e^{-k \times \frac{1}{n}(\pi-\alpha)} \cos \left(n \times \frac{1}{n}(\pi-\alpha)\right) \\
& =A e^{-\frac{k \pi}{n}+\frac{k \alpha}{n}} \cos (\pi-\alpha) \\
& =-A e^{\frac{k \alpha \alpha}{n}} \cos \alpha \times e^{-\frac{k \pi}{n}}, \text { since } \cos (\pi-\alpha)=-\cos \alpha
\end{aligned}
$$

(iii) When $t=\frac{1}{n}(2 \pi-\alpha)$:

$$
\left.\begin{array}{rl}
x_{2} & =A e^{-k \times \frac{1}{n}(2 \pi-\alpha)} \cos \left(n \times \frac{1}{n}(2 \pi-\alpha)\right) \\
& =A e^{\frac{k \alpha}{n}} \cos (2 \pi-\alpha) \times e^{-\frac{2 k \pi}{n}} \quad \text { (some correct } \\
\text { exploration } \\
\text { of } x_{2}
\end{array}\right)
$$

Note that for successive values of t, $\cos n t$ will a ternate between $\cos \alpha$ and $-\cos \alpha$. Each successive value of x_{r} can be found by multiplying the previous by $-e^{-\frac{k \pi}{n}}$.
$\therefore\left|x_{r}\right|=\left|x_{r-1}\right| \times e^{-\frac{k \pi}{n}}$, forming a $G P$. $\binom{$ recognising geometric }{ progression }

Let total distance travelled by D metres.
Then

$$
\begin{aligned}
D & =A+2\left|x_{1}\right|+2\left|x_{2}\right|+2\left|x_{3}\right|+\cdots \\
& =A+2\left(\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\cdots\right) \\
& =A+2 \times \frac{A e^{\frac{k \pi}{n}} \cos \alpha e^{-\frac{k \pi}{n}}}{1-e^{-\frac{k \pi}{n}}} \\
& =A\left(1+\frac{2 A e^{\frac{k \alpha}{x}} \cos \alpha}{e^{\frac{k \pi}{n}}-1}\right)
\end{aligned}
$$

where $\alpha=\tan ^{-1}\left(\frac{k}{n}\right)$
Note that for a given A, D is dependent on $\frac{k}{n}$.
Now

$$
\begin{aligned}
\frac{k}{n} & =\frac{\frac{1}{2} Q}{\frac{1}{2} \sqrt{4 P^{2}-Q^{2}}} \\
& =\frac{1}{\sqrt{\frac{4 P^{2}-Q^{2}}{Q^{2}}}} \\
& =\frac{1}{\sqrt{4\left(\frac{P}{Q}\right)^{2}-1}}
\end{aligned}
$$

\therefore For a given A, D can be expressed as a function of $\frac{k}{n}$, and $\frac{k}{n}$ can be expressed as a function of $\frac{p}{Q}$. \therefore The total distance travelled depends only on $\frac{P}{Q}$.

