\qquad

SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12 HSC COURSE

Extension 2 Mathematics

TRIAL HIGHER SCHOOL CERTIFICATE

August 2012

TIME ALLOWED: 180 minutes

READING TIME: 5 minutes

General Instructions:

- Write your name and class at the top of this page, and on your answer booklet.
- Hand in all of your answers and this question sheet.
- Use only blue or black pen
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- Marks indicated within each question are a guide only and may be varied at the time of marking
- START ALL QUESTIONS ON A NEW PAGE
- Approved calculators may be used.
- A table of Standard Integrals is attached. You may detach this page now.

Section I Pages 1 to 5

10 marks

- Colour in the circle on your Section I answer sheet corresponding to the correct answer
- There is only one correct answer for all questions in this section
- Allow about 15 minutes for this section

Section II Pages 6 to 16

90 marks

- Allow about 2 hours 45 minutes for this section

SECTION I

1 If $z=1+\sqrt{3} i$, then $z^{4}=$

A $\quad 8+8 \sqrt{3} i$
B $\quad 8-8 \sqrt{3} i$
C $\quad-8+8 \sqrt{3} i$
D $\quad-8-8 \sqrt{3} i$
$2 \quad \int \sin ^{3} x d x=$

A $\quad \frac{1}{4} \sin ^{4} x+k$
B $\quad-\cos x+\frac{1}{3} \cos ^{3} x+k$
C $\quad-\cos x-\frac{1}{3} \cos ^{3} x+k$
D $\quad \cos x-\frac{1}{3} \cos ^{3} x+k$

3 Which of the curves below represents the curve $y=\sin ^{-1}(\cos x)$ for $-2 \pi \leq x \leq 2 \pi$

A

B

C

D

4 Given that $\tan x+\cot x=\frac{1}{\sin x \cos x}$ then a Primitive of $\frac{1}{\sin x \cos x}$ is

A $\frac{1}{\cos ^{2} x} \log \sin x$

B $\quad \log \sin x \cos x$

C $\quad \log |\tan x|$

D $\quad \log \cot x$

5 A quadratic expression with zeros of $4+i$ and $4-i$ is:
A $\quad x^{2}-8 x+17$
B $\quad x^{2}+8 x+17$
C $\quad x^{2}-8 x-17$
D $\quad x^{2}+8 x-17$

6 The derivative of the curve

$$
x^{3}+9 x^{2}-y^{2}+27 x-4 y+23=0 \quad \text { is: }
$$

A $\quad \frac{d y}{d x}=\frac{x^{2}+6 x+9}{2 y}$

B $\quad \frac{d y}{d x}=\frac{x^{2}+6 x+9}{-2 y}$

C $\frac{d y}{d x}=\frac{3 x^{2}+18 x+27}{-2 y-4}$

D $\quad \frac{d y}{d x}=\frac{3 x^{2}+18 x+27}{2 y+4}$
$7 \quad$ For the curve given by:

$$
\begin{array}{ll}
f(x)=x^{2}, & 0 \leq x \leq 1 \\
f(x)=2 x-1, & x>1
\end{array}
$$

Which of the following statements is correct?
A $\quad f(x)$ has a discontinuity at $x=1$
B $\quad f(x)$ is differentiable at $x=1$
C $\quad f(x)$ has an asymptote at $x=1$
D $\quad f(x)$ has a stationary point at $x=1$

8 The graph of $y=f(x)$ is given below.

Which of the following represents $\mathrm{y}=\frac{1}{f(x)}$?

A

C

D

9 It is known that $x=2-3 i$ is a solution to $x^{4}-6 x^{3}+26 x^{2}-46 x+65=0$ Another solution is $x=$

A $\quad 1-2 i$
B $\quad-1-2 i$
C $\quad-2-i$
D $\quad-2+i$

10 A particle moves in a straight line so that its velocity at any particular time is given by $v=k(a-x)$, where x is its displacement from a given point O.

The particle is initially at O.
Which of the following gives an expression for x :
A

$$
x=a\left(1-e^{k t}\right)
$$

B

$$
x=a\left(1+e^{k t}\right)
$$

C

$$
x=a\left(1-e^{-k t}\right)
$$

D

$$
x=a\left(1+e^{-k t}\right)
$$

SECTION II

QUESTION 11:

Marks

2
(a)

Find $\int \frac{d x}{x^{2}-6 x+13}$

4
(b) (i) Find values of A, B and C so that

$$
\frac{2 x^{2}+x+9}{\left(x^{2}+4\right)(x+1)}=\frac{A x+B}{x^{2}+4}+\frac{C}{x+1}
$$

(ii) Hence find $\int_{0}^{2} \frac{2 x^{2}+x+9}{\left(x^{2}+4\right)(x+1)} d x$ giving your answer in exact form
(d)

Let $\mathrm{x}=\alpha$ be a root of the polynomial $\mathrm{P}(x)=x^{4}+A x^{3}+B x^{2}+A x+1$ Where $(B+2)^{2} \neq 4 A^{2}$
(i) Show that α cannot be 0,1 or -1

1
(ii) Show that $\frac{1}{\alpha}$ is a root of $\mathrm{P}(x)=0$
(ii) P is a point in \boldsymbol{R}, representing the complex number z . What is the maximum value of $|z|$?
(iii) The tangent to the curve at P cuts the x-axis at the point T.

By using the nature of $\triangle \mathrm{OPT}$, or otherwise, find the exact area of $\triangle \mathrm{OPT}$.
(c) (i) On an Argand Diagram, draw and shade the region \boldsymbol{R} given by

$$
|z-2-2 i| \leq 2
$$ By

QUESTION 12: (Start a new page)

Marks

2
(a) Find the value of $\int_{0}^{1} \tan ^{-1} x d x$
(b)

$$
\text { Let } f(x)=\ln (1+x)-\ln (1-x) \text { where }-1<x<1
$$

(ii) On the same diagram, sketch

$$
\begin{aligned}
& y=\{\ln (1+x) \text { for } x>-1 \\
& y=\{\ln (1-x) \text { for } x<1 \\
& y=\{f(x) \text { for }-1<x<1
\end{aligned}
$$

clearly labelling all 3 graphs
1
(iii) Find an expression for the inverse function $y=f^{-1}(x)$

1
(c) (i) Show that $\left(1+t^{2}\right)^{n-1}+t^{2}\left(1+t^{2}\right)^{n-1}=\left(1+t^{2}\right)^{n}$

3
(ii) $\quad I_{n}=\int_{0}^{x}\left(1+t^{2}\right)^{n} d t \quad$ for $n=1,2,3, \ldots \ldots$

Use integration by parts, and part (i) above, to show that

$$
I_{n}=\frac{1}{2 n+1}\left(1+x^{2}\right)^{n} x+\frac{2 n}{2 n+1} I_{n-1}
$$

4
(d)

In the diagram, ABCD is a cyclic quadrilateral.
BA and CD are produced to meet at E
Similarly BC and AD are produced to meet at F
Circles are then drawn through A, D and E , and C, D and F
These two circles intersect at D and G as shown
A copy of this diagram is included after your table of standard integrals.
Detach it, put it with your answer sheets, and then join
F to G
G to E and
D to G
Prove that E, G and F are collinear, clearly stating all geometric reasoning.

QUESTION 13: (Start a new page)

Marks

3

The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the circle $x^{2}+y^{2}=a^{2}$ where $a>b$, are drawn below.

P is a point on the ellipse with co-ordinates $(a \cos \theta, b \sin \theta)$.
A line perpendicular to the major axis is drawn through P to meet the circle at the point Q
(i) Find the co-ordinates of the point Q
(ii) Show that the equation of the tangent to the ellipse at P is given by

$$
\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1
$$

(iii) Find the equation of the tangent to the circle at Q
(iv) The tangents at P and Q meet at the point T .

Show that the point T lies on the x -axis.
(b) $\quad x^{3}+p x^{2}+q x+r=0$ has roots of α, β, and γ, where $\alpha=\beta+\gamma$ Show that $p^{3}-4 p q+8 r=0$

Question 13 continues overpage.......)

2
(c) (i) Show that $\int x \sqrt{x-1} d x=\frac{2}{5}(x-1)^{\frac{5}{2}}+\frac{2}{3}(x-1)^{\frac{3}{2}}+c$

4
(ii) The area between the curve $y^{2}=x-1$ and the line $x=2$, is rotated through 2π radians about the y axis

Using the method of cylindrical shells, taken parallel to the y-axis, show that the volume of the solid so formed is $\frac{64 \pi}{15}$ cubic units.

QUESTION 14: (Start a new page)

Marks

(a) The roots of the equation $z^{5}+1=0$ are $-1, \omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ in cyclic order, antic-clockwise around the Argand Diagram.

2

2

1

1
(i) Show that $\omega_{1}=\overline{\omega_{4}}$
(ii) Find values of a, b and c so that $(z+1)\left(z^{4}+a z^{3}+b z^{2}+c z+1\right)=z^{5}+1$ and hence show that if ω is a root of $z^{5}+1=0$, not equal to -1 , then

$$
\omega^{4}+\omega^{2}+1=\omega^{3}+\omega
$$

(iii) Show that $\omega_{1}{ }^{3}=\omega_{3}$
(For the rest of this question you may also assume the other results:

$$
\left.\omega_{2}^{3}=\omega_{1}, \quad \omega_{4}^{3}=\omega_{2} \text { and } \quad \omega_{3}^{3}=\omega_{4}\right)
$$

(iv) Deduce that $\omega_{1}{ }^{3}+\omega_{2}{ }^{3}+\omega_{3}{ }^{3}+\omega_{4}{ }^{3}=1$
(v) By using the sum of the roots of $z^{5}+1=0$ in pairs, or otherwise, prove that

$$
\cos \frac{4 \pi}{5}+\cos \frac{2 \pi}{5}=-\frac{1}{2}
$$

(b) $\quad T_{1}\left(t, \frac{1}{t}\right)$ and $T_{2}\left(3 t, \frac{1}{3 t}\right)$ are two points on the hyperbola $x y=1$
(i) Show that, as t varies, the the midpoint of $T_{1} T_{2}$ lies on $3 x y=4$
(ii) Show that equation of the normal to the hyperbola $x y=1$ at T_{1} is given by

$$
t^{4}-t^{3} x+t y-1=0
$$

(iii) $\mathrm{R}(0, h)$ is a point on the y -axis $(h \neq 0)$. Show that there are exactly two points on $x y=1$ with normals which pass through R.

QUESTION 15: (Start a new page)

Marks

(a) An isosceles trapezium has parallel sides of 20 cm and 16 cm and a height of 4 cm .

A line, parallel to the base, is taken $h \mathrm{~cm}$ above the 16 cm side, and has length $x \mathrm{~cm}$.

(i) By considering the areas of the three trapezia thus formed, or otherwise, prove that $x=16+h$

4
(ii) A cake tin is made using the shape above as its two ends, and two more equal trapezia as shown for its two sides.

The strip corresponding to xcm along the sides is of length y cm and you may assume the result $\mathrm{y}=10+\frac{h}{2}$

Find the volume of the cake tin. (Show all appropriate working.)
(b) A particle of mass 1 Kg is projected vertically upwards from the ground with a speed of $20 \mathrm{~m} / \mathrm{s}$. The particle is under the effect of both gravity (g) and an air resistance of magnitude $\frac{1}{40} v^{2}$ where v is the current velocity of the particle at any time. The effects of gravity and air resistance remain the same no matter which direction the particle is going.
(i) Explain why the acceleration of the particle at any time whilst travelling upwards is given by:

$$
\ddot{x}=-g-\frac{1}{40} v^{2}
$$

(For the remainder of this question you may use $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
(ii) Calculate the greatest height reached by the particle
(iii) Write an expression for the acceleration of the particle as it returns to earth.

3
(iv) Find the speed of the particle just before it strikes the ground.

QUESTION 16: (Start a new page)

Marks
(a) The figure below is of the curve $y=\sqrt{x}$. It is not drawn to scale.

1
(i) Show that the curve is increasing for all $x \geq 0$

2
(ii) Referring to the diagram above, show that $\sqrt{1}+\sqrt{2}+\ldots \ldots \sqrt{n}>\frac{2}{3} n \sqrt{n}$ for all finite values of $n \geq 1$

1
(iii) Prove, by expansion, or otherwise, that:

$$
(4 n+3)^{2} n<(4 n+1)^{2}(n+1)
$$

4
(iv) Use Mathematical Induction to show that

$$
\sqrt{1}+\sqrt{2}+\cdots+\sqrt{n}<\frac{4 n+3}{6} \sqrt{n} \quad \text { for all integers } n \geq 1
$$

1
(v) Using parts (ii) and (iv) estimate

$$
\sqrt{1}+\sqrt{2}+\cdots+\sqrt{10000} \text { to the nearest hundred. }
$$

Question 16 continues overpage.......)

2 (b) (i) Let m and M be the smallest and greatest values of the integrable function $f(t)$ in the Domain $a \leq t \leq b$, as shown in the diagram below:

Explain carefully why

$$
m(b-a) \leq \int_{a}^{b} f(t) d t \leq M(b-a)
$$

3
(ii) Using part (i), or otherwise, deduce that,

$$
\text { if } x>0, \quad \frac{x}{1+x} \leq \log (1+x) \leq x
$$

(iii) Hence show that $1 \leq \ln 4 \leq 2$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

THIS DIAGRAM IS FOR QUESTION 12 (d)

It should be removed from the question booklet and placed with your answer booklet.
(d)

In the diagram, ABCD is a cyclic quadrilateral.
BA and CD are produced to meet at E
Similarly BC and AD are produced to meet at F
Circles are then drawn through A, D and E, and C, D and F
These two circles intersect at D and G as shown
Join:
F to G
G to E and
D to G

STHS EXIENSTON 2 TRIAL HSC
AVGUST 2012

Question 11:

$$
\text { (a) } \begin{aligned}
\int \frac{d x}{x-6 x+13} & =\int \frac{d x}{(x-3)^{2}+4} \\
& =\frac{1}{2} \tan ^{-1} \frac{x-3}{2}+k
\end{aligned}
$$

$$
\begin{gather*}
\text { (i) }(A x+B)(x+1)+c\left(x^{2}+4\right)=2 x^{2}+x+9 \tag{b}\\
x=-1 \\
5 c=10 \\
c=2
\end{gather*}
$$

Qefficients of $x^{2} \quad A+C=2$

Contats $\quad B+4 C=9$

$$
B=1
$$

2 MARES
1 off for cach of A, B, C inco reet

2 MARKS
for ecd pats of orswer.

$$
\begin{aligned}
\int_{0}^{2} \frac{2 x^{2}+x+9}{\left(x^{2}+4\right)(x+1)} d x & =\int_{0}^{2} \frac{1}{x^{2}+4} d x+\int_{0}^{2} \frac{2}{x+1} d x \\
& \left.\left.=\frac{1}{2} \tan ^{-1} x\right]_{0}^{2}+2 \ln (x+1)\right]_{0}^{2} \\
& =\frac{1}{2} \tan ^{-1} / 6+2 \ln 3 \\
& =2 \ln 3+\pi / 8
\end{aligned}
$$

(ii)

(ii)

$$
\begin{aligned}
& O Q=\sqrt{8} \\
& \therefore O P=2+2 \sqrt{2} \\
& \therefore M A X|2|=2+2 \sqrt{2}
\end{aligned}
$$

(iif)
Thee io a right angle $\phi \quad P$
LIOP $=1 O T P=45^{\circ} \Rightarrow$ isosceles $\triangle O P T$

$$
\therefore P T=O P
$$

$$
\begin{aligned}
\therefore \quad \text { Ara } \triangle O P T & =1 / 2 \cdot O P \cdot P T \\
& =1 / 2(2+2 \sqrt{2})^{2} \\
& =2(3+2 \sqrt{2})
\end{aligned}
$$

(d)
(i) $x=\alpha$ a \quad root of $P(x)=x^{4}+A x^{3}+B x^{2}+A_{1+1}$

$$
P(0) \neq 0 \Rightarrow \alpha \text { canot be } 0
$$

$$
\beta(1)=2+2 A+B=0 \text { ong if }(B+2)^{2}=4 A^{2}
$$

$$
P(-1)=2-2 A+B=0
$$

(ii)

$$
\begin{aligned}
P\left(\frac{1}{\alpha}\right) & =\frac{1}{\alpha^{4}}+\frac{A}{\alpha^{3}}+B / \alpha+A / \alpha+1 \\
& =\frac{1}{\alpha^{4}}\left(1+A \alpha+B \alpha^{2}+A \alpha^{3}+\alpha^{4}\right) \\
& =0 \text { since } P(\alpha)=0
\end{aligned}
$$

(ii) If α hoomuliplaty N then a doe $\frac{1}{2}$
(becure of (n) obove)
Beccurse $P(n)$ is of degree 4 it hoo at must 4 rots.
\therefore MAx vale of N is 2 \qquad

MAREINS

1 mARK

1 MAKK 1 mank.
$1\}$

MARE for realising th: (or osterways)

1 mBRK
$\{1$ mank

1 MARK
$\hat{7}$ for reaponing …….......-. -...................................

Que STinN 12
(a)

$$
\begin{aligned}
\int_{0}^{12} & \tan ^{-2} x d x=\int_{0}^{1} \frac{d}{d x}(x)+c_{0}^{-2} 2 d x \\
& \left.=x \tan ^{-1} x\right]_{0}^{1}-\int_{0}^{1} \frac{x}{1+x^{2}} d x \\
= & \left.\tan ^{-1}(1)-\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{1} \\
& =\pi / 4-1 / 2 \ln 2
\end{aligned}
$$

MARKN 6
(6) $f(x)=\ln (1+x)-\ln (1-x)=1<x<1$
(i) $\quad f^{\prime}(x)=\frac{1}{1+x}+\frac{1}{1-x}$

$$
\begin{aligned}
& =\frac{1-x+1+x}{1-x^{2}} \\
& =2-x^{2}>0 \forall-1<x<1
\end{aligned}
$$

(ii)

(iii) -

$$
y=\ln \left(\frac{\sqrt{1}}{1-x}\right)
$$

bueneo $\quad x=\ln \left(\frac{1+y}{1-y}\right)$

$$
\begin{array}{r}
\frac{1+y}{1-y}=e^{x} \\
1+y=e^{x}-y e^{x} \\
y\left(1+e^{x}\right)=e^{x}-1 \\
y=\frac{e^{x}-1}{e^{x}+1} \\
\therefore f^{\prime}(x)=e^{x-1} e^{x}+1
\end{array}
$$

1 manx for ecok graph

MARKING
(c)

$$
\begin{aligned}
& \left(1+t^{2}\right)^{n-1}+t^{2}\left(1+t^{2}\right]^{n-1} \\
& =\left(1+t^{2}\right)^{n-1}\left[1+t^{2}\right] \\
& =\left(1+t^{2}\right)^{n}
\end{aligned}
$$

(ii)

$$
\left.\int_{0}^{x}\left(1+t^{2}\right)^{n} d t=t\left(1+t^{2}\right)^{n}\right]_{0}^{1}=\int_{0}^{x} 2 t(n)\left(1+1^{2}\right)^{n-1} d t
$$

Now $\int_{0}^{2} \frac{2 t^{2} n(1+t)^{2}}{x} d t$

$$
\begin{aligned}
& \int_{0} \int_{0}^{x} t^{2}\left(1+t^{2}\right)^{n-1} d t \\
& =2 \int_{0}^{x}\left(1+t^{2}\right)^{n} d t-I_{n} \int_{0}^{x}\left(1+t^{2}\right)^{n-1} d t \\
\therefore I_{n} & \left.=t\left(1+t^{2}\right)^{n}\right]_{0}^{x}-2_{n} I_{n}+2_{n} I_{n-1} \\
\therefore I_{n}(2 n+1) & =x\left(-1+x^{2}\right)^{n}+I_{n} I_{n} \\
\therefore I_{n} & =\frac{x\left(1+x^{2}\right)^{n}}{2 n+1}+\frac{2 n}{2 n+1} I_{n-1}
\end{aligned}
$$

(d) See ottadment

THIS DIAGRAM IS FOR QUESTION 12 (d)

It should be removed from the question booklet and placed with your answer booklet.

12
(d)

In the diagram, $A B C D$ is a cyclic quadrilateral.
BA and CD are produced to meet at. E
Similarly $B C$ and $A D$ are produced to meet at F
Circles are then draw through A, D and E, and C, D and F
These two circles intersect at D and G as shown
Son:

(1) $\left\{\begin{array}{c}\therefore \angle B A D=(180-\theta)^{\circ}\binom{\text { opposite angles of }}{\text { cyclic quadriloteol }} \\ C D A B\end{array}\right)$
(1) $\left\{\begin{array}{l}\therefore \quad \angle D 6 E=(180-\theta)^{\circ}\binom{\text { opposite angles of cyclic }}{\text { quadi.lotial } A E G D}\end{array}\right.$
$0 \rightarrow \quad \therefore 6 E+\angle F G D=180^{\circ}$
$\therefore F G E$ is a straight line.

Quesion 13:
(a) (i) Q is $(a \cos \theta, a \sin \theta)$
(ii)

$$
\begin{aligned}
& \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=-\theta \\
& d / d x=-2 y / a^{2} \cdot b^{2} / 2 y \\
&=-\frac{b^{2} x}{a^{2} y}
\end{aligned}
$$

$A+P \quad m_{T}=\frac{-b \cos \theta}{a \sin \theta}$
Egrotion of tangat:

$$
y-b \sin \theta=\frac{-b \cos \theta}{a \sin \theta}(k-a \cos \theta)
$$

$$
a g \sin \theta-a b \sin ^{2} \theta=-b x \cos \theta+a b \cos ^{2} \theta
$$

$$
\begin{equation*}
a y \frac{\sin \theta+b x \cos \theta}{x \cos \theta}=a b \text {. } \tag{1}
\end{equation*}
$$

$$
x \cos \theta+\frac{y \sin \theta}{b}=1
$$

werking
(ii) At $Q \quad \frac{d y}{d x}=-\frac{x}{y}$

$$
m_{T}=\frac{-\cos \theta}{\sin \theta}
$$

Equation of tergent:

$$
\begin{align*}
y-a \sin \theta & =-\cos \theta \\
y \sin \theta-a \sin ^{2} \theta & =-k \cos \theta+a \cos ^{2} \theta \\
x \cos \theta+y \sin \theta & =a \tag{2}
\end{align*}
$$

(V)

$$
\begin{aligned}
& (1)-(2) \frac{a y \sin \theta}{b}-y \sin \theta=0 \\
& \therefore \sin \theta y(9 / 6-1)=0
\end{aligned}
$$

Since $a \neq b$. and $\theta \neq 0^{\circ}$
(b)

$$
\therefore \quad y=0
$$

$$
x^{3}+p x^{2}+q x+r=0
$$

$$
\alpha=\beta+\gamma
$$

Sum of moots $=2 \alpha=-p$

$$
\therefore \alpha=-7 / 2
$$

Sranof roots $\times 2 \quad \alpha \beta+\alpha \gamma+\beta \gamma=q$

$$
-p / 2\left(\frac{p}{p}+\gamma\right)+\beta \gamma=q
$$

$$
p^{2} / 4+p \gamma=q
$$

Peuper of roots ol $\beta \gamma=-r$

$$
\begin{aligned}
& \therefore-p / 2\left(q-p^{2} / 4\right)=-5 \\
& p^{3} / 8-r q / 2=-r \\
& p^{3}-4 p q+8 r=0
\end{aligned}
$$

1
(1) makis
\measuredangle (1) mafk
\} (1) MARE
$\leftarrow 1$ for α

$$
\leftarrow 1 \text { for } \beta \gamma
$$

1 for cometrivi

Q 13 continno
(c) (i)

$$
\begin{aligned}
\int x \sqrt{x-1} d x & =\int(x-1) \sqrt{x-1} d x \\
& +\int \sqrt{x-1} d x \\
& =\int(x-1)^{3 / 2} d x+\int(x-1)^{1 / 2} d x \\
& =2 / 5(x-1)^{5 / 2}+2 / 3(x-1)^{3 / 2}+c
\end{aligned}
$$

OR
ket $\mu=\sqrt{x-1} \Rightarrow x=a^{2}+1$

$$
\begin{aligned}
\text { Integral } & =\int\left(w^{2}+1\right) \mu 2 u d u \\
& =\int 2 \mu^{4} d u+\int 2 \mu^{2} d u \\
& =2 / 5 \mu^{5}+2 / 3 \mu^{3}+c \\
& =1 / 5(x-1)^{5 / 2}+2 / 3(u-1)^{3 / 2}+c
\end{aligned}
$$

(ii)

$$
\Delta v=2 \pi x \cdot 2 y \cdot \Delta x
$$

$$
=4 \pi x y-x
$$

Since $y=\sqrt{x-1}$

$$
\begin{aligned}
v L & =4 \pi \int^{2} x \sqrt{x-1} d x \\
& =4 \pi\left[2 / 5(x-1)^{5 / 2}+2 / 3(x-1)^{3 / 2}\right] \text { from }(1) \\
& =4 \pi(2 / 5+2 / 3] \\
& =64 \pi / 15 \text { an unit }
\end{aligned}
$$

MARKIN6
$] \oplus$

42 manks to here
(1) for secing this 1 MARK

MARKING

(ii) $\quad a=-1 \quad b=1 \quad c=-1$

Rons of $z^{5}+1=0$
ae roots of $(z+1)\left(z^{4}-z^{3}+z^{2}-z+1\right) \equiv 0$
Since $z \neq-1 \quad$ w solves $z^{4}-z^{3}+z^{2}-z+1=0$

$$
\sigma^{\prime}-\omega^{3}+\omega^{2}-\omega+1=0
$$

$$
\therefore \omega^{4}+\omega^{2}+1=\omega^{3}+\omega .
$$

(iii)

$$
\begin{aligned}
\omega_{2}^{3} & =(\cos 7 \pi / 5)^{3} \\
& =\cos ^{21 \pi / 5} \\
& =\cos ^{\pi / 5} \text { beo } \\
& =\omega_{3}
\end{aligned}
$$

$$
=-\infty \text { is } \pi / 5 \text { becaue of unit unte. }
$$

1 for theo ar similor. PuvS

1 for the or similar. (2) MagKs
\leq (1) mork
\qquad
\qquad
(1) for the step
\qquad
\qquad
\}no mokks here
(1) MARK, MUSI
carry some form of thtoning.

Quass 15 cons...)

$$
\therefore \quad x=-20 \log \left(40 g+v^{2}\right)+20 \log (40 g 2400)
$$

Since $g=10$

$$
z=20 \log \left(\frac{800}{400+v^{2}}\right)
$$

At greater height $v=0$

$$
\therefore \quad x=20 \log 2
$$

(iii) EARTHBOUND $\quad \ddot{x}=g-\frac{1}{40} v^{2}$
(iv) Restarts the motion in th $v=0, x=0$

$$
\begin{aligned}
& v \frac{d v}{d a}=g-\frac{1}{40 v^{2}} \\
& \therefore \frac{d v}{d x}=\frac{40 g-v^{2}}{40 v} \\
& d x / d v=\frac{40 r}{400-v^{2}} \operatorname{since} g=10 \\
& \therefore \quad x=-20 \log \left(400-v^{2}\right)+c_{2} \\
& A+v=0, x=0 \\
& \therefore \quad c_{2}=20 \log 400 \\
& x=20 \log \left(400 / 400-v^{2}\right)
\end{aligned}
$$

It $2=20 \log 2$ from pt $(i i)$

$$
\begin{aligned}
20 \log 2 & =20 \log \left(40 / 400-v^{2}\right) \\
2 & =400 / 40-v^{2} \\
\therefore \quad 800-2 v^{2} & =400 \\
\therefore v^{2} & =200 \\
\therefore v & =10 \sqrt{2} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

1 mark
1 mARE (or eguisdent)

1 MARK.
≤ 1 maRIe
$\leftarrow 1$ mark

MARKIN 6
Questonis:
(i) Alorge $=1 / 24(36)$

$$
\begin{gathered}
A_{1}=1 / 2 h(x+16) \quad A_{2}=1 / 2(20+n)(A-h) \\
h(x+16)+(20+x)(4-h)=144 \\
h x+16 h+80-20 h+4 x-n h=144 \\
-4 h+80+4 x \quad=144 \\
4 x=64+4 h \\
x=16+h
\end{gathered}
$$

(ii) vowme of the "strip"

$$
=x y \Delta b
$$

$$
\begin{aligned}
\therefore \text { vor } \operatorname{tin} & =\lim _{\Delta L_{\rightarrow 0}} \sum_{0}^{4} x y \Delta z k \\
& =\int_{0}^{4} x y d b
\end{aligned}
$$

(1) using 2
(1)

Now $x=16+h$ and $y=10+-\frac{2}{2}$

$$
\begin{aligned}
\therefore \text { VOL } & =\int_{0}^{4} 160+8 h+10 h+h^{2} / 2 h \\
& \left.=160 h+9 h^{2}+h^{3} / 6\right]_{0}^{4} \\
& =640+144+64 \\
& =794^{2 / 3} \mathrm{~cm}^{3}
\end{aligned}
$$

(b) (i) $t=\frac{0, x=0, m=1, v=20}{\text { ho foce ac acturg againdt is }}$
upuand enoon grourty (mugland air

$$
\left(\frac{1}{40} v^{2} n\right) \text { sine } w=1 \text {. }
$$

(ii)

$$
\begin{align*}
& \begin{aligned}
\ddot{x} & =-g-\frac{1}{40} v^{2} \\
v \frac{d v}{d x} & =-g-v^{2} / 40
\end{aligned} \\
& \frac{d v}{d x}=\frac{-40 g-v^{2}}{40 v} \\
& \frac{d x}{d v}=\frac{-40 v}{40 g+v^{2}} \\
& \cdots-x=-20 \log \left(40 g+v^{2}\right)+c_{t} \tag{1}
\end{align*}
$$

$A+x=0, v=20-20 \log (40 g+400)$

MORVNS
Q 焣 (iv) $\ln z^{5}+1=0$
sin of rots $=0$

$$
\begin{aligned}
& \therefore w_{1}+w_{2}+w_{3}+w_{4}+-1=0 \\
& \quad w_{2}^{3}+w_{4}^{3}+w_{5}^{3}+w_{3}^{3}=1
\end{aligned}
$$

(v) Sua of roots in pairs $=0$
i.e.

3 Marks

$$
\begin{aligned}
& -\omega_{1}-\omega_{2}-\omega_{3}-\omega_{4} \\
& +\omega_{1} \omega_{2}+\omega_{1} \omega_{3}+\omega_{1} \omega_{4} \\
& +\omega_{2} \omega_{3}+\omega_{2} \omega_{4} \\
& +\mathrm{w}_{3} \mathrm{w}_{4}=0 \\
& \text { (})
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad-1+i_{0} 6 \pi / 5+i^{3 \pi} / 5+i_{0} 2 \pi \\
& t \operatorname{cio} 2 \pi+a i 2 \pi / 5+i_{0} 4 \pi / 5=0
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 2 \cos 4 \pi / 5+2 \sin 2 \pi / 5=-1 \\
& \cdots \cos k \pi / 6+\sin 2 \pi / 5=-1 / 2
\end{aligned}
$$

\leftarrow (1)
ie

Queploen 14

(i) midpoint is $M=\left(\frac{t+3 t}{2}, \frac{1}{\frac{t}{2}}+\frac{1}{3 t}\right)$

0

$$
\begin{gathered}
\therefore M=\left(2 t, \frac{4}{6 t}\right) \\
x=2 t \quad y=2 / 3 t \\
\therefore y=2 / 3(x / 2) \\
\frac{x y}{2}=2 / 3 \\
3 x y=4
\end{gathered}
$$

(ii)
$A+T_{1}$

$$
\frac{d x}{d x}=-1 / x^{2}
$$

Equation of normal $y-1 / t=t_{1}\left(x-t_{1}\right)$

$$
t \cdot y-1=t_{1}^{3} x-t_{1}^{4}
$$

ie $\quad t_{1}+t_{1}{ }^{3} x+t, y-1=0$
(iii) If R is an the normal, R satstios the equation bore.

$$
\therefore \quad t_{1}^{+}+t_{1} h-1=0
$$

Groping $y=t^{4}$ and $y=1-t_{1} h$

Question 16
(a) (i)

$$
\text { (i) } \begin{aligned}
d y / d x & =1 / 2 x^{-1 / 2} \\
& =\frac{1}{2 \sqrt{x}}>0+7 x>0
\end{aligned}
$$

$O 6$

$$
\begin{array}{ll}
A+x=n, & y=\sqrt{0} \\
A+x=n+1 & y=\sqrt{n+1}>\sqrt{n}
\end{array}
$$

(ii) The rectangles drawn are all I unit wide
\therefore Area of the "big" rectangles

$$
\approx 1 \times[\sqrt{1}+\sqrt{2}+\ldots+\sqrt{n}]
$$

The "exact" ara is given by

$$
\begin{aligned}
\int_{0}^{n} \sqrt{x} d x & \left.=2 / 3 x^{3 / 2}\right]_{0}^{n} \\
& =2 / 3 n^{3 / 2}
\end{aligned}
$$

and is less then the rectongtes

$$
\begin{aligned}
& \therefore \quad \sqrt{1}+\sqrt{2}+\ldots+\sqrt{n}>2 / 3 n \sqrt{n} \\
& \text { (iii) } \quad 16 n^{3}+24 n^{2}+9 n\left.>16 n^{3}+24 n^{2}+9 n+1\right) \\
&=\left(16 n^{2}+8 n+1\right)(n+1) \\
&=(4 n+1)^{2}(n+1)
\end{aligned}
$$

(iv) For $n=1$

$$
b+s=\sqrt{2} \quad \text { RHO }=7 / 6>245
$$

\therefore the formula is true for $n=1$
7 Assure the fremila is the for $n=R$
\leftarrow (1) for tenting $n=1$

$$
\therefore \sqrt{1}+\sqrt{2}+\cdots+\sqrt{2}<\frac{4 k+3}{6} \sqrt{k}
$$

for $n=\frac{1}{k+1} \sqrt{6}+\sqrt{2}+\ldots+\sqrt{k}+\sqrt{k+1}$

$$
<\frac{4 k+3 \sqrt{k}}{6} \pm \sqrt{k+1}
$$

(the result from par (iii) cen be rewesten as:

$$
\begin{aligned}
(4 n+3) \sqrt{n} & <(4 n+1) \sqrt{n+1} \\
& =\frac{1}{6}(4 k+1) \sqrt{k+1}+\sqrt{k+1} \\
& =\frac{1}{6} \sqrt{k+1}(4 k+7)
\end{aligned}
$$

which is of th same form as for $n=k$
\therefore If the formula is the for $n=k$ it is toft $a=k+1$
$B \omega^{\prime}$ it is five for $n=1$

$$
n=2 \text { and so 0, }
$$

ie true $\forall \mathrm{t}$

Que sion 16 cons...
(i) $\sqrt{1-1} \sqrt{2}+\ldots+\sqrt{10000}<\frac{40003}{6} \sqrt{10000}$ from pat (iv)
ana for teat (ii)

$$
\sqrt{1}+\sqrt{2}+\ldots+\sqrt{10,000}>\frac{2}{3} 10000 \sqrt{10,000}
$$

$$
\frac{4000300}{6}>E \times \rho^{N}>\frac{2000000}{3}
$$

$$
\therefore \quad E \times P^{2} \approx 666,700
$$

(b) (i) Area of small rectangle $=(b-a) m$. which is less then the exact wee $=\int_{a}^{b} f(t) d t$ which is less than the area of the la ge rateosk $=(b-a) M$.
(ii) Let $y=\frac{1}{1+t}$ be the fraction
while $a=0$ and $b=x$
\therefore The smallest Jove of y is $\frac{1}{1+x}$ " largest a - is 1

$$
\begin{aligned}
& \text { D. }(x-0) \frac{1}{1+x} \leqslant \int_{0}^{x} \frac{1}{1+t} d t \leqslant(x-0) 1 \\
& \left.\therefore \quad \frac{x}{1+x} \leqslant \ln (1+t)\right]_{0}^{x} \leqslant x \\
& x / 1+x \leqslant \ln (1+x) \leqslant x .
\end{aligned}
$$

(iii) \quad Set $x=1$
\therefore from above $1 / 2 \leqslant \ln 2 \leqslant 1$
Dobbing all terms

$$
\begin{array}{r}
1 \leqslant 2 \ln 2 \leqslant 2 \\
\text { ie } \quad, \leqslant \ln 4 \leqslant \cdot 2
\end{array}
$$

