SYDNEY TECHNICAL HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION
 2005

Mathematics Extension 2

General Instuctions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value

Name: \qquad

Teacher: \qquad

Question	Question 1	Question 3	Question 4	Question 5	Question 6	Question 7	Question 8	Total

Question 1 (15 marks)
(a) Find $\int \frac{2 x}{x+1} d x$
(b) Find $\int \frac{d x}{\sqrt{8+2 x-x^{2}}}$
(c) Use partial fractions to find $\int \frac{2}{x^{2}-x} d x$
(d) Find $\int \sin 2 x \cos ^{3} x d x$
(e) Find $\int \frac{1}{\left(36+x^{2}\right)^{\frac{3}{2}}} d x$ using the substitution $x=6 \tan \theta$
(a) Find the gradient of the curve $2 x^{3}-x^{2} y+y^{3}=1$
at the point $(2,-3)$.
(b) Solve $|x-2|+|x+1|=3$

QUESTION 2 (Continued)

(c) The base of a solid is the area enclosed by the curve $y=x^{2}$,
the line $x=2$ and the x axis. Each cross-section of the solid by a plane perpendicular to the x axis is a regular hexagon with one side in the base of the solid.

Find the volume of the solid.
(d)

The sketch above shows the function $y=f(x)$.
Sketch possible graphs of the following
(i) $y=\frac{1}{f(x)}$
(ii) $y=\int f(x) d x$
(iii) $y^{2}=f(x)$

Question 3 (15 marks) (Start a new page)
(a) Given $z=-3 \sqrt{3}+3 i$
(i) express z in modulus argument form.
(ii) find the smallest positive integer n such that z^{n} is real.
(b) Evaluate $\operatorname{Im}\left(\frac{4}{1-i}\right)$
(c) Sketch the locus described by $|z+2|=|z-4 i|$
(d) (i) Sketch the intersection of the locus described by
$|z| \leq 3$ and $-\frac{\pi}{4} \leq \arg (z+3) \leq \frac{\pi}{4}$
(ii) If the complex number ω lies on the boundary of the region sketched in part (i), find the minimum value of $|\omega|$.
(e) $O A B C$ is a rectangle on the Argand diagram in which side $O C$ is twice the length of $O A$, where O is the origin.
(i) If A represents the complex number $1+2 i$, find the complex numbers represented by B and C given that the argument of the complex number represented by the point C is negative..
(ii) If this rectangle is rotated anticlockwise $\frac{\pi}{3}$ radians about O , find the complex number represented by the new position of A .
(a) For the hyperbola with equation $4 x^{2}-9 y^{2}=36$ find,
(i) the eccentricity 2
(ii) the equation of the asymptotes
(b) Given the point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
(i) Show that the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
at the point $P(a \sec \theta, b \tan \theta)$ has equation $\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$
(ii) If this tangent in part (i) meets the directrix of the hyperbola
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ corresponding to the focus at $S(a e, o)$ at the point Q, show that $\angle P S Q$ is a right angle.
(c) (i) Show that $(1-\sqrt{x})^{n-1} \sqrt{x}=(1-\sqrt{x})^{n-1}-(1-\sqrt{x})^{n}$
(ii) If $I_{n}=\int_{0}^{1}(1-\sqrt{x})^{n} d x$ for $n \geq 0$
show that $I_{n}=\frac{n}{n+2} I_{n-1}$ for $n \geq 1$.

Question 5 (15 marks) (Start a new page)

(a) The region bounded by the curves $y=x^{2}$ and $y=x+2$ is rotated about the line $x=3$. Use the method of cylindrical shells to find the volume of the solid of revolution formed.
(b) Solve the equation $8 x^{4}+12 x^{3}-30 x^{2}+17 x-3=0$ given that it has a triple root.
(c) If α, β, δ are the roots of $x^{3}+p x^{2}+q x+r=0$, find the polynomial equation with roots $\alpha^{2}, \beta^{2}, \delta^{2}$.
(d) The acceleration of a particle moving in simple harmonic motion is given by $\ddot{x}=-n^{2} x$ where x is the displacement of the particle from the origin and n is a constant.
(i) Show that the velocity v of the particle is given by $v^{2}=n^{2}\left(a^{2}-x^{2}\right) \quad$ where a is the amplitude of the motion.
(ii) Given that the speed of the particle is $V \mathrm{~m} / \mathrm{s}$ when it is d metres from the origin and that its speed is $\frac{V}{2} \mathrm{~m} / \mathrm{s}$ when it is $2 d$ metres from the origin, show that :
a) the particle's amplitude is $\sqrt{5} d$ metres.
β) the period of the motion is $\frac{4 \pi d}{V}$ seconds.

Question 6 (15 marks) (Start a new page) Marks
(a) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\cos x}$ using the substitution $t=\tan \frac{x}{2} \quad 4$
(b) A particle of mass m is fired vertically upwards with initial velocity $V \mathrm{~m} / \mathrm{s}$ and is subjected to air resistance equal to $m k v$ Newtons where k is a constant and y is the velocity of the particle in metres per second as it moves through the air.
(i) Explain why the equation of motion of the particle is given by $\ddot{x}=-g-k v$ where g is the acceleration due to gravity.
(ii) Show that the maximum height reached by the particle is given by

$$
H=\frac{V}{k}-\frac{g}{k^{2}} \ln \left(1+\frac{k V}{g}\right)
$$

(c) (i) Find the seven complex roots of the equation $z^{7}=1$.
(ii) If ω is the complex root of $z^{7}=1$
with smallest positive argument, find the value of

$$
1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}
$$

(iii) Find the cubic equation whose roots are

$$
\omega+\omega^{6}, \omega^{2}+\omega^{5}, \omega^{3}+\omega^{4}
$$

(a)

In the diagram above, OA is a radius of a circle C with centre O , and two circles D and E are drawn touching the line OA at A as shown. The larger circle D meets circle C again at B, and the line $A B$ meets the smaller circle E again at P. The line OP meets circle E again at Q , and the line BQ meets the circle D again at R .
(i) Let $\angle O A P=\theta$. Explain why $\angle P Q A=\theta$.
(ii) Prove that the points $\mathrm{O}, \mathrm{B}, \mathrm{Q}$ and A are concyclic.
(iii) Prove that $O Q$ bisects $\angle B Q A$.
(iv) Prove that $O Q / / A R$

QUESTION 7 (Continued)
(b)

In the diagram above, the curves $y=\ln x$ and $y=\ln (x-1)$ are sketched and $k-1$ rectangles are constructed between $x=2$ and $x=k+1$ where $k \geq 2$.

Let $S=\ln 2+\ln 3+\ln 4+\ldots \ldots+\ln k$.
(i) Explain why S represents the sum of the areas of the $k-1$ rectangles.
(ii) Use an appropriate integration method to show that

$$
\begin{equation*}
\int_{2}^{k+1} \ln (x-1) d x=k \ln k-k+1 \tag{4}
\end{equation*}
$$

(iii) Hence show that $k^{k}<k!e^{k-i}<\frac{1}{4}(k+1)^{k+1}$ where $k \geq 2$

$$
(\text { note } n!=n(n-1)(n-2) \ldots \ldots \ldots . .3 \times 2 \times 1)
$$

Question 8 (15 marks) (Start a new page)
(a) Find all x such that $\sin x=\cos 5 x$ and $0<x<\pi$.
(b) If z is a complex number for which

$$
|z|=1 \text { and } \arg (z)=\theta, \quad 0 \leq \theta \leq \frac{\pi}{2},
$$

find the value of $\arg \left(\frac{2}{1-z^{2}}\right)$ in terms of θ.

Question 8 continued on next page.

The curve $f(x)=\frac{2 x}{1+x^{2}}$ is sketched above. It has a maximum turning point at $(1,1)$ and minimum turning point at $(-1,-1)$.
(i) State the range of $f(x)=\frac{2 x}{1+x^{2}}$
(ii) Let x_{0} be a real number not equal to 1 or -1 and consider the sequence of real numbers defined by $x_{n+1}=f\left(x_{n}\right)$ for $n=0,1,2, \ldots \ldots .$.
(α) Given $x_{1}=g(r)$ and $g(x)=\frac{e^{2 x}-1}{e^{2 x}+1} \quad$ express r in terms of x_{1}.
(β) Hence deduce that there exists a real number r such that $x_{1}=g(r)$ where $g(x)=\frac{e^{2 x}-1}{e^{2 x}+1}$.
(δ) Show that $\frac{2 g(x)}{1+(g(x))^{2}}=g(2 x)$.
(γ) Hence, using the above results and Mathematical Induction
show that $\quad x_{n}=g\left(2^{n-1} r\right)$ for $n=1,2,3, \ldots \ldots \ldots$

End of Paper

Solutions Ext II 2005 Trial
Question 1
a)

$$
\begin{aligned}
& \int \frac{2 x}{x+1} d x \\
= & 2 \int 1-\frac{1}{x+1} d x \\
= & 2 x-2 \ln (x+1)+c
\end{aligned}
$$

b) $\int \frac{d x}{\sqrt{8+2 x-x^{2}}}$

$$
\begin{aligned}
& =\int \frac{d x}{\sqrt{9-(x-1)^{2}}} \\
& =\operatorname{Sin}^{-1} \frac{x-1}{3}+c
\end{aligned}
$$

c) $\int \frac{2}{x^{2}-x} d x$

$$
\begin{aligned}
& \frac{2}{x(x-1)}=\frac{A}{x}+\frac{B}{x-1} \\
& \therefore 2=A(x-1)+B(x) \\
& \therefore A=-2, B=2 \\
& \therefore \int \frac{2}{x^{2}-x} d x \\
& =\int \frac{2}{x-1}-\frac{2}{x} d x \\
& =2 \ln (x-1)-2 \ln x+c \\
& =2 \ln \left(\frac{x-1}{x}\right)+c
\end{aligned}
$$

d)

$$
\begin{aligned}
& \int \sin 2 x \cos ^{3} x d x \\
& =2 \int \sin x \cos ^{4} x d x \\
& =-\frac{2}{5} \cos ^{5} x d x
\end{aligned}
$$

e)

$$
\begin{aligned}
& x=6 \tan \theta \\
& d x=6 \sec ^{2} \theta d \theta \\
& \int \frac{1}{\left(36+x^{2}\right)^{\frac{3}{2}} d x} \\
& =\int \frac{6 \sec ^{2} \theta d \theta}{\left(36+36 \tan ^{2} \theta\right)^{2}} \\
& =\frac{1}{36} \int \frac{\sec ^{2} \theta d \theta}{\left(1+\tan ^{2} \theta\right)^{\frac{3}{2}}} \\
& =\frac{1}{36} \int \frac{\sec ^{2} \theta d \theta}{\left(\sec ^{2} \theta\right)^{\frac{2}{2}}} \\
& =\frac{1}{36} \int \frac{d \theta}{\sec ^{\theta}} \\
& =\frac{1}{36} \int \cos ^{2} \theta d \theta \\
& =\frac{1}{36} \sin \theta+c \\
& =\frac{x}{36 \sqrt{x^{2}+36}+c}
\end{aligned}
$$

Question 2
a)

$$
\begin{aligned}
& 2 x^{3}-x^{2} y+y^{3}=1 \\
& 6 x^{2}-\left[2 x y+x^{2} \frac{d y}{d x}\right]+3 y^{2} \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{2 x y-6 x^{2}}{-x^{2}+3 y^{2}}
\end{aligned}
$$

when $x=2, y=-3$

$$
\begin{aligned}
\therefore m_{T} & =\frac{-12-24}{-4+27} \\
& =\frac{-36}{23}
\end{aligned}
$$

b)

$$
\therefore \quad-1 \leqslant x \leqslant 2
$$

c) hexagon is 6 equilational Δ 's with side length y.

$$
\begin{aligned}
A(x) & =6 \times \frac{1}{2}+y+y+\operatorname{Sin} 60^{\circ} \\
& =\frac{3 \sqrt{3}}{2} y^{2}
\end{aligned}
$$

bat $y=x^{2}$

$$
\begin{aligned}
& \therefore \quad A(x)=\frac{3 \sqrt{3}}{2} x^{4} \\
& \therefore \quad \Delta V(x)=\frac{3 \sqrt{3}}{2} x^{4} d x
\end{aligned}
$$

$$
\begin{aligned}
\therefore V & =\int_{0}^{2} \frac{3 \sqrt{3}}{2} x^{4} d x \\
& \left.=\frac{3 \sqrt{3}}{10} x^{3}\right]_{0}^{2} \\
& =\frac{48 \sqrt{3}}{5} \quad \text { cubs units }
\end{aligned}
$$

iii)

Question 3
a)

$$
\begin{aligned}
131 & =\sqrt{(3 \sqrt{3})^{2}+3^{2}} \\
& =\sqrt{36} \\
& =6 \\
\tan \theta & =\frac{3}{3 \sqrt{3}} \\
\theta & =\frac{\pi}{6} \\
\therefore \arg (\gamma) & =\frac{5 \pi}{6} \\
\therefore z & =6\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)
\end{aligned}
$$

11) to be racial $\frac{\sin \pi}{6}=-\pi$ (m isintegor)
\therefore an equals 6 .
b)

$$
\begin{aligned}
\frac{4}{1-i} & =\frac{4}{1-i} \times \frac{1+i}{1+i} \\
& =\frac{4+4 i}{2}
\end{aligned}
$$

$$
\therefore I-\left(\frac{4}{1-2}\right)=2
$$

c)

d)

ii)

let $|w|=x$

$$
\begin{aligned}
\therefore \quad x^{2}+x^{2} & =3^{2} \\
2 x^{2} & =9 \\
x & =\frac{3}{\sqrt{2}} \\
\therefore m-|w| & =\frac{3}{\sqrt{2}}
\end{aligned}
$$

e)

i)

$$
\begin{aligned}
C & =(-i)(2)(1+2 i) \\
& =4-2 i \\
B & =(1+2 i)+(4-2 i) \\
& =5
\end{aligned}
$$

in) Willy A by $\operatorname{Can}_{3} \frac{\pi}{3}+i \operatorname{Son} \frac{\pi}{3}$ or $\frac{1}{2}+\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
\therefore A^{3} & =(1+2 i)\left(\frac{1}{2}+2 \frac{\sqrt{3}}{2}\right) \\
& =\frac{1}{2}-\sqrt{3}+i\left(\frac{\sqrt{3}}{2}+1\right)
\end{aligned}
$$

Question 4
a) $\frac{x^{3}}{4}-\frac{y^{3}}{4}=1$
i) $b^{2}=a^{2}\left(e^{2}-1\right)$
$4=9\left(e^{2}-1\right)$

$$
e=\frac{\sqrt{13}}{3}
$$

ii) $y= \pm \frac{2 x}{3}$
b)

$$
\begin{aligned}
& \text { i) } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& \frac{2 x}{a^{2}}-\frac{2 y}{b^{3}} \cdot \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{b^{2} x}{a^{2} y} \\
& \therefore \quad m-\frac{b^{2} a \sec \theta}{a^{2} b \tan \theta} \\
& =\frac{b \sec \theta}{a+\operatorname{sen} \theta} \\
& \therefore \quad \text { using } y-y=-\left(x-x_{1}\right) \\
& y-b \tan \theta=\frac{b \sec \theta}{a \tan \theta}(x-0 \operatorname{sen} \theta) \\
& b x \operatorname{Sec} \theta-a y+\infty=a\left(\operatorname{Sec}^{2} 0-\operatorname{Tan}^{2} \theta\right) \\
& b x \sec \theta-a y+a n=a b
\end{aligned}
$$

$$
\therefore \frac{x \sec \theta}{a}-\frac{y+a n}{b}=1
$$

ii) directrix $x=\frac{a}{e}$ sub. ants tangent

$$
\frac{a}{e} \cdot \frac{5 \operatorname{sen}}{a}-\frac{y+a x}{b}=1
$$

$$
y=\frac{b(\operatorname{sen} \theta-e)}{e \operatorname{Tos} \theta}
$$

$$
\therefore \quad 0\left(\frac{a}{e}, \frac{b(\sec \theta-c)}{\operatorname{cTs} \theta}\right)
$$

$$
P(a \operatorname{Sen} \theta, b \operatorname{Tec})
$$

$$
s(a c, 0)
$$

$$
\begin{aligned}
\therefore m_{\cos } & =\frac{\frac{b(\sec \theta-\theta)}{c+\tan \theta}}{\frac{a}{e}-a} \\
& =\frac{b(\sec \theta-c)}{a\left(1-e^{\theta}\right)+\operatorname{con} \theta}
\end{aligned}
$$

$$
m_{p 3}=\frac{b+2 \theta}{a(\sec -2)}
$$

$$
\begin{aligned}
& \therefore \frac{b+\cos \theta}{a(s a c \theta-\infty)} \cdot \frac{b\left(5 c^{2} \theta-c\right)}{a\left(1-e^{2}\right)+\theta} \\
& =\frac{b^{2}}{a^{2}\left(1-e^{2}\right)} \\
& =\frac{b^{2}}{-b^{2}} \quad b^{2}=c^{2}\left(e^{2}-1\right)
\end{aligned}
$$

$$
=-1
$$

$\therefore<\operatorname{CS} \alpha$ is right age.
c)

$$
\text { i) } \begin{aligned}
R H S & =(1-\sqrt{x})^{n-1}-(1-\sqrt{x})^{n} \\
& =(1-\sqrt{x})^{n-1}[1-(1-\sqrt{x})] \\
& =(1-\sqrt{x})^{n-1} \sqrt{x} \\
& =\text { LAS }
\end{aligned}
$$

i)

$$
\begin{aligned}
& I_{n}=\int_{0}^{1}(1-\sqrt{x})^{n} d x \\
& u=(1-\sqrt{x})^{n} \quad u^{\prime}=n(1-\sqrt{x})^{n-1} \cdot-\frac{1}{2} x^{-\frac{1}{t}} \\
& v=x \quad v^{\prime}=1
\end{aligned}
$$

\therefore using integration by ports

$$
\begin{aligned}
I_{n} & \left.=x(1-\sqrt{x})^{n}\right]_{0}^{1}+n \int_{0}^{1} x(1-\sqrt{x})^{n-1} \frac{1}{2} x^{-1} d x \\
& =\frac{n}{2} \int_{0}^{1} \sqrt{x}(1-\sqrt{x})^{n-1} d x \\
& =\frac{n}{2} \int_{0}^{1}(1-\sqrt{x})^{n-1}-(1-\sqrt{x}) d x \\
& =\frac{n}{2}\left[I_{n-1}-I_{n}\right] \\
\left(\frac{n}{2}+1\right) I_{n} & =\frac{n}{2} I_{n-1} \\
(n+2) I_{n} & =n I_{n-1} \\
I_{n} & =\frac{n}{n+2} I_{n-1}
\end{aligned}
$$

Question 5
a)

by sarpation $x=-1,2$.
$\Delta V=2 \pi \times$ odims hergt + thicknes

$$
\begin{aligned}
& 2 \pi \times(3-x) \times\left(x+2-x^{2}\right) \times \Delta x \\
& =2 \pi\left[6+x-4 x^{2}+x^{3}\right] \Delta x
\end{aligned}
$$

$$
\begin{aligned}
\therefore V & =2 \pi \int_{-1}^{2} 6+x-4 x^{2}+x^{3} d x \\
& =2 \pi\left[6 x+\frac{1}{2} x^{2}-\frac{4}{3} x^{3}+\frac{1}{4} x^{4}\right]_{-1}^{2} \\
& =\frac{45 \pi}{2} \quad \text { cobuc mits }
\end{aligned}
$$

b)

$$
\begin{aligned}
& P(x)=8 x^{4}+12 x^{3}-30 x^{2}+17 x-3 \\
& P^{\prime}(x)=32 x^{3}+36 x^{2}-60 x+17 \\
& P^{\prime \prime}(x)=96 x^{2}+72 x-60
\end{aligned}
$$

o rook if $P^{\prime \prime}(x)=0$ is tupheot $f P(x)=0$

$$
\begin{gathered}
46 x^{2}+72 x-60=0 \\
12\left(8 x^{2}+6 x-5\right)=0 \\
12(4 x+5)(2 x-1)=0 \\
x=-\frac{3}{4}, \frac{1}{2} \\
\rho^{\prime}\left(-\frac{5}{4}\right)+0 \\
\rho^{\prime}\left(\frac{1}{4}\right)=0 \\
\therefore \quad x=\frac{1}{2}+4+p 6+\frac{1}{2} \\
\therefore \quad \frac{1}{2}+\frac{1}{2}+\alpha=\frac{12}{8} \\
\therefore \quad x=-3,4,4,
\end{gathered}
$$

(2ushow 5 (com)
c) requinat polynoorid is $P(\sqrt{x})=0$

$$
\begin{aligned}
& (\sqrt{x})^{3}+p(\sqrt{x})^{2}+q \sqrt{x}+r=0 \\
& x \sqrt{x}+q \sqrt{x}=-p x-r \\
& (x \sqrt{x}+q \sqrt{x})^{2}=(-p x-r)^{2} \\
& x^{3}+2 q x^{2}+q^{2} x=p^{2}+2 p r x+r^{2} \\
& x^{3}+\left(2 q-p^{2}\right) x^{2}+(q-2 p r) x-r^{2}=0
\end{aligned}
$$

d)

$$
\begin{gathered}
\ddot{x}=-n^{2} x \\
\frac{d}{d x}\left(\frac{1}{2} w^{2}\right)=-n^{2} x \\
\frac{1}{2} w^{2}=-\frac{n^{2}}{2} x^{2}+c
\end{gathered}
$$

when $w=0 \quad x=a$

$$
\begin{aligned}
\therefore \quad c & =\frac{n^{2} a^{2}}{2} \\
\therefore \quad \frac{1}{2} v^{2} & =\frac{n^{2} a^{2}}{2}-\frac{n^{2} x^{2}}{2} \\
v^{2} & =n^{2}\left(a^{2}-x^{2}\right)
\end{aligned}
$$

p) using pod α)

$$
\begin{aligned}
& V^{2}=n^{2}\left(5 d^{2}-d^{2}\right) \\
& v^{2}=n^{2} 4 d^{2} \\
& n^{2}=\frac{v^{2}}{4 d^{2}} \\
& n=\frac{v}{2 d}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { pend } & =\frac{2 \pi}{n} \\
& =\frac{4 \pi d}{v}
\end{aligned}
$$

ii) from information

$$
\begin{aligned}
& V^{2}=n^{2}\left(a^{2}-d^{2}\right) \\
& \frac{V^{2}}{4}=n^{2}\left(a^{2}-4 d^{2}\right)
\end{aligned}
$$

ג) Solve for a

$$
\begin{aligned}
\therefore \quad \frac{n^{2}\left(a^{2}-d^{2}\right)}{4} & =n^{2}\left(a^{2}-4 d^{2}\right) \\
a^{2}-d^{2} & =4 a^{2}-16 d^{2} \\
3 a^{2} & =15 d^{2} \\
a^{2} & =5 d^{2} \\
a & =\sqrt{5} d \\
\therefore \quad \text { amplitude } & =\sqrt{5} d
\end{aligned}
$$

Qusstion 6
4) $\int_{0}^{\frac{2}{2}} \frac{d x}{2+\cos x}$

$$
1=\tan \frac{x}{2}
$$

$$
d x=\frac{24}{1+t^{2}}
$$

$$
\begin{aligned}
& \frac{1}{k} \int \frac{g+k v}{g+k v}-\frac{g}{g+k v} d v=-x+i \\
& \frac{1}{k} \int 1-\frac{g}{g+k v} d a=-x+c \\
& \frac{1}{k}\left[v-\frac{9}{k} \operatorname{lo}(g+k v)\right]=-2+c
\end{aligned}
$$

$$
\cos x=\frac{1-4^{2}}{1+t^{2}}
$$

When $\quad x=0 \quad a=V$

$$
\therefore \quad \int_{0}^{1} \frac{\frac{2 d t}{1+t^{2}}}{2+\frac{1-t^{2}}{1+t^{2}}}
$$

$$
\therefore \quad c=\frac{1}{k}\left[V-\frac{9}{k} \ln (g+k V)\right]
$$

$y=0$ at gractert hight $(x=H)$

$$
=\int_{0}^{1} \frac{2 d t}{3+t^{2}}
$$

$$
\left.=\frac{2}{\sqrt{3}} \tan ^{-1} \frac{t}{\sqrt{3}}\right]_{0}^{1}
$$

$$
=\frac{2}{\sqrt{3}} \cdot \frac{\pi}{6}
$$

$$
=\frac{\pi}{3 \sqrt{3}}
$$

$$
\begin{aligned}
& \therefore \frac{1}{k}[-9 \\
& k\ln 9]=-H+\frac{1}{k}\left[V-\frac{9}{k} \ln (g+k V)\right. \\
& H=\frac{1}{k}\left[V-\frac{3}{k} \ln (g+k v)+\frac{9}{k} \ln g\right] \\
&=\frac{1}{k}\left[V-\frac{9}{k} \ln \left(\frac{9+k V}{g}\right)\right] \\
&=\frac{V}{k}-\frac{9}{k^{2}} \ln \left(1+\frac{k v}{g}\right)
\end{aligned}
$$

b) i) direction of notim twe tw freses (mg and mokv) ectiag agant motion

$$
\begin{aligned}
\therefore \quad m a & =-g-k v \\
\therefore \quad \ddot{x} & =-g-k v
\end{aligned}
$$

ii)

$$
\begin{gathered}
\ddot{x}=-g-k v \\
\therefore \quad y \frac{d x}{d x}=-(g+k x) \\
\int \frac{v d a}{g+k w}=-\int d x
\end{gathered}
$$

Question 6 (con)
c) i) roots ave

$$
\begin{array}{ll}
z_{1}=1 & \left(=\omega^{2}\right) \\
3_{2}=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7} & \left(=w^{3}\right) \\
3_{3}=\cos \frac{4 \pi}{7}+i \sin \frac{4 \pi}{7} & \left(=w^{3}\right) \\
3_{4}=\cos \frac{6 \pi}{7}+i \sin \frac{6 \pi}{7} & \left(=\omega^{4}\right) \\
3_{5}=\cos \frac{8 \pi}{7}+i \sin \frac{8 \pi}{7} & \left(=w^{5}\right) \\
3_{6}=\cos \frac{10 \pi}{7}+i \sin \frac{10 \pi}{7} & \left(=w^{6}\right) \\
3_{7}=\cos \frac{12 \pi}{7}+i \sin \frac{12 \pi}{7} &
\end{array}
$$

(or equodent exprosym)
ii) roots con be expresiach as $\mathrm{J}, \mathrm{w}, \mathrm{w}^{2}, \mathrm{w}^{3}, \mathrm{w}^{4}, w^{3}, w^{3}$
\therefore sum of rods ($-\frac{5}{a}$) is

$$
1+w+w^{2}+w^{3}+w^{4}+w^{3}+w^{6}=0
$$

(ii) rocks $w+w^{5}, w^{2}+w^{5}, w^{3}+w^{4}$

Sum of rads 1 at anime: $\quad w+w^{6}+w^{2}+w^{5}+w^{3}+w^{4}=-1$
Sur of roots 2 at a time: $\left(w+w^{6}\right)\left(w^{2}+w^{5}\right)+\left(w+w^{6}\right)\left(w^{3}+w^{4}\right)+$

$$
\begin{aligned}
& \quad\left(w^{2}+w^{3}\right)\left(w^{3}+w^{4}\right) \\
& =w^{3}+w^{4}+w^{8}+w^{1}+w^{4}+w^{3}+w^{4}+w^{10}+w^{3}+w^{6}+w^{8}+w^{9} \\
& =2\left(w^{2}+w^{2}+w^{2}+w^{4}+w^{3}+w^{6}\right) \quad \text { noe } w^{8}=w^{1} \\
& =-2 \quad w^{4}=w^{2}
\end{aligned}
$$

Sum of rots 3 at a time:

$$
\begin{aligned}
& \left(w+w^{6}\right)\left(w^{2}+w^{5}\right)\left(w^{2}+w^{4}\right) \\
= & \left(w+w^{6}\right)\left(w^{5}+w^{6}+w^{8}+w^{9}\right) \\
= & w^{6}+w^{7}+w^{9}+w^{10}+w^{11}+w^{12}+w^{14}+w^{5} \\
= & w^{6}+1+w^{2}+w^{2}+w^{4}+w^{5}+1+w^{5} \\
= & 2+-1 \\
= & 1
\end{aligned}
$$

\therefore requad polynomil

$$
\begin{aligned}
& x^{3}-(-1) x^{2}+(-2) x-(1)=0 \\
& x^{3}+x^{2}-2 x-1=0
\end{aligned}
$$

Qu uestion 7
a) i) $\angle P Q A=\theta$ (angle between tangent and chord equals angle in the alternate segment)
ii) $\angle O B A=\theta$ (angles opposite equal sides of triangle cove equal) ($O A=O B$ redis of circle)
$\therefore 0, B, Q, A$ concyelic as $O A$ subtends equal angles ot B and Q.
iii) $\angle B Q O=\angle B A O=\theta$ (chord $O B$ subtends equal angles of Q oud A) ($0, B, Q, A$ encylic)

$$
\begin{aligned}
& \therefore \angle B Q O=\angle P Q A=\theta \\
& \therefore O Q \text { bisects } \angle B Q A .
\end{aligned}
$$

iv) $\angle B R A=\angle O A B=\theta$ (angle between tangent and shod equals angle in alt ornate segment)

$$
\therefore \quad \angle B R A=\angle B Q O=\theta
$$

$\therefore O Q \| A R$ (comersponding angles equal)
b) i) each rectangle has width 1 vast ad haybtus $\ln 2, \ln 3, \ln 4, \ldots, \ln k$ and the 3 ($k-1$) metangley.

$$
\begin{aligned}
\therefore \text { sum of ares } & =1 \times \ln 2+1+\ln 3+1 \times \ln 4+\cdots+\ln +\ln k \\
& =\ln 2+\ln 3+\ln 4+\ldots+\ln k
\end{aligned}
$$

ii) $\int_{2}^{k+1} \ln (x-i) d x$

$$
\begin{array}{ll}
u=\ln (x-1) & u^{\prime}=\frac{1}{x-1} \\
v=x & v^{\prime}=1
\end{array}
$$

$$
\begin{aligned}
& =x \ln (x-1)]_{2}^{k+1}-\int_{2}^{k+1} \frac{x}{x-1} d x \\
& =(k+1) \ln k-2 \ln 1-\left[\int_{2}^{k+1} 1+\frac{1}{x-1} d x\right]
\end{aligned}
$$

$$
\begin{aligned}
& =(k+1) \ln k-[x+\ln (x-1)]_{2}^{k+1} \\
& =(k+1) \ln k-[(k+1+\ln k)-(2+\ln 1)] \\
& =(k+1) \ln k-k-1-\ln k+2 \\
& =\ln k+\ln k-k-\ln k+1 \\
& =k \ln k-k+1
\end{aligned}
$$

iii) from diagram o we can see

$$
\int_{2}^{k+1} \ln (x-1) d x<S<\int_{2}^{k+1} \ln x d x
$$

now

$$
\begin{aligned}
\int_{2}^{k+1} \ln x d x & =x \ln x]_{2}^{k+1}-\int_{2}^{k+1} d x \\
& =[(k+1) \ln (k+1)-2 \ln 2]-[x]_{2} \\
& =(k+1) \ln (k+1)-\ln 4-k+1
\end{aligned}
$$

and

$$
\begin{aligned}
S & =\ln 2+\ln 3+\ln 4+\cdots+\ln k \\
& =\ln k!
\end{aligned}
$$

$$
\begin{aligned}
\therefore \ln k-k+1 & <\ln k!\quad<(k+1) \ln (k+1)-\ln 4-k+1 \\
k \ln k & <\ln k!+k-1
\end{aligned} \begin{aligned}
\ln k^{k} & <(k+1) \ln (k+1)-\ln 4 \\
k^{k} & <e^{\ln k!+k+1}+\frac{\ln (k+1)}{4} \\
k^{k}<1 & <\frac{(k+1)^{k+1}}{4} \\
k^{k+1} e^{k-1} & <\frac{1}{4}(k+1)^{k+1}
\end{aligned}
$$

Question 8
a)

$$
\operatorname{Sin} x=\cos 5 x
$$

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-x\right)=\cos 5 x \\
& 5 x=2 n \pi=\left(\frac{\pi}{2}-x\right)
\end{aligned}
$$

$$
\therefore \quad 5 x=2 n \pi+\left(\frac{\pi}{2}-x\right)
$$

$$
5 x=2 n \pi-\left(\frac{\pi}{2}-x\right)
$$

$$
x=\frac{1}{6}\left(2 \times \pi+\frac{\pi}{2}\right)
$$

$$
x=\frac{1}{4}\left(2 n T-\frac{\pi}{2}\right)
$$

when $n=0$

$$
\begin{array}{ll}
x=\frac{\pi}{12} & n=1 \\
x=\frac{3}{12} & n=2 \\
x=\frac{3 \pi}{8}
\end{array}
$$

$$
x=\frac{\pi}{\pi}
$$

na
ne z

$$
x=\frac{3 \pi}{4}
$$

\therefore Solution $x=\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{3 \pi}{4}, \frac{3 \pi}{8}, \frac{7 \pi}{8}$
b)

$$
\begin{aligned}
& \operatorname{Arg}\left(\frac{2}{1-z^{2}}\right) \\
= & \operatorname{Arg} 2-\operatorname{Arg}\left(1-z^{2}\right) \\
= & 0-\frac{1}{2}(\pi-2 \theta) \\
= & \frac{\pi}{2}-\theta
\end{aligned}
$$

) i) $-1 \leqslant f(x) \leqslant 1$
ii) α)

$$
\begin{aligned}
& x_{1}=g(r) \\
& x_{1}=\frac{e^{2 r}-1}{e^{2 r}+1} \\
& x_{1} e^{2 r}+x_{1}=e^{2 r}-1 \\
& e^{2 r}=\frac{1+x_{1}}{1-x_{1}} \\
& r=\frac{1}{2} \ln \left(\frac{1+x_{1}}{1-x_{1}}\right)
\end{aligned}
$$

(阝) $1+x_{1}$ and $1-x_{1}$ are bath positive as $-1<x_{1}<1$
$\therefore \quad \frac{1+x_{1}}{1-x_{1}}$ is positive
$\therefore \quad \ln \left(\frac{1+x_{1}}{1-x_{1}}\right)$ exists
$\therefore r$ exists
(8)

$$
\begin{aligned}
\frac{2 g(x)}{1+(g(x))^{2}} & =\frac{2\left(e^{2 x}-1\right)}{e^{2 x}+1} \div\left(1+\left(\frac{e^{2 x}-1}{e^{2 x}+1}\right)^{2}\right) \\
& =\frac{2\left(e^{2 x}-1\right)}{e^{2 x}+1} \times \frac{\left(e^{2 x}+1\right)^{2}}{\left(e^{2 x}+1\right)^{2}+\left(e^{2 x}-1\right)^{2}} \\
& =\frac{2\left(e^{2 x}-1\right)\left(e^{2 x}+1\right)}{2\left(e^{4 x}+1\right)} \\
& =\frac{e^{4 x}-1}{e^{4 x}+1} \\
& =g(2 x)
\end{aligned}
$$

(8) from part β) the result is the for $n=1$ assume true for $n=k$ ie. $x_{k}=g\left(2^{k-1} \cdot r\right)$ test for $n=k+1$

$$
\begin{aligned}
\therefore \quad x_{k+1} & =f\left(x_{k}\right) \\
& =\frac{2 x_{k}}{1+\left(x_{k}\right)^{2}} \\
& =\frac{2 g\left(2^{k-1} \cdot r\right)}{1+\left(g\left(2^{k-1} \cdot r\right)\right)^{2}} \\
& =9\left(2 \cdot 2^{k-1} \cdot r\right) \\
& =9\left(2^{k} \cdot r\right)
\end{aligned}
$$

which is the required result

