\qquad

SYDNEY TECHNICAL HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE 2004

Mathematics Extension 2

TIME ALLOWED: 3 hours

Instructions:

- Write your name and class at the top of this page, and at the top of each answer sheet.
- At the end of the examination this examination paper must be attached to the front of your answers.
- All questions are of equal value and may be attempted.
- All necessary working must be shown. Marks will be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
(FOR MARKERS USE ONLY)

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	TOTAL

QUESTION 1:

2 (a) (i)

$$
\int \frac{d x}{x^{2}+6 x+13}
$$

2
(ii)

$$
\int_{0}^{4} \frac{d x}{(2 x+1) \sqrt{2 x+1}}
$$

3 (b)

> Show that $\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x$ Hence find $\int x^{2} e^{x} d x$

3 (c)
Sketch the locus of the point Z in the Argand plane, which moves so that $\arg (z-1)=\frac{\pi}{2}$

3 (d) (i)
Find values of A, B and C so that $\frac{13}{\left(x^{2}+4\right)(x+3)} \equiv \frac{A x+B}{x^{2}+4}+\frac{C}{x+3}$
2
(ii)

Hence find $\int \frac{13 \mathrm{dx}}{\left(\mathrm{x}^{2}+4\right)(x+3)}$

QUESTION 2:

(a) If $z=1+\sqrt{3} i$ find

4
(i) \bar{z}
(ii) $|z|$
(iii) $\arg z$
(iv) $\arg (i z)$
(b) Express $z=1+\sqrt{3} i$ in mod-arg form and hence find
(i) \sqrt{z}
(ii) z^{6} (in simplest form)
(c) On the same set of axes, sketch $y=|x-1|$ and $y=|x+1|$ and then use this graph, or otherwise, to find the value of k if $|x-1|+|x+1| \geq k \quad$ for all values of x .
(d) (i) The point W represents the complex number $w=a+i b$, and $w=\frac{z}{z+1}$ where $z=x+i y$. The point Z representing the complex number z moves along the y-axis only.

Show that $a=\frac{y^{2}}{1+y^{2}}$ and $b=\frac{y}{1+y^{2}}$
(ii) Find the locus of W both algebraically and geometrically.

QUESTION 3 :

4 (a) (i) Using the method of Mathematical Induction, prove deMoivre's Theorem

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

2
(b) If $f(x)=\cos x+i \sin x$,

1 (c) (i) Describe the locus of the point z, where $|z-a|=r$

2
(iv) Using Euler's Theorem from part (iii), prove deMoivre's Theorem
(ii) Prove that the points on the Argand Diagram with co-ordinates representing ($\left.\operatorname{cis} \frac{\pi}{3}\right)^{n}$ for $n=1,2,3 . ., 6$ are the vertices of a regular hexagon inscribed in a circle of radius 1 unit.
(ii) If $|z-a|=r$ and $|z-b|=s$ what is the geometric significance when $|a-b|=r+s$

QUESTION 4:

3 (a) By using t-results, or otherwise, find $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{d \theta}{\sin \theta}$ leaving your answer in exact form
(b) Sketch the following on different sets of axes showing all important features (DO NOT USE CALCULUS)

8
(i) $y=\frac{|x|}{x}$
(ii) $y=\ln \left(\frac{1}{x^{2}}\right)$
(iii)

$$
y=|\tan x| \quad \text { for }-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

(iv) $\quad y=\sec x \quad$ for $-2 \pi \leq x \leq 2 \pi$

4 (c) Use calculus, or otherwise, to sketch $y=\frac{e^{x}}{x}$ showing all stationary points and asymptotes, if they exist.

QUESTION 5:
(a) For the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \quad$ find

3

3 (b) Given that $P(x)=3 x^{3}-11 x^{2}+8 x+4$ has a double root, fully factorise $P(x)$
(c)

In the diagram above, the points A, B and C represent the points of intersection of the line $y=4 x+8$ and the curve $y=\frac{1}{x^{2}}$. The x -values of A, B and C are α, β and γ
(i) the eccentricity
(ii) the co-ordinates of the foci
(iii) the equations of the directrices
(i) Show that α, β and γ satisfy $4 x^{3}+8 x^{2}-1=0$
(ii) Find a polynomial with roots α^{2}, β^{2} and γ^{2}
(iii) Find $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}$
(iv) Prove that $O A^{2}+O B^{2}+O C^{2}=, 132$ where O is the origin.

QUESTION 6:

(a)

$P(a \cos \theta, b \sin \theta)$ is any point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. The tangent at P cuts the major axis in T and the Directrix in $R . N$ is the foot of the perpendicular from P to the major axis, O is the centre and S is the focus.
(i) Show that the equation of the tangent at P is $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$

2
(ii) Show that ON.OT $=a^{2}$

5
(iii) Showing all steps carefully, prove that $\angle \mathrm{PSR}=90^{\circ}$
(b)

A solid S is formed by rotating the region bounded by the parabola $y^{2}=16(1-\mathrm{x})$ and the y -axis through 2π about the the line $\mathrm{x}=2$.

3 (i) Use the method of cylindrical shells to show that the volume of \boldsymbol{S} is given by

$$
\int_{0}^{1} 16 \pi(2-x) \sqrt{1-x} d x
$$

(ii) Calculate this definite integral by using the substitution $u=1-x$ (or otherwise)

QUESTION 7:

(a) If $\mathrm{l}, \mathrm{w}_{1}$ and w_{2} are the cube roots of unity, prove that

2

1

1
(b)

3

2

6
(i) $\mathrm{w}_{1}=\overline{\mathrm{w}_{2}}=\mathrm{w}_{2}^{2}$
(ii) $w_{1}+w_{2}=-1$
(iii) $\mathrm{w}_{1} \mathrm{w}_{2}=1$
(ii) Deduce that the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$
(iii)

The diagram above shows a mound of height H . At height h above the horizontal base, the horizontal cross section of the mound is elliptical in shape, with equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\lambda^{2} \text { where } \lambda=1-\frac{h^{2}}{H^{2}}
$$

and x and y are co-ordinates in the plane of cross section.
Show that the volume of the mound is $\frac{8 \pi a b H}{15}$

QUESTION 8:

2

3
(a) (i) Show that the equation of the tangent to the Hyperbola $x y=c^{2}$ at the point $P\left(c p, \frac{c}{p}\right)$ is $x+p^{2} y=2 c p$
(b)

If n is a positive integer and $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}}\left(1+\mathrm{x}+\frac{\mathrm{x}^{2}}{2!}+\ldots \ldots \ldots . .+\frac{\mathrm{x}^{n}}{\mathrm{n}!}\right), \quad \mathrm{x} \geq 0$
(i) Show that $\mathrm{f}(\mathrm{x})$ is a decreasing function

NOTE: $n!=1 \times 2 \times 3 \times 4$. \qquad ($n-1$) n
(ii) Deduce that for $\mathrm{x}>0$ and n any positive integer,

$$
\mathrm{e}^{\mathrm{x}} \geq 1+\mathrm{x}+\frac{\mathrm{x}^{2}}{2!}+\ldots \ldots \ldots \ldots+\frac{\mathrm{x}^{n}}{\mathrm{n}!}
$$

End of Examination

THSC MATHS EXT2. 2004 SOLuTTONS.
Quenon 1:
(a) (i) $\int_{4} \frac{d x \text { (1) }}{(x+3)^{2}+4}=\frac{1}{2} \tan ^{-1}\left(\frac{x+3}{2}\right)+k$
(1)

$$
\begin{aligned}
\int_{0}^{4}(2 x+1)^{-3 / 2} d & \left.=-(2 x+1)^{-1 / 2}\right]_{0}^{4} \\
& =-9^{-1 / 2}+1^{-1 / 2} \\
& =2 / 3 \text { (1) }
\end{aligned}
$$

(6)

$$
\begin{align*}
\int x^{n} e^{x} d x & =\int x^{n} \frac{d}{d x} e^{x} d x \\
& =e^{x} x^{n}-\int e^{x} \cdot n x^{n-1} d x \tag{1}
\end{align*}
$$

$$
\begin{align*}
& n=2 \therefore \int x^{2} e^{2} d x=e^{x} x^{2}-2 \int e^{x} x^{1} d x . \\
& n_{0}^{2} \tag{0}\\
& \int e^{x} x d x=e^{x} x-\int e^{x} d x \\
&=e^{x} x-e^{x} \\
& \therefore \quad \int x^{2} e^{x} d x=e^{2} x^{2}-2\left(e^{x} x-e^{x}\right) \tag{1}\\
&=e^{2} x^{2}-2 e^{x} x+2 e^{x}
\end{align*}
$$

(i)

$$
\begin{aligned}
& \text { (d) (i) } \frac{13}{\left(x^{2}+4\right)(x+3)}=\frac{A x+B}{x^{2}+4}+\frac{C}{x+3} \\
& (A x+B)(x+3)+C\left(x^{2}+4\right)=13 \\
& A+C=0 \\
& 3 A+B=0 \\
& 3 B+4 C=13
\end{aligned}
$$

(3) $\left.\begin{array}{rl}\text { Now } C & =1 \\ B & =3 \\ A & =-1\end{array}\right\} \Rightarrow \begin{aligned} & E x P^{2} \\ & \frac{3-x}{x^{2}+4}+\frac{1}{x+3}\end{aligned}$
(i) (d) (ii)

$$
\begin{array}{r}
\int \frac{13 d x}{\left(x^{2}+4\right)(x+3)}=\int \frac{d x}{x+3}+\int \frac{3-x}{x^{2}+4} \frac{1}{2} \\
=\ln (x+3)+\frac{3-0_{n}^{-1}}{2}+\frac{1}{2} \ln \left(x^{2}+4\right)
\end{array}
$$

SAMINER's COMmEN:

- Avenge make was bat $12 / 15$, Gervadey strong done
- SPecific comments.

1 (a) (ii) People forgot about the 2 cumirsab of the brocket when differentiated:

$$
\text { es } \frac{d}{d n}(2 n+1)^{-1 / 2}-1 / 2(2)(2 n+1)^{-3 / 2}
$$

(b) NOT A BUL ERROR, but the formals could lave been vied 2 times to evaluate $\int x^{2} e^{x} d$ AND $\int e^{x} x d x$.
mos common Error: The question regried gout show the rest, not just quote the result because you hew it was true. This was the most commons.

$$
" u=x^{n} \quad u^{\prime}=n x^{n-1} \quad v=e^{x} \quad v^{\prime}=e^{x}
$$

the quoting the question!. This trave me to work out the in-between pat-whral nos your job!!
(d) Tkoubur mas with the $\int \frac{3-4}{x^{2}+4}$ part. and the regales imulued!

QUESTION 2
(a) $z=1+\sqrt{3} i$

Deat.

$$
\begin{aligned}
&(i) \\
& \bar{z}=1-\sqrt{3} i \\
& \text { (ii) }=\sqrt{1+3} \\
&=2
\end{aligned}
$$

(ii) $\arg z=+\operatorname{lan}^{-1}$ i

$$
=\pi / 3
$$

(i.) $\arg i z=\operatorname{cog}(-\sqrt{3}+i)$

$$
=\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)
$$

$$
=5 \pi / 6
$$

$02 / 2$ jut $\theta=\pi / 3+\pi / 2$

$$
=5 \pi / 6
$$

(b)

$$
\begin{aligned}
& \therefore \quad z=2 \operatorname{cis} 1 / 3 \text { (i) } \\
& \left.\therefore \text { (i) } \sqrt{z}=\sqrt{2} \operatorname{cis} \frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

(ii) $z^{6}=2^{6}$ cis 2π

$$
k=20
$$

(d)

$$
\omega=\frac{z}{z+1}=a+i b
$$

$$
\therefore a+i b=\frac{x+i y}{x+i y+1}
$$

Now since 3 moves dors the y-axs

$$
\begin{aligned}
x & =0 \\
\therefore a+i b & =i y+1 \\
& =\frac{i y+(y)}{-i y}+\frac{1-i y}{1-i y} \\
& =\frac{1 y+y^{2}}{1+y^{2}} \\
\therefore a & =y_{1}+y^{2} \text { ond } b=\frac{y}{1+y^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y=0 \quad a=b=0 \\
& y>+\infty \quad a \rightarrow 1 \\
& y= \pm \infty \quad b-\infty 0 \\
& y=1 \quad a=1 / 2 \quad b=1 / 2 \\
& y=-1 \quad a=1 / 2 \quad b=-1 / 2
\end{aligned}
$$

cirale contre (/6 0) , $r=1 / 2$
O^{R}

$$
\begin{aligned}
a & =\frac{y^{2}}{1+y^{2}} \quad b=\frac{y}{1+y^{2}} \\
a^{2} & =\frac{y^{4}}{\left(1+y^{2}\right)^{2}} \quad b=\frac{y^{2}}{\left(1+y^{2}\right)^{2}} \\
& =\frac{y^{2}\left(1+y^{2}\right)}{\left(1+y^{2}\right)^{2}}-\frac{y^{2}}{\left(1+y^{2}\right)^{2}} \\
& =\frac{y^{2}}{\left(1+y^{2}\right)}-b^{2}
\end{aligned}
$$

$$
=a-b^{2}
$$

$$
\therefore a^{2}-a+b^{2}=0
$$

$\therefore(a-2)^{2}+b^{2}=0+1 / 4$
Circle, centre $\left(\frac{1}{2}, 0\right) r=1 / 2$.

QUESTION 3
4(a) (i) $\operatorname{For} n=1 \quad(\sin 0 \operatorname{lin} \theta)^{\prime}=0 \cot +\sin \theta$
\therefore TRue for na 1
Assume the fompo is true for $n=k$,

$$
\begin{equation*}
\text { i. }(\cos \theta+i \sin \theta)^{2}=\operatorname{cosk} \theta+i \sin d \theta \tag{1}
\end{equation*}
$$

For $n=k+1$

$$
\begin{align*}
(\cos \theta+i \sin \theta)^{k+1} & =(\cos \theta+\sin \theta)^{k}(\cos \theta+i \sin \theta) \tag{2}\\
& =(\cos k \theta+i \sin \theta)(\cos \theta+i \sin \theta) \\
& =\cos \theta \cos k \theta+\sin \theta \sin \theta+i(\cos \theta \sin t \theta+\sin \theta \cos k \theta) \\
& =\cos (k+1) \theta+i \sin (h+1) \theta
\end{align*}
$$

\therefore If the forts is tue for nap, it is true for $n=1+1$
Bur it is true for $n=1, \therefore$ it is tree for $n a 2$ and so on (I) ie the \forall.
(1)
(ii) The points are cis $11 / 3$, as $2 \pi / 3$, is π, is $4 \pi / 3, \operatorname{cis} 5 \pi / 3$, cis 2π which are 6 points equally -spaced about the unit circle.

So cut off equal chirrs (1)
\therefore form a regular hexagon
(b) $\quad f(x)=\cos x+i \sin x$.
(i) $f(0)=1$
(ii)

$$
\begin{align*}
f^{\prime}(x) & =-\sin x+i \cos x \tag{CD}\\
& =i(\cos x+i \sin x) \\
& =i f(x) \\
\therefore f^{\prime}(x) / f(x) & =i \tag{1}
\end{align*}
$$

(iii)

$$
\begin{align*}
\int \frac{f^{\prime}(x)}{f(x)} d x & =\int i d x . \\
\therefore \log _{e} f(x) & =i x+c \tag{1}\\
\text { At } x & =0 \log _{e}(1)=c \Rightarrow c-0 \\
\therefore \log _{e} f(x) & =i x \Rightarrow f(x)=e^{i x} \tag{1}
\end{align*}
$$

Q 3 (b) (iv) $\cos x+i \operatorname{sio} x=e^{i x}$

$$
\begin{equation*}
\therefore(\cos x+i \sin x)^{n}=e^{i \sin }=e^{i(\sin)} \tag{i}
\end{equation*}
$$

$$
=\cos n x+i \sin x-1
$$

(ii)

Tuo cirdes, center a and which share a common torgent (ie just touch).

EXAMINERS COMmENTS:
(a) Chess you don't know how to progess fore onk step to anothe, do-t sthercur -it looks lite a fudge! And, after all, the onswe is aleat, there! - Induto is a verg formal methad. In gemeal rean-bla doel
(c) (ii) The pethet pontr hae are that the onglos are equse and that the mopun antall 1 ie eventy spacst ato it a unir civele.- Tthir wos fequect's onilledt, and inthoutil the dicgram could have beu

(b) (iii) 75% of the condidater lett off the t k wes integroting. To evelcole the k you oede your infomatiom from pout (i).
(c) (i) Well done!
(ii) Cinfull, done!

Question 4
$a(a)$

$$
\begin{aligned}
\int_{\pi / 3}^{\pi / 2} \frac{d \theta}{\operatorname{sen} \theta} & =\int_{1 / \sqrt{3}}^{1} \frac{2 d t}{1+t^{2}} \cdot \frac{1+t^{2}}{2 t} t_{4} t-v \operatorname{csu} 1 t \\
& =\int_{1 / \sqrt{3}}^{t} \frac{d t}{1} \\
& =[\ln t] / 1 / \sqrt{3} \\
& =-\ln \sqrt{3} \text { or } 1 / 2 \ln 3
\end{aligned}
$$

b)
i)

iii

c)

$$
\begin{aligned}
y & =\frac{e^{x}}{x} \\
\frac{d y}{d x} & =\frac{x \cdot e^{x}-e^{x}}{x^{2}}
\end{aligned}
$$

$$
\frac{d^{4}}{d x}=0 \quad x=1
$$

$$
x=1, y=<
$$

Undefined at $x=0$

$$
\begin{aligned}
& x \rightarrow 0^{+} y \rightarrow \infty \\
& -x \rightarrow 0^{-\infty} y \rightarrow-\infty \\
& x \rightarrow-\infty \rightarrow 0
\end{aligned}
$$

ii)

Question 5
(a) $x^{2} / a+b^{2} / 4=1 \Rightarrow a=3, b=2$
(i) $e= \pm \sqrt{5} / 3$ (i)
(ii) $S:(\pm \sqrt{5}, 0)$
(iii) \&: $x= \pm$ 行 (1)
(b) $\quad P^{\prime}(x)=9 x^{2}-22 x+8$

Fondarbe Roor, $f^{\prime}(n)=0$

$$
\begin{align*}
& \therefore(9 x-4)(x-2)=0 \\
& \therefore x=4 / 9 \text { or } x=2 \tag{1}
\end{align*}
$$

$$
P(2)=0 \Rightarrow x=2 \text { is the dolse cout (1) }
$$

By inssection $P(x)=(x-2)^{2}(3 x+1)$
(c) (i) $y=4 x+8=1 / x^{2}$
(ii)
(iii)
(iv) $\begin{aligned} & O A^{2}=\alpha^{2}+\left(\frac{1}{2}\right)^{2}=\alpha^{2}+1 / \alpha^{4} \\ & O B^{2}=\beta^{2}+1 / \beta^{8}\end{aligned} \quad\left[\frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}=\frac{\alpha^{4} \beta^{4}+\alpha^{4} \gamma^{4}}{\alpha^{4} \beta^{2} \gamma^{4}}\right.$

$$
\begin{aligned}
O A^{2}= & \alpha^{2}+\left(\alpha^{2}\right)=\alpha+1 / \alpha^{4} \\
O B^{2} & =\beta^{2}+1 / \beta^{8} \\
O C^{2} & =\gamma^{2}+1 / \gamma^{4} \\
3^{2}+O \alpha^{2}= & \alpha^{2}+\beta^{2}+\gamma^{2}+\frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}} \\
= & 4+\frac{256}{2} \\
& 132 .
\end{aligned}
$$

$$
\begin{gathered}
\text { and } \\
\alpha^{4} \beta^{4}+\alpha^{4} \gamma^{4}+\beta^{4} \gamma^{4}
\end{gathered}
$$

$$
\begin{array}{cc}
O c^{2}=\gamma^{2}+1 / \gamma^{4} \\
\therefore O A^{2}+O B^{2}+O C^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}+\frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}, & \begin{array}{l}
\alpha^{4} \beta^{4}+\alpha^{2} \gamma^{2}+\beta^{2} \\
\end{array}=\left(\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}\right. \\
-2 \alpha^{2} \beta^{2} \gamma^{2}\left(\alpha^{2}\right.
\end{array}
$$

$$
-2 \alpha^{2} \beta^{2} \gamma^{2}\left(\alpha^{2}+\beta^{2}+\gamma\right.
$$

$$
=1^{2}-2 \times \frac{1}{16} \times 4 .
$$

$$
=1 / 2
$$

$$
\alpha^{4} \beta^{4} \gamma^{4}=\frac{1}{256}
$$

$$
\begin{align*}
& P(\sqrt{n})=4(\sqrt{x})^{3}+8(\sqrt{n})^{2}-1=0 \tag{i}\\
& \therefore \quad 4 x^{3 / 2}+8 x-1=0 \\
& 4 x^{3 / 2}=-8 x+1 \text { (1) } \\
& \therefore 16 x^{3}=64 x^{2}-16 x+1 \\
& \therefore 16 x^{3}-64 x^{2}+16 x-1=0 \tag{1}\\
& 1 / \alpha^{2}+1 / \beta^{2}+1 / \gamma^{2}=\frac{\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}}{\alpha^{2} \beta^{2} \gamma^{2}} \tag{1}\\
& =\frac{\text { Sum of oots } \times 2}{\text { Prod-l of roots }} \text { from ecrackin } * \\
& =1 / 1 /=16 \text {. } \tag{1}
\end{align*}
$$

QuESTION 6

$$
\begin{aligned}
a) 11 x & =a \cos \theta \\
\frac{d x}{a b} & =-a \sin \theta \\
y & =b \sin \theta \\
\frac{d y}{d \theta} & =b \cos \theta \\
\therefore \frac{d y}{d x} & =\frac{b \cos \theta}{a \sin \theta}
\end{aligned}
$$

Egu of tanagent.

$$
\begin{aligned}
& y-b \operatorname{sen} \theta=\frac{-b \cos \theta}{a \sin \theta}(x-a \cos \theta) \\
& \frac{y \sin \theta}{b}-\operatorname{sen}^{2} \theta=-\frac{x \cos \theta}{a}+\cos ^{2} \theta \\
& \frac{x \cos \theta}{a}+y \frac{\sin \theta}{b}=\operatorname{sen}^{2} \theta+\cos ^{2} \theta \\
& \frac{x \cos \theta}{a}+y \frac{\sin \theta}{b}=1
\end{aligned}
$$

ii $N=(\operatorname{acos} \theta, 0)$
wher $y=0$

$$
\begin{aligned}
& x=\frac{a}{\cos \theta} \\
& \therefore T=\left(\frac{a}{\cos \theta}, 0\right) \\
& \text { ON.OT }=a \cos \theta \cdot \frac{a}{\cos \theta} \\
&=a^{2}
\end{aligned}
$$

iii
$P(a \cos \theta, b \operatorname{sen} \theta)$

$$
\begin{gathered}
S(a e, 0) \\
R\left(\frac{a}{e}, \frac{b(e-\cos \theta)}{e \operatorname{sen} \theta}\right. \\
M_{P S}=
\end{gathered}
$$

$$
\begin{aligned}
& \frac{e \operatorname{cen} \theta}{\frac{a}{e}-a-} \\
= & \frac{b e-b \cos \theta}{e \cos \theta} \times \frac{e}{a-a e^{2}} \\
= & \frac{b(e-c \cos \theta)}{a\left(1-e^{2}\right) \sin \theta}
\end{aligned}
$$

$$
\begin{aligned}
M_{P S} & \times M_{s i 2} \\
& =\frac{b \operatorname{sen} \theta}{a \cos \theta-a e} \times \frac{b(c-\cos \theta)}{a\left(1-e^{2}\right) \sin \theta} \\
= & \frac{-b^{2}}{a^{2}\left(1-c^{2}\right)}
\end{aligned}
$$

but $b^{2}=a^{2}\left(1-c^{2}\right)$ for ellipie

$$
\begin{aligned}
& =-1 \\
\therefore & \angle P S R=90^{\circ}
\end{aligned}
$$

Question 6. (cant)
bin

Δx -

$$
\begin{aligned}
\Delta V= & 2 \pi(2-x) \cdot 2 y \cdot \Delta x \\
\text { Volume }= & \operatorname{lom}_{\Delta x \rightarrow 0}^{1} \sum_{0}^{1} 2 \pi(2-x) 8 \sqrt{1-x} \Delta x \\
= & 16 \pi \int_{0}^{1}(2-x) \sqrt{1-x} d x
\end{aligned}
$$

ii) Let $\mu=1-x$

$$
\begin{aligned}
\therefore d u & =-d x \\
\text { Volume } & =16 \pi \int_{1}^{0}(1+\mu) \sqrt{\mu} .-d u \\
& =16 \pi \int_{0}^{1} \sqrt{u}+\mu \sqrt{u} d u . \\
& =16 \pi\left[2 / 3 u^{3 / 2}+2 / 5^{-u^{5 / 2}}\right]_{0}^{1} \\
& =\frac{256 \pi}{15}
\end{aligned}
$$

Question 7
a. i) roots of $3^{3}=1$ are

$$
\begin{aligned}
\omega_{1} & =\operatorname{Cos} \frac{2 \pi}{3}+i \operatorname{Sin} \frac{2 \pi}{3} \\
\omega_{2} & =\operatorname{Cos} \frac{2 \pi}{3}-i \operatorname{Sin} \frac{2 \pi}{3} \\
\therefore \quad \overline{\omega_{2}} & =\operatorname{Cos} \frac{2 \pi}{3}-i \operatorname{Sin} \frac{2 \pi}{3} \\
& =\operatorname{Cos} \frac{2 \pi}{3}+i \operatorname{Sin} \frac{2 \pi}{3} \\
& =\omega_{1} \\
\omega_{2}^{2} & =\left(\operatorname{Cos} \frac{2 \pi}{3}-i \operatorname{Sin} \frac{2 \pi}{3}\right)^{2} \\
& =\operatorname{Cos} \frac{4 \pi}{3}-i \operatorname{Sin} \frac{4 \pi}{3} \\
& =\operatorname{Cos} \frac{2 \pi}{3}+i \operatorname{Sin} \frac{2 \pi}{3} \\
& =\omega_{1}
\end{aligned}
$$

ii) as 1, $\mathrm{wr}_{1}, \mathrm{w}_{2}$ are the roots

$$
\text { of } 3^{3}-1=0
$$

\therefore Sum of roods $\left(-\frac{b}{a}\right)$

$$
\begin{aligned}
1+w_{1}+w_{2} & =0 \\
w_{1}+w_{2} & =-1
\end{aligned}
$$

iii) product of routs $\left(\frac{c}{a}\right)$

$$
\begin{array}{r}
\therefore \quad 1 \times w_{1} \times w_{2}=1 \\
w_{1} w_{2}=1
\end{array}
$$

b. i) integral represents the area .f $\frac{1}{4}$ of a archie radios a.

$$
\therefore \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x=\frac{1}{4} \pi a^{2}
$$

or

$$
\begin{aligned}
\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x \quad x & =\operatorname{sos} \sin \\
d x & =\cos \theta x
\end{aligned}
$$

$$
=\int_{0}^{\frac{\varepsilon}{a}} \sqrt{a^{2}-a^{2} \operatorname{san}^{2} \theta} \cdot a \cos \theta d \theta
$$

$$
=a^{2} \int_{0}^{\frac{\pi}{2}} \operatorname{Cos}^{2} \theta d \theta
$$

$$
=\frac{a^{2}}{2} \int_{0}^{\frac{\pi}{2}} 1+\cos 2 \theta d \theta
$$

$$
=\frac{a^{2}}{2}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\frac{\pi}{2}}
$$

$$
=\frac{1}{4} \pi a^{2}
$$

$$
\text { ii) } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
\therefore y^{2}=\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right)
$$

$$
\therefore y=\frac{b}{a} \sqrt{a^{2}-x^{2}}
$$

$$
\therefore \text { area }=4 \times \int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x
$$

$$
=\frac{4 b}{a} \times \frac{1}{4} \pi a^{2}
$$

$$
=\pi a b
$$

iii) area of coss-section

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=x^{2}
$$

$o r \frac{x^{2}}{a^{2} x^{2}}+\frac{y^{2}}{b^{2} x^{2}}=1$
is give by $A=\pi=b \lambda^{2}$

Q7(cont)
but $x^{2}=1-\frac{h^{2}}{n^{2}}$

$$
\begin{aligned}
\therefore A & =\pi a b\left(1-\frac{h^{2}}{H^{2}}\right)^{2} \\
\therefore V & =\pi a b \int_{0}^{H}\left(1-\frac{h^{2}}{H^{2}}\right) d h \\
& =\pi a b \int_{0}^{H} 1-\frac{2 h^{2}}{H^{2}}+\frac{h^{4}}{H^{4}} d h \\
& =\pi a b\left[h-\frac{2 h^{3}}{3 H^{2}}+\frac{h^{5}}{5 H^{4}}\right]_{0}^{H} \\
& =\pi a b \times \frac{8 H}{15} \\
& =\frac{8 \pi a b H}{15}
\end{aligned}
$$

Question 8
ai)

$$
\begin{aligned}
y & =c^{2} x^{-1} \\
\frac{d y}{d x} & =-c^{2} x^{-2}
\end{aligned}
$$

when $x=c p$

$$
\begin{aligned}
m_{+} & =\frac{-c^{2}}{c^{2} p^{2}} \\
& =\frac{-1}{p^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad y-\frac{c}{p} & =-\frac{1}{p^{2}}(x-c p) \\
p^{2} y-c \cdot p & =-x+c p
\end{aligned}
$$

$$
x+p^{2} y=2 p
$$

ii) Solve simuttanously to fid $\left(x_{1}, y_{1}\right)$

$$
\begin{aligned}
& x+p^{2} y=2 c p \\
& x+q^{2} y=2 c q
\end{aligned}
$$

subtract

$$
\begin{align*}
& p^{2} y-q^{2} y=2 c p-2 \alpha q \\
& y=\frac{2 c(p-y)}{p^{2}-q^{2}} \\
&=\frac{2 c}{p+q} \\
& \therefore \quad p+q=\frac{2 c}{y} \\
& \therefore \quad x+p^{2}\left(\frac{2 c}{p+q}\right)=2 c p \\
& x=\frac{2 c p-\frac{2 c p}{p+q}}{} \\
&=\frac{2 c p(p+q)-2 c p}{p+q} \\
&=\frac{2 c p q}{p+q}
\end{align*}
$$

$$
\therefore \quad \frac{x_{1}}{g_{1}}=\frac{\frac{2 c p q}{p+q}}{\frac{2 c}{p+q}}
$$

$=p q(\alpha)$
iii) $d^{2}=(c p-c q)^{2}+\left(\frac{c}{p}-\frac{c}{q}\right)^{2}$ by distance formula

$$
\begin{aligned}
& =c^{2}\left[(p-q)^{2}+\frac{(q-p)^{2}}{p^{2} q^{2}}\right] \\
& =c^{2}\left[(p-q)^{2}\left(1+\frac{1}{p^{2} q^{2}}\right)\right]
\end{aligned}
$$

(v) $d^{2}=c^{2}(p-q)^{2}\left(1+\frac{1}{p^{2} q^{2}}\right)$

$$
\text { sub: } \begin{aligned}
\frac{x}{y} & =p q \\
\frac{2 c}{y} & =p+q
\end{aligned}
$$

$$
(p-q)^{2}=(0+q)^{2}-4 p q
$$

$$
\begin{aligned}
& \therefore d^{2}=c\left(\frac{4 c^{2}}{y^{2}}-\frac{4 x}{y}\right)\left(1+\frac{y^{2}}{x^{2}}\right) \\
& d^{2}=4 c^{2}\left(\frac{c^{2}-x y}{y^{2}}\right)\left(\frac{x^{2}+y^{2}}{x^{2}}\right) \\
& x^{2} y^{2} d^{2}=4 c^{2}\left(c^{2}-x y\right)\left(x^{2}+y^{2}\right)
\end{aligned}
$$

b. i)

$$
\begin{aligned}
f(x) & =e^{-x}\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}\right) \quad x \geq 0 \\
f^{\prime}(x) & =-e^{-x}\left(1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}\right)+e^{-x}\left(1+\frac{x}{1}+\frac{x^{2}}{x!}+\cdots+\frac{x^{n-1}}{(n-1)!}\right) \\
& =-e^{-x}\left(\frac{x^{n}}{n!}\right) \\
& <0 \quad \text { for all } x \geqslant 0
\end{aligned}
$$

as

$$
\begin{aligned}
& e^{-x}>0 \\
& \frac{x^{n}}{n!}>0
\end{aligned}
$$

\therefore curve is decreasing for all $x \geqslant 0$
as $f^{\prime}(x)<0$
ii) when $x=0 \quad f(0)=1$
also curve is always decreasing

$$
\begin{array}{ll}
\therefore & f(x) \leqslant 0 \\
\therefore & e^{-x}\left(1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}\right) \leq 1 \\
\therefore & e^{x} \geqslant 1+x+\frac{x^{2}}{x!}+\cdots+\frac{x^{n}}{n!}
\end{array}
$$

