\qquad

SYDNEY TECHNICAL HIGH SCHOOL

Year 12

Mathematics Extension 2

TRIAL HSC

2016

Time allowed: 3 hours plus 5 minutes reading time

General Instructions:

- Reading time -5 minutes
- Working time -3 hours
- Marks for each question are indicated on the question.
- Board - Approved calculators may be used
- In Questions 11-16, show relevant mathematical reasoning and/or calculations.
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a neW page
- Write using black pen
- All answers are to be in the writing booklet provided
- A BOSTES reference sheet is provided at the rear of this Question Booklet, and may be removed at any time.

Total marks - 100

Section 1 Multiple Choice

10 Marks

- Attempt Questions 1-10
- Allow 15 minutes for this section

Section II

90 Marks

- Attempt Questions 11-16
- Allow 2 hours 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple- choice answer sheet located in your answer booklet for Questions 1-10

1. Which conic has eccentricity $\frac{\sqrt{3}}{3}$?
(A) $\frac{x^{2}}{3}+\frac{y^{2}}{2}=1$
(B) $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1$
(C) $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$
(D) $\frac{x^{2}}{3^{2}}-\frac{y^{2}}{2^{2}}=1$
2. What value of z satisfies; $z^{2}=20 i-21$?
(A) $-2+5 i$
(B) $2-5 i$
(C) $2+5 i$
(D) $5-2 i$
3. Which graph represents the curve, $y=(x+3)^{2}(x-1)^{3}$?

4. The polynomial $2 x^{4}-17 x^{3}+45 x^{2}-27 x-27$ has a triple root at $x=\alpha$.

What is the value of α ?
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) -3
(D) 3
5. If $z_{1}=1+2 i$ and $z_{2}=3-i$ then $z_{1} \div \overline{z_{2}}$ is,
(A) $\frac{1}{2}-\frac{1}{2} i$
(B) $\frac{1}{2}+\frac{1}{2} i$
(C) $4+3 i$
(D) $\frac{5}{8}+\frac{5}{8} i$
6. Which expression is equal to, $\int \frac{x^{2}}{\cos ^{2} x} d x$?
(A) $2 x \tan x-2 \int \tan x d x$
(B) $\frac{1}{3}\left(x^{3} \sec ^{2} x-\int x^{3} \tan x d x\right)$
(C) x^{2} tan $x-2 \int x \tan x d x$
(D) $x^{2} \tan x-2 \int x \sec ^{2} x d x$
7. What is the natural domain of the function $f(x)=\frac{1}{2}\left(x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)\right.$?
(A) $x \leq-1$ or $x \geq 1$
(B) $-1 \leq x \leq 1$
(C) $x \geq 1$
(D) $x \leq-1$
8. If α, β, δ are the roots of $x^{3}+x-1=0$, then an equation with roots
$\frac{(\alpha+1)}{2}, \frac{(\beta+1)}{2}, \frac{(\delta+1)}{2}$ is?
(A) $x^{3}-3 x^{2}+4 x-3=0$
(B) $x^{3}+3 x^{2}+4 x+1=0$
(C) $x^{3}-6 x^{2}+16 x-24=0$
(D) $8 x^{3}-12 x^{2}+8 x-3=0$
9. The complex number Z satisfies $|Z+2|=1$

What is the smallest positive value of the $\arg (z)$ on the Argand diagram?
(A) $\frac{\pi}{3}$
(B) $\frac{5 \pi}{6}$
(C) $\frac{2 \pi}{3}$
(D) $\frac{\pi}{6}$
10. The base of a solid is the region bounded by the parabola $x=4 y-y^{2}$ and the y axis.

Vertical cross sections are right angled isosceles triangles perpendicular to the x-axis as shown.

Which integral represents the volume of this solid?
(A) $\int_{0}^{4} 2 \sqrt{4-x} d x$
(B) $\int_{0}^{4} \pi(4-x) d x$
(C) $\int_{0}^{4}(8-2 x) d x$
(D) $\int_{0}^{4}(16-4 x) d x$

Question 11

(a) Express $\frac{18+4 i}{3-i}$ in the form, $x+i y$, where x and y are real.
(b) Consider the complex numbers $z=-1+\sqrt{3} i$ and $w=\sqrt{2}\left(\cos \left(\frac{-\pi}{4}\right)+i \sin \left(\frac{-\pi}{4}\right)\right)$
(1) Evaluate $|z|$
(II) Evaluate $\arg (z)$
(III) Find the argument of $\frac{w}{z}$
(c) (i) Find A, B and C such that

$$
\frac{1}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+4}
$$

(ii) Hence, or otherwise, find;

$$
\int \frac{d x}{x\left(x^{2}+4\right)}
$$

(d)

A particle moves along the x - axis. At time, $t=0$, the particle is at $x=0$.
Its velocity v at time t is shown on the graph above.

Copy or trace this graph onto your answer page.

(i) At what time is the acceleration the greatest? Explain your answer.
(ii) At what time does the particle first return to $x=0$? Explain your answer.
(iii) Sketch the displacement time graph for the particle in the interval, $0 \leq t \leq 9$.

Question 12 (15 marks) START THIS QUESTION ON A NEW PAGE.

(a) Find $\int x \sqrt{x+1} d x$
(b) Evaluate
(i) $\int_{0}^{\frac{\pi}{4}} \sin x \cos 2 x d x$
(ii) $\int_{1}^{e} \frac{\ln x}{x^{2}} d x$ 2
(c) Find the equation of the normal to the curve, $3 x^{2} y^{3}+4 x y^{2}=6+y$ at the point $\quad(1,1)$.
(d)
(i) Prove that,

$$
\cos (A-B) x-\cos (A+B) x=2 \sin A x \sin B x
$$

(ii) Using the above result, express the equation $\sin 3 x \sin x=2 \cos 2 x+1$, as a quadratic equation in terms of $\cos 2 x$
(iii) Hence, solve, $\sin 3 x \sin x=2 \cos 2 x+1$ for $0 \leq x \leq 2 \pi \quad 2$

Question 13 (15 marks) START THIS QUESTION ON A NEW PAGE.

(a) The function $y=f(x)$ is defined by the equation;

$$
f(x)=\frac{x(x-4)}{4}
$$

Without the use of calculus, draw sketches of each of the following, clearly labelling any Intercepts, asymptotes and turning points.
(i) $y=f(x)$
(ii) $y^{2}=f(x)$
(iii) $y=\frac{x|x-4|}{4}$
(iv) $y=\tan ^{-1} f(x)$
(v) $y=e^{f(x)}$
(b) Sketch the locus of z satisfying
(i) $\quad \operatorname{Re}(z)=|z|$
(ii) $\quad \operatorname{Im}(z) \geq 2$ and $|z-1| \leq 2$
(c) Write down the domain and range of $y=2 \sin ^{-1} \sqrt{1-x^{2}}$

Question 14 (15 marks) START THIS QUESTION ON A NEW PAGE.

(a) Use the substitution $t=\tan \frac{x}{2}$ to find

$$
\int_{0}^{\pi / 2} \frac{1}{5+4 \cos x+3 \sin x} d x
$$

(b) The area enclosed by the curves $y=\sqrt{x}$ and $y=x^{2}$ is rotated about the y-axis.

Use the method of cylindrical shells to find the volume of the solid formed.

Question 14 continued....

(c)

$P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
The tangent at P meets the line $x=-a$ and $x=a$ at R and Q respectively.
(i) Show that the equation of the tangent is given by $\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$.
(ii) Find the coordinates of Q and R.
(iii) Show that $Q R$ subtends a right angle at the focus $S(a e, 0)$.
(iv) Deduce that Q, S, R, S^{\prime} are concyclic.

Question 15 (15 marks) START THIS QUESTION ON A NEW PAGE.

(a) In the diagram, $A B$ and $A C$ are tangents from A to the circle with centre O, meeting the circle at B and C respectively. $A D E$ is a secant of the circle. G is the midpoint of $D E$.
$C G$ produced meets the circle at F.

(i) Copy the diagram, using about one third of the page, into your answer booklet and prove that $A B O C$ and $A O G C$ are cyclic quadrilaterals
(ii) Explain why $\angle O G F=\angle O A C$.
(iii) Prove that $B F \| A E$
(b)
(i) Let $I_{n}=\int_{0}^{1} x^{n} \sqrt{1-x^{3}} d x$ for $n \geq 2$.

Show that: $\quad I_{n}=\frac{2 n-4}{2 n+5} \cdot I_{n-3} \quad$ for $n \geq 5$
(ii) Hence find I_{8}
(c) A sequence of numbers is given by $T_{1}=6 \quad T_{2}=27$ and $T_{n}=6 T_{n-1}-9 T_{n-2}$ for $n \geq 3$.

Prove by Mathematical Induction that:

$$
T_{n}=(n+1) \times 3^{n} \text { for } n \geq 1
$$

Question 16 (15 marks) START THIS QUESTION ON A NEW PAGE.

(a) Show that the minimum value of $a e^{m x}+b e^{-m x}$ is $2 \sqrt{a b}$
if a, b and m are all positive constants.
(b) A particle of mass 1 kilogram is projected upwards under gravity (g) with a speed of $2 k$ in a medium in which resistance to motion is $\frac{g}{k^{2}}$ times the square of the speed, where k is a positive constant.
(i) Show that the maximum height (H) reached by the particle is

$$
H=\frac{k^{2}}{2 g} \ln 5
$$

(ii) Show that the speed with which the particle returns to its starting point is given by $V=\frac{2 k}{\sqrt{5}}$
(c) The shaded region in the diagram is bounded by the curves $y=\sin x, y=\cos x$ and the line $y=1$.

This region is rotated around the y-axis.

Calculate the volume of the solid formed, using the process of Volume by Slicing.

STHS - Ext 2 Trial-Suggestion Solution
Section 1

1. A
2. C
3. C
4. D
5. B
6. C* 7. C
7. D
8. B
9.

Section 2
Question 11
a) $\frac{18+4 i}{3-i} \times \frac{3+i}{3+i}$
$=\frac{54+18 i+12 i-4}{10}$

$$
=\frac{50+30 i}{10}
$$

$$
=5+3 i
$$

b) $\omega=\sqrt{2} \operatorname{cis}(-\pi / 4) \quad z=-1+\sqrt{3} i=\frac{1}{4} \ln x-\frac{1}{8} \ln \left(x^{2}+4\right)+c$
b) $|z|=\sqrt{1+3}$

$$
=2
$$

ii) $\arg (z)=2 \pi / 3$
iii) $\arg \left(\frac{\omega}{z}\right)=\arg (\omega)-\operatorname{agg}(z)$

$$
=-\pi / 4-2 \pi / 3
$$

$$
=\frac{-11 \pi}{12 .}
$$

$$
\begin{aligned}
& \text { c) } \frac{1}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+4} \\
& \therefore 1=A\left(x^{2}+4\right)+x(B x+C)
\end{aligned}
$$

let $x=0$

$$
1=A(4) \quad \rightarrow A=1 / 4
$$

inflection on vel. curve is greatest acc)
11. When the area above the t-axis equals area below \therefore at $t=4$
$\xrightarrow{\prime 111 .}$

Question 12
a) $\int x \sqrt{x+1} d x$
one method:
let $u=x+1$

$$
\begin{aligned}
& \frac{d u}{d x}=1 \quad \therefore d u=d x \\
& =\int(u-1) \sqrt{u} d u \\
& =\int u \sqrt{u}-\sqrt{u} d u \\
& =\int u^{3 / 2}-u^{1 / 2} d u \\
& =\int 2 / 5 u^{5 / 2}-2 / 3 u^{3 / 2} \\
& =2 / 5(x+1)^{5 / 2}-2 / 3(x+1)^{3 / 2}+C
\end{aligned}
$$

b) 1. $\int_{0}^{\pi / 4} \sin x \cos 2 x d x$
$=\int_{0}^{\pi / 4} \sin x\left(2 \cos ^{2} x-1\right) d x$
$=\int_{0}^{\pi / 4} 2 \sin x(\cos x)^{2}-\sin x d x$

$$
\begin{array}{rl|}
3 x^{2}\left[3 y^{2} \frac{d y}{d x}\right] & +y^{3} \cdot 6 x+4 x 2 y \frac{d y}{d x} \\
& +4 y^{2}=d y / d x \\
6 x y^{3}+4 x^{2}=\frac{d y}{2} / d x\left(1-9 x^{2} y^{2}-8 x y\right) \\
\text { at }(1,1) \\
d y= & 10 \\
\frac{d x}{-16} \\
M T & =-5 / 8 \quad \therefore M_{N}=8 / 5 \\
\hline y-1=8 / 5(x-1) \\
5 y-5=8 x-8 \\
8 x-5 y-3=0
\end{array}
$$

Question 12 - cont.
d)

1. Prove that

$$
\begin{aligned}
& \cos (A-B) x-\cos (A+B) x=2 \sin A x \sin B x \\
& \text { LHS }=\cos A x \cos B x+\sin A x \sin B x-[\cos A x \cos B x-\sin A x \sin B x] \\
&=2 \sin A x \sin B x \\
&=\text { RUS. }
\end{aligned}
$$

H. $\quad \sin 3 x \sin x=2 \cos 2 x+1$

$$
A=3
$$

$$
\begin{aligned}
& A=1 \\
& B=1
\end{aligned}
$$

$$
\begin{gathered}
\therefore\left[\begin{array}{c}
\cos (3-1) x-\cos (3+1) x] \div 2=\cos 2 x+1 \\
\cos 2 x-\cos 4 x=2 \cos 2 x+2 \\
\cos 2 x-\left[2 \cos ^{2} 2 x-1\right]=2 \cos 2 x+2 \\
\cos 2 x-2 \cos ^{2} 2 x+1=2 \cos 2 x+2 \\
2 \cos ^{2} 2 x+3 \cos 2 x+1=0
\end{array}\right.
\end{gathered}
$$

III. hence,

$$
\begin{aligned}
& (2 \cos 2 x+1)(\cos 2 x+1)=0 \\
& \cos 2 x=-1 / 2 \quad \text { or } \cos 2 x=-1 \\
& 2 x=2 \pi / 3,4 \pi / 38 \pi / 310 \pi / 3 \text { or } 2 x=\pi, 3 \pi \\
& x=\pi / 3,2 \pi / 3,4 \pi / 3,5 \pi / 3
\end{aligned}
$$

Question 13
a) $f(x)=\frac{x(x-4)}{4}$

III.

b) $\mathbb{R}(z)=|z|$
let $z=x+i y$

$$
x=\sqrt{x^{2}+y^{2}} \quad x \geqslant 0
$$

$$
x^{2}=x^{2}+y^{2}
$$

$$
y^{2}=0
$$

$$
y=0 \text { but } x \geqslant 0
$$

c) $y=2 \sin ^{-1} \sqrt{1-x^{2}}$

$$
y / 2=\sin ^{-1} \sqrt{1-x^{2}}
$$

$0:-1 \leq x \leq 1$

$$
R: \quad 0 \leq 4 \leq \pi
$$

Question 14.
a)

$$
\begin{array}{ll}
x=\pi / 2 & t=\tan \pi / 4=1 \\
x=0 & t=\tan 0=0
\end{array}
$$

$$
\text { c) } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

$$
2 x / a^{2}-2 y / b^{2} \cdot \frac{d y}{d x}=0
$$

$$
\therefore \int_{0}^{1} \frac{1}{5+4\left(\frac{1-t^{2}}{1+t^{2}}\right)+3\left(\frac{2 t}{1+t^{2}}\right)} \cdot \frac{2 d t}{t^{2}+1}
$$

$$
=\int_{0}^{1} \frac{2 d t}{5\left(1+t^{2}\right)+4\left(1-t^{2}\right)+6 t \quad \text { Now }} \quad m_{T}=b / a \sin \theta
$$

$$
\begin{aligned}
& =\int_{0}^{1} \frac{2}{t^{2}+b t+9} d t \\
& =2 \int_{0}^{1} \frac{1}{(t+3)^{2}} d t \\
& a \operatorname{asin} \theta y-\frac{a b \sin \theta}{\cos \theta}=\frac{b}{a \sin \theta}\left(x-\frac{a}{\cos \theta}\right) \\
& \hline \frac{a b}{\cos \theta}
\end{aligned}
$$

$$
=2 \int_{0}^{1}(t+3)^{-2} d t \quad \frac{\sin \theta y}{b}-\frac{x}{a}=\frac{\sin ^{2} \theta-1}{\cos \theta}-\div-\cos \theta
$$

$$
\left.=\frac{-2}{t+3}\right]_{0}^{1}
$$

$$
-\tan \theta \frac{y}{b}+\frac{x}{a \cos \theta}=1
$$

$$
=(-2 / 4)-(-2 / 3)
$$

$$
\frac{x \sec \theta}{a}-\frac{\tan \theta}{b} y=1
$$

$$
=1 / 6
$$

11. at $Q x=a$

$$
\begin{aligned}
& \Delta v=2 \pi x\left(\sqrt{x}-x^{2}\right) \Delta x \\
& V=\Delta x \rightarrow 0 \sum_{i}^{2 \pi x} \Delta x \\
&=2 \pi\left(\sqrt{x}-x^{2}\right) \Delta x \\
& \int_{0}^{1} x^{3 / 2}-x^{3} d x
\end{aligned}
$$

$$
=\left[\frac{2}{5} x^{5 / 2}-\frac{1}{4} x\right]_{0}^{1} x^{2 \pi}
$$

$$
\left.=2 \pi[2 / 5-1 / 4-0]=\frac{3 \pi}{10} u^{3} \quad Q \quad a, \frac{b(1-\cos \theta}{\sin \theta}\right]
$$

at $R=-a$

$$
\begin{aligned}
-\frac{a \sec \theta}{a}-\frac{y \tan \theta}{b} & =1 \\
-1-\frac{y}{b} \sin \theta & =\cos \theta
\end{aligned}
$$

$$
y=\frac{-b-b \cos \theta}{\sin \theta}=\frac{b^{2}\left(1-\cos ^{2} \theta\right)}{-a^{2}\left(e^{2}-1\right) \sin ^{2} \theta}
$$

OR \& $y=\frac{-b(1+\sec \theta)}{\tan \theta}=\frac{b^{2}}{-b^{2}}$
iii) $S(a e, 0)$

$$
=-1
$$

$\begin{aligned} & m_{S Q}=\frac{0-b(1-\cos \theta)}{\sin \theta} \\ & a e-a \\ &=\frac{\frac{-b(1-\cos \theta)}{\sin \theta}}{a(e-1)}\end{aligned}$

$$
\therefore \angle Q S^{\prime} R=90^{\circ}
$$

$$
\text { and } \angle Q S R+\angle Q S^{\prime} R=180^{\circ}
$$ making QSRS' a cyclic quad. as opposite angles are supplementary.

$m_{R S}=\frac{b(1+\cos \theta)}{\sin \theta}$
Now $M_{S Q} \times M_{R S}$

$$
\begin{aligned}
& =\frac{\frac{-b(1-\cos \theta)}{\sin \theta} \times \frac{b(1+\cos \theta)}{a(e-1)}}{\frac{\sin \theta}{a(e+1)}} \\
& =\frac{\frac{-b^{2}\left(1-\cos ^{2} \theta\right)}{\sin ^{2} \theta}}{a^{2}\left(e^{2}-1\right)} \\
& =\frac{-b^{2}}{a^{2}\left(e^{2}-1\right) \quad b u t} \quad \\
& =-1 \therefore \angle Q S R=90^{\circ}
\end{aligned}
$$

Question 15.
Join AO, BF BC
as $B O=O C$ radii

$$
\begin{aligned}
& \angle O C B=\angle C B O \\
&=\alpha \\
& \text { (equal angles } \\
& \text { opposite equal } \\
& \text { sides) }
\end{aligned}
$$

1. $\angle A B O=\angle O C A=90^{\circ}$
(radii to tangent at point of contact is 90°)

NOW $\ln \triangle B O C$
\therefore opposite angles in
$A B O C$ are supplementary and $A B O C$ is a cyclic quadrilateral.
Now, $\angle A B O=90^{\circ}$
(AD is a diameter of line from midpt to centre is perpendicular)

$$
\begin{array}{rlrl}
\angle O G A & =\angle O C A & \left(\begin{array}{l}
\text { angles at } \\
\text { circumference } \\
\text { of circle } O G C A
\end{array}\right) & \text { ave equal } \\
& =90^{\circ} & \therefore B F \| A E
\end{array}
$$

\therefore AOCC is a cyclic quad as opposite angles are
supplementary.
11. LOGE $=$ LOAD
exterior angle of a cyclic
quaditatecal equals opposite
interior angle ($A O G C$).
III. let $\angle O G F=\angle O A C=\alpha$

$$
\left.\therefore \angle F G E=90^{\circ}-\alpha \quad \text { (straight }\right)
$$

and

$$
\begin{aligned}
\angle O B C & =\angle O A C \text { (} \begin{array}{l}
\text { angles in } \\
\text { some segment }
\end{array} \\
& =\alpha \quad \text { of } A B O C)
\end{aligned}
$$

Question 15 cont
$I_{n}=\int_{0}^{1} x^{n} \sqrt{1-x^{3}} d x \quad n \geqslant 2$

$$
=\int_{0}^{1} x^{n-2} \cdot x^{2} \sqrt{1-x^{3}} d x
$$

$$
=\left[x^{n-2}\left(1-x^{3}\right)^{3 / 2} \cdot-\frac{2}{9}\right]_{0}^{1}-\int(n-2) x^{n-3} \cdot \frac{-2}{9}\left(1-x^{3}\right) \sqrt{1-x^{3}} d x
$$

$$
I_{n}=0+\frac{2(n-2)}{9} \int_{0}^{1} x^{n-3} \sqrt{1-x^{3}} d x-\frac{2(n-2)}{9} \int_{0}^{1} x^{n} \sqrt{1-x^{3}} d x
$$

$$
\operatorname{In}\left[1+\frac{2(n-2)}{9}\right]=\frac{2(n-2)}{9} \int_{0}^{1} x^{n-3 \sqrt{1-x^{3}}} d x
$$

$$
I_{n}\left[\frac{9+2 n-4}{9}\right]=\frac{2 n-4}{9} I_{n-3}
$$

$$
I_{n}=\frac{2 n-4}{2 n+5} I_{n-3}
$$

11)

$$
\begin{array}{rlr}
I_{8} & =\left(\frac{16-4}{16+5}\right) I_{5} \\
& =\frac{12}{21}\left[\frac{(10-4)}{10+5} I_{2}\right] \quad \text { Now } I_{2} & =\int_{0}^{1} x^{2} \sqrt{1-x^{3}} d x \\
& =\frac{12}{21} \cdot \frac{6}{15} \cdot \frac{2}{9} & \\
& =\frac{16}{3 / 5} & \\
& =\left[-2\left(1-x^{3}\right)^{3 / 2}\right. \\
9 &]_{0}^{3 / 2} \\
& & =\frac{-2}{9}\left[0-1^{3 / 2}\right] \\
& =\frac{2}{9}
\end{array}
$$

Question 15 conn
c)
$T_{1}=6 \quad T_{2}=27$
$T_{n}=6 T_{n-1}-9 T_{n-2} n \geqslant 3$
$T_{n}=(n+1) 3^{n}$ for $n \geqslant 1$
Test $n=1$

$$
\begin{aligned}
T_{1} & =(1+1) \times 3^{\prime} \\
& =2 \times 3 \\
& =6 \text { which is given }
\end{aligned}
$$

\therefore True for $n=1$
Assume true for $n=K$
ie $T_{k}=(k+1) 3^{k}$
where

$$
T_{k}=6 T_{k-1}-9 T_{k-2}
$$

Prove true for $n=k+1$
aim to prove

$$
\begin{aligned}
T_{k+1} & =6 T_{k}-9_{k-1}=(k+1+1) \cdot 3^{k+1} \\
T_{k+1} & =6 T_{k}-9 k-1 \\
& =6(k+1) \cdot 3^{k}-9\left[k\left(3^{k-1}\right)\right] \quad{ }_{\text {as y }} \\
& =2(k+1) \times 3 \times 3^{k}-3^{2} \cdot k \cdot 3^{k-1} \\
& =2(k+1) \cdot 3^{k+1}-k 3^{k+1} \\
& =(2 k+2-k) 3^{k+1} \\
& =(k+2) \cdot 3^{k+1} \\
& =(k+1+1) \cdot 3^{k+1}
\end{aligned}
$$

as required

Question 16
let $\rho=a e^{m x}+b e^{-m x}$

$$
\begin{aligned}
& \frac{d p}{d x}=m a e^{m x}-m b e^{-m x}=0 \\
& a e^{m x}=b e^{-m x} \\
& a e^{m x}=\frac{b}{e^{m x}} \\
& e^{2 m x}=b / a \\
& 2 m x=\ln (b / a) \\
& x=\frac{1}{2 m} \ln \left(\frac{b}{a}\right)
\end{aligned}
$$

1. $m \ddot{x}=-m g-\frac{g v^{2}}{k^{2}} \quad m=1$

$$
\therefore \quad \ddot{x}=-g-\frac{g}{k^{2}} v^{2}
$$

test

$$
d^{2} \rho / d x^{2}=m^{2} a e^{m x}+m^{2} b e^{-m x}
$$

$$
\begin{array}{r}
d^{2} \rho / d x^{2}=m^{2} a e \\
\text { at } x \\
\frac{d^{2} p}{d x^{2}}>0
\end{array}
$$

$$
\text { at } x=1 / 2 m \ln (b / a)
$$

$$
\frac{d^{2} p}{d x^{2}}>0 \text { as } e^{-m} x>0
$$

and $a, b, m>0$
\therefore min value is when

$$
\begin{array}{rlrl}
& x=\frac{1}{2 m} \ln (b / a) & \therefore c_{1}=k^{2} / 2 g \ln \left(5 k^{2}\right) \\
P & =m e^{(1 / 2 m \ln b / a)}+b e^{-m\left(\frac{1}{2 m} \ln b / a\right)} \quad \therefore & x=\frac{-k^{2}}{2 g} \ln \left(k^{2}+v^{2}\right)+k^{2} \ln \left(5 k^{2}\right) \\
& =a e^{1 / 2 \ln b / a}+b e^{-1 / 2 \ln b / a} & & =a e^{\ln \sqrt{b / a}}+b e^{\ln \sqrt{a / b}} \\
& =a \sqrt{\frac{b}{a}}+b \sqrt{\frac{a}{b}} & x & =-k^{2} / 2 g \ln k^{2}+k^{2} / 2 g \ln \left(5 k^{2}\right) \\
& =\sqrt{\frac{a^{2} b}{a}}+\sqrt{\frac{b^{2} a}{b}} & & =k^{2} / 2 g \ln \left[5 k^{2} / k^{2}\right] \\
& =\sqrt{a b}+\sqrt{b a}=2 \sqrt{a b} . & & =k^{2} \ln 5 .
\end{array}
$$

Question 16 cont

$$
\begin{aligned}
& \text { b) } \\
& \text { b) } \frac{x=0 \quad t=0 \quad v=0}{\downarrow+\sqrt{m g}} \\
& (m=1) \\
& \text { TR } \\
& \ddot{x}=g-R \\
& \ddot{x}=g-\frac{g v^{2}}{k^{2}} \\
& \frac{v d v}{d x}=g-\frac{g v^{2}}{k^{2}} \\
& \left.\frac{k^{2}}{2 g} \ln 5=\frac{-k^{2}}{2 g} \ln \left(k^{2}-v^{2}\right)+\frac{k^{2}}{2 g} \ln (k)^{2}\right) \\
& \ln 5=-\ln \left(k^{2}-v^{2}\right)+\ln k^{2} \\
& \ln 5=\ln \left(\frac{k^{2}}{k^{2}-v^{2}}\right) \\
& 5\left(k^{2}-v^{2}\right)=k^{2} \\
& -5 v^{2}=-4 k^{2} \\
& v^{2}=\frac{4 K^{2}}{5} \\
& \therefore v=\sqrt{\frac{4 k^{2}}{5}} \\
& \frac{d v}{d x}=\frac{g}{v}-\frac{g v}{k^{2}} \\
& \begin{array}{l}
=\frac{g k^{2}-g v^{2}}{v k^{2}} \\
=\frac{v k^{2}}{g k^{2}-g v^{2}}
\end{array} \\
& v>0 \\
& x=\int \frac{v k^{2}}{g k^{2}-g v^{2}} d v \\
& \begin{aligned}
& x=\frac{k^{2}}{9} \times-\frac{1}{2} l a\left(k^{2}-v^{2}\right)+c_{2} \\
& x=0 \\
& v=0
\end{aligned} \\
& c_{2}=\frac{k^{2}}{2 g} \ln k^{2} \\
& x=\frac{-k^{2}}{2 g} \ln \left(k^{2}-v^{2}\right)+\frac{k^{2}}{2 g} \ln k^{2}
\end{aligned}
$$

Now $x=\frac{k^{2}}{2 g} \ln 5$

Question 16 cont $^{-t}$

$$
\begin{aligned}
\Delta v & =\pi\left(R^{2}-r^{2}\right) \Delta y \\
& \left.=\pi\left[\frac{\pi}{2}-\cos ^{-1} y-\cos ^{-y} y\right]\left[\frac{\pi}{2}-\cos ^{-1} y+\cos ^{-1}\right]\right] \Delta y \\
& =\pi\left[\frac{\pi}{2}-2 \cos ^{-1} y\right]\left[\frac{\pi}{2}\right] \Delta y \\
& =\frac{\pi^{2}}{2}\left[\frac{\pi}{2}-2 \cos ^{-1} y\right] \Delta y
\end{aligned}
$$

other solutions such as

$$
\frac{\pi^{2}}{2} \int_{y / \sqrt{2}}^{1} 2 \sin ^{-1} y-\frac{\pi}{2} d y
$$

can be used.

Total volume

$$
\begin{aligned}
& =\lim _{\Delta y \rightarrow 0} \sum_{1 / \sqrt{2}}^{1} \frac{\pi^{2}}{2}\left[\frac{\pi}{2}-2 \cos ^{-1} y\right] \Delta y \\
& =\frac{\pi^{2}}{2} \int_{y / \sqrt{2}}^{1} \frac{\pi}{2}-2 \cos ^{-1} y d y \\
& =\frac{\pi^{2}}{2}\left[\frac{\pi}{2} y-\left[2 y \cos ^{-1} y-\int \frac{2 y-1}{\sqrt{1-y^{2}}} d y\right]\right. \\
& \left.=\frac{\pi^{2}}{2}\left[\frac{\pi y}{2} y-2 y \cos ^{-1} y+2 \sqrt{1-y^{2}}\right] 1\right]
\end{aligned}
$$

