SYDNEY TECHNICAL HIGH SCHOOL

Year 12

Mathematics Extension 2

TRIAL HSC

2016

Time allowed: 3 hours plus 5 minutes reading time

General Instructions:

- Reading time 5 minutes
- Working time 3 hours
- Marks for each question are indicated on the question.
- Board Approved calculators may be used
- In Questions 11- 16, show relevant mathematical reasoning and/or calculations.
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a **NEW** page
- Write using black pen
- All answers are to be in the writing booklet provided
- A BOSTES reference sheet is provided at the rear of this Question Booklet, and may be removed at any time.

Total marks – 100

Section 1 Multiple Choice

10 Marks

- Attempt Questions 1-10
- Allow 15 minutes for this section

Section II

90 Marks

- Attempt Questions 11-16
- Allow 2 hours 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple- choice answer sheet located in your answer booklet for Questions 1 -10

- 1. Which conic has eccentricity $\frac{\sqrt{3}}{3}$? (A) $\frac{x^2}{3} + \frac{y^2}{2} = 1$ (B) $\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$ $x^2 - y^2$
- (C) $\frac{x^2}{3} \frac{y^2}{2} = 1$ (D) $\frac{x^2}{3^2} - \frac{y^2}{2^2} = 1$
- 2. What value of z satisfies; $z^2 = 20i 21$?
- (A) -2+5i
- (B) 2−5*i*
- (C) 2+5i
- (D) 5-2*i*
- 3. Which graph represents the curve, $y = (x+3)^2 (x-1)^3$?

- 4. The polynomial $2x^4 17x^3 + 45x^2 27x 27$ has a triple root at $x = \alpha$. What is the value of α ?
- (A) $-\frac{1}{2}$ (B) $\frac{1}{2}$
- (C) –3
- (D) 3
- 5. If $z_1 = 1 + 2i$ and $z_2 = 3 i$ then $z_1 \div \overline{z_2}$ is, (A) $\frac{1}{2} - \frac{1}{2}i$ (B) $\frac{1}{2} + \frac{1}{2}i$ (C) 4 + 3i(D) $\frac{5}{8} + \frac{5}{8}i$
- 6. Which expression is equal to, $\int \frac{x^2}{\cos^2 x} dx$?
- (A) $2x \tan x 2 \int \tan x dx$ (B) $\frac{1}{3} (x^3 \sec^2 x - \int x^3 \tan x dx)$ (C) $x^2 \tan x - 2 \int x \tan x dx$ (D) $x^2 \tan x - 2 \int x \sec^2 x dx$
- 7. What is the natural domain of the function $f(x) = \frac{1}{2}(x\sqrt{x^2-1} ln(x+\sqrt{x^2-1}))?$
- (A) $x \leq -1$ or $x \geq 1$
- (B) $-1 \le x \le 1$
- (C) $x \ge 1$
- (D) $x \leq -1$

8. If α, β, δ are the roots of $x^3 + x - 1 = 0$, then an equation with roots

$$\frac{(\alpha + 1)}{2}, \frac{(\beta + 1)}{2}, \frac{(\delta + 1)}{2} \text{ is?}$$
(A) $x^3 - 3x^2 + 4x - 3 = 0$
(B) $x^3 + 3x^2 + 4x + 1 = 0$

(C)
$$x^3 - 6x^2 + 16x - 24 = 0$$

(D)
$$8x^3 - 12x^2 + 8x - 3 = 0$$

9. The complex number Z satisfies $\left|Z+2\right|=1$

What is the smallest positive value of the arg(z) on the Argand diagram?

(A)
$$\frac{\pi}{3}$$

(B) $\frac{5\pi}{6}$
(C) $\frac{2\pi}{3}$
(D) $\frac{\pi}{6}$

10. The base of a solid is the region bounded by the parabola $x = 4y - y^2$ and the y axis.

Vertical cross sections are right angled isosceles triangles perpendicular to the x - axis as shown.

Which integral represents the volume of this solid?

(A)
$$\int_{0}^{4} 2\sqrt{4-x} dx$$

(B) $\int_{0}^{4} \pi (4-x) dx$
(C) $\int_{0}^{4} (8-2x) dx$
(D) $\int_{0}^{4} (16-4x) dx$

Question 11 (15 marks)

(a) Express
$$\frac{18+4i}{3-i}$$
 in the form, $x+iy$, where x and y are real.

(b) Consider the complex numbers $z = -1 + \sqrt{3}i$ and $w = \sqrt{2}\left(\cos\left(\frac{-\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right)\right)$

- (I)Evaluate |z|1(II)Evaluate arg(z)1(III)Find the argument of $\frac{w}{z}$ 2
- (c) (i) Find A, B and C such that

$$\frac{1}{x(x^2+4)} = \frac{A}{x} + \frac{Bx+C}{x^2+4}$$

(ii) Hence, or otherwise, find;

$$\int \frac{dx}{x(x^2+4)}$$

2

3

(d)

A particle moves along the x - axis. At time, t = 0, the particle is at x = 0. Its velocity v at time t is shown on the graph above.

Copy or trace this graph onto your answer page.

(i)At what time is the acceleration the greatest? Explain your answer.1(ii)At what time does the particle first return to x = 0? Explain your answer.1(iii)Sketch the displacement time graph for the particle in the interval, $0 \le t \le 9$.2

(a) Find
$$\int x\sqrt{x+1}dx$$
 2

(b) Evaluate

(i)
$$\int_{0}^{\frac{\pi}{4}} \sin x \cos 2x dx$$
 2
(ii)
$$\int_{1}^{e} \frac{\ln x}{x^{2}} dx$$
 2

(c) Find the equation of the normal to the curve, $3x^2y^3 + 4xy^2 = 6 + y$ at the point (1,1). 4

(d)

(i) Prove that,

$$\cos(A-B)x - \cos(A+B)x = 2\sin Ax \sin Bx$$
 1

- (ii) Using the above result, express the equation $\sin 3x \sin x = 2\cos 2x + 1$, as a quadratic equation in terms of $\cos 2x$ 2
- (iii) Hence, solve, $\sin 3x \sin x = 2\cos 2x + 1$ for $0 \le x \le 2\pi$ 2

Question 13 (15 marks) START THIS QUESTION ON A <u>NEW</u> PAGE.

(a) The function y = f(x) is defined by the equation;

$$f(x) = \frac{x(x-4)}{4}$$

Without the use of calculus, draw sketches of each of the following, clearly labelling any Intercepts, asymptotes and turning points.

(i) y = f(x)(ii) $y^2 = f(x)$

(ii)
$$y^2 = f(x)$$

 $x|x-4|$ 2

(iii)
$$y = \frac{x |x-4|}{4}$$
 2

(iv)
$$y = \tan^{-1} f(x)$$
 2

$$(v) y = e^{f(x)} 2$$

(b) Sketch the locus of z satisfying

(i)
$$Re(z) = |z|$$
 2

(ii)
$$Im(z) \ge 2$$
 and $|z-1| \le 2$ 2

(c) Write down the domain and range of
$$y = 2\sin^{-1}\sqrt{1-x^2}$$

Question 14 (15 marks) START THIS QUESTION ON A <u>NEW</u> PAGE.

(a) Use the substitution
$$t = \tan \frac{x}{2}$$
 to find

$$\int_{0}^{\frac{\pi}{2}} \frac{1}{5 + 4\cos x + 3\sin x} dx$$

(b) The area enclosed by the curves $y = \sqrt{x}$ and $y = x^2$ is rotated about the y - axis.

Use the method of *cylindrical shells* to find the volume of the solid formed.

4

4

Question 14 continues on the next page

 $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

The tangent at P meets the line x = -a and x = a at R and Q respectively.

(i) Show that the equation of the tangent is given by
$$\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1.$$
 2
(ii) Find the coordinates of Q and R . 1

(iii) Show that QR subtends a right angle at the focus S(ae, 0). 2

2

(iv) Deduce that Q, S, R, S' are concyclic.

(c)

(a) In the diagram, AB and AC are tangents from A to the circle with centre O, meeting the circle at B and C respectively. ADE is a secant of the circle. G is the midpoint of DE. CG produced meets the circle at F.

(i)	Copy the diagram, using about one third of the page, into your answer booklet and
	prove that $ABOC$ and $AOGC$ are cyclic quadrilaterals
(ii)	Explain why $\angle OGF = \angle OAC$.

(iii) Prove that $BF \parallel AE$

(b)

(i) Let
$$I_n = \int_0^1 x^n \sqrt{1 - x^3} dx$$
 for $n \ge 2$.

Show that:
$$I_n = \frac{2n-4}{2n+5} I_{n-3}$$
 for $n \ge 5$ 3

(ii) Hence find
$$I_8$$

(c) A sequence of numbers is given by $T_1 = 6$ $T_2 = 27$ and $T_n = 6T_{n-1} - 9T_{n-2}$ for $n \ge 3$. Prove by Mathematical Induction that:

$$T_n = (n+1) \times 3^n \text{ for } n \ge 1$$

3 1

3

2

Question 16 (15 marks) START THIS QUESTION ON A <u>NEW</u> PAGE.

- (a) Show that the minimum value of $ae^{mx} + be^{-mx}$ is $2\sqrt{ab}$ if a, b and m are all positive constants.
- (b) A particle of mass 1 kilogram is projected upwards under gravity (g) with a speed of 2k in a medium in which resistance to motion is $\frac{g}{k^2}$ times the square of the speed, where k is a positive constant.
 - (i) Show that the maximum height (H) reached by the particle is

$$H = \frac{k^2}{2g} \ln 5$$

(ii) Show that the speed with which the particle returns to its starting point

given by
$$V = \frac{2k}{\sqrt{5}}$$
 4

(c) The shaded region in the diagram is bounded by the curves $y = \sin x$, $y = \cos x$ and the line y = 1.

This region is rotated around the y - axis.

is

Calculate the volume of the solid formed, using the process of Volume by Slicing.

4

STHS-	Ext2 T	Trial - S	Suggestion	solution
			~~~	

Section1	
1. A a. C 3. C	- 4. D 5. B
6. C. # 7. C 8. (all given)	D 9. B 10. C
Section 2	
Question 11	
a) 18+4i x 3+i	equating: $O = A + B$
3-i 3+i	B = - 1/4
= 54 + 18i + 12i - 4	0=0
10	$ie A = \frac{1}{4} B = \frac{-1}{4} C = 0$
= 50 + 30i	Π.
ID	Now $\int \frac{dx}{x(x^2+4)} = \int \frac{1}{4x} - \frac{x_4x}{x^2+4} dx$
= 5 + 31	
b) $\omega = \sqrt{2} \operatorname{cis}(-\pi/4) = -1 + \sqrt{3}i$	$=\frac{1}{4}\ln x - \frac{1}{4}\ln(x^2+4) + C$
1) $ z  = \sqrt{1+3}$	
= 2	d) $1. t = 6.5$ (point of
11) $\arg(z) = 2\pi/3$	inflection on vel. curve
	is greatest acc )
$(11) \arg\left(\frac{\omega}{2}\right) = \arg(\omega) - \arg(2)$	11. When the area above
$= -\pi/4 - 2\pi/3$	the t-axis equals area
<u> </u>	below .: at t=4
۱۵.	JC.
c) $\frac{1}{x(x^2+4)} = \frac{A}{x} + \frac{Bx+c}{x^2+4}$	111.
$\therefore 1 = A(x^2+4) + x(Bx+c)$	6.57 q t
let x = 0	0 2 4
$I = A(4) \longrightarrow A = \frac{1}{4}$	

э.

	Question 12	11. (e insc doc
		$\frac{1}{x^2}$
	a) $\int x \int x + 1 dx$	= (ex² insc dx
	one method :	
	let $u = x + 1$	$= \ln x \cdot \frac{x}{x} - \int \frac{1}{x} dx$
	dy = 1 .: $du = dx$	
	dx	$= - \ln x \int e + (e x^{-2} dx)$
	$= \int (u-1) \sqrt{u}  du$	
	= utu - tu du	$= -\left[ 1 - 0 \right] + \left[ -\frac{1}{2} \right]^{e}$
	$= \left( u^{3/2} - u^{1/2} \right) du$	Le L JI
	5	$= -\frac{1}{e} + \left(-\frac{1}{e} - (-1)\right)$
dz	$\frac{2}{5}u^{5/2} - \frac{2}{3}u^{3/2}$	=   - ² /e
-	$= \frac{2}{5} (x+1)^{5/2} - \frac{2}{3} (x+1)^{3/2} + C$	c)
	-	$3\chi^2y^3 + 4\chi y^2 = 6 + y Q(1,1)$
	b) 1. Junx cos2x dx	, , , , , , , , , , , , , , , , , , ,
	С о 	$3\chi^{2}\left(3\chi^{2}\frac{dy}{dx}\right) + \chi^{3}.6\chi + 4\chi^{2}\chi^{dy}_{dx}$
	$=\int_{1}^{\pi/4} \sin x (2\cos^2 x - i) dx$	$\frac{1}{1+4y^2} = \frac{dy}{dx}$
	~ o	5
	$= \int_{-\infty}^{\frac{1}{4}} 2\sin x \left( \cos x \right)^2 - \sin x  dx$	$6xy^{3} + 4x^{2} = \frac{dy}{dx} \left(1 - 9x^{2}y^{2} - 8xy\right)$
	□ □ □ □ □ ↓ ↓	at (1,1)
	$= \frac{-2}{3}\cos^3 x + \cos x$	dy = 10
		$\overline{dx} - 16$
	$=\frac{-2}{3}\left(\frac{1}{\sqrt{2}}\right)^{3}+\frac{1}{\sqrt{2}}-\frac{-2}{3}\left(1\right)^{3}+1$	$M_T = -5/8$ $\therefore M_N = 8/5$
		$y - 1 = \frac{8}{5}(x - 1)$
	= _2 1	$5_{y} - 5 = 8 \times - 8$
	312 3	8x - 5y - 3 = 0

 $\overline{\mathbb{Q}}$ 

 $\bigcirc$ 

Question 12 - con't.
d)
1. Prove that
$\cos(A-B)\chi - \cos(A+B)\chi = a \sin A \chi \sin B \chi$
LHS = COSAXrosBX + SINAXSINBX - [COSAXrosBX - SINAXSINBX]
$= 2 \sin A x \sin B x$
= RHS.
$11.  Sin 3x \sin x = 2\cos 2x + 1$
$\frac{1}{120000000000000000000000000000000000$
cos2x - cos4x = 2cos2x + 2
$\frac{\cos 2x - \left[2\cos^2 2x - 1\right]}{\cos 2x + 2} = 2\cos 2x + 2$
$\frac{\cos 2x - 2\cos^2 2x + 1}{\cos^2 2x + 1} = 2\cos^2 x + 2$
$2\cos^2 2x + 3\cos 2x + 1 = 0$
m. hence,
$(2\cos 2x + i)(\cos 2x + i) = 0$
$\frac{\cos 2\pi}{2\pi} + \frac{1}{2\pi} \sqrt{\frac{\sin 2\pi}{2\pi}} = \frac{1}{2\pi}$
$2\pi = 73$ , $73$ , $73$ , $73$ , $73$ , $73$ , $72$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ , $77$ ,
<u>x=13,13,13,13</u> <u>x=12,12</u>
· · · · · · · · · · · · · · · · · · ·

	Question 13	b) $R(z) =  z $
	a) $f(x) = x(x-4)$	let $2 = x + iy$
	4	$\chi = \sqrt{\chi^2 + y^2} \qquad \chi \geqslant 0$
	۱. ۲	$\chi^2 = \chi^2 + \gamma^2$
BX		y² = 0
	×	y=o but x>0
	0 4	<u>γ</u> ^γ
	. (2,-1)	
	<u> </u>	0 ×
	10 4	11. lm (2) > 2 2-1/62
		: y>, 2 circle centre
	<u>ill. y</u>	(۱, ۵)
		Locus = this Locus = this point y=2
		, aly.
	° 4	
	<u>&gt;</u>	
	IV. T/2	c) $y = 25in^{-1}\sqrt{1-x^2}$
	× j	
		$\frac{y_{2}}{y_{2}} = \sin^{-1}\sqrt{1-\chi^{2}}$
	0 4 -π	
	(2, 4)	
	v. 121	0: -15251
	1 (2, e-1) z	R: OSYST
;		

Question 14. c)  $\frac{x^2}{\alpha^2} - \frac{y^2}{\mu^2} = 1$ a  $x = \pi/2$   $t = tan^{\pi/4} = 1$  $\frac{a}{2x} = \frac{b}{2x} = \frac{a}{a^2} = \frac{a}{b^2} = \frac{a}{b$ スニロ  $E = \tan 0 = 0$ 1 .: (1  $\int_{\mathcal{D}} 5 + 4\left(\frac{1-t^2}{1+t^2}\right) + 3\left(\frac{2t}{1+t^2}\right) \cdot t^{\frac{2}{2}+1}$ Plaseco, btano) MT = b/asino = ( 2 at  $\int_{0} 5(1+t^{2}) + 4(1-t^{2}) + 6t$ Now  $y - \frac{b\sin \theta}{\cos \theta} = \frac{b}{a\sin \theta} \left( x - \frac{a}{\cos \theta} \right)$ = (1 0 E2+6++9 asiney-absinte = bx - ab COSE  $\frac{z}{\int_{0}^{1} (t+3)^{2}}$ COSE (+ ab)  $= 2 \int_{0}^{1} (t+3)^{-2} dt$  $\frac{\sin \theta y}{\theta} = \frac{x}{a} = \frac{\sin^2 \theta}{\cos \theta} = 1$ ÷-cose  $\frac{-\tan \theta y}{b} + \frac{x}{a \cos \theta} = 1$ -2 71 ÷ £ +3 ] R  $\binom{-2}{4} - \binom{-2}{3}$  $x \sec \Theta - \frac{\tan \Theta}{h} = 1$ = = 1/6 11. at Q = a6) → ५= √ र a seco - tano y = 1 A(x) 31-34  $\frac{1}{\cos \theta} = \frac{3}{3} \sqrt{\frac{\sin \theta}{\cos \theta}} = \frac{\cos \theta}{\cos \theta}$ λx 2TX 1× 1 - 5/2 Sind = cose  $\Delta v = a \pi x \left( \sqrt{x} - x^2 \right) \Delta x$  $V = \Delta x \rightarrow 0 \stackrel{\text{lim}}{\leq} 2\pi x (\sqrt{x} - x^2) \Delta x$  $y = b(1 - \cos \theta)$  $= 2\pi (1^{3/2} - \chi^3 d\chi)$ SIND OR y = b (Seco-1)  $\frac{=\left[\frac{2}{5}\frac{5/2}{\chi},-\frac{4}{4}\right]_{0}^{1}\times^{2}i^{7}$ Q a, b(1-cose)  $= 2\pi \left[ \frac{2}{5} - \frac{1}{4} - 0 \right] = \frac{3\pi}{10} \frac{3}{u}$ sino

at R = - a	$1v$ ) $M_{1QS}^{1} = b(1 - cos \theta)$
-asectory - ytantor = 1	a (e-1) sin b
a b	$M_{RS1} = b(1 + cos +)$
$-1 - 5 \sin \theta = \cos \theta$	-a(e+i)sino
d	* Masi x Masi
$y = -b - b \cos \theta$	$= b^2 (1 - \cos^2 \omega)$
Sino	$-a^2(e^2-1)\sin^2\Theta$
or $k = -b(1+se(-))$	= b ²
tan o	$\overline{b^2}$
111) S(ae, o)	= -1
$M_{SQ} = 0 - b(1 - \cos \theta)$	$\therefore 2 0.05' R = 90^{\circ}$
sint	and LOSR + LOSIR = 180°
ae – a	making OSRS' a cyclic
$= -b(1-\cos\theta)$	quad. as opposite angles
<u>Sin ə</u>	are supplementary.
a(e-1)	
MRS = b(1+cos + b)	
~ ( e + i )	
Now Msa x Mes	
= -b(1-(ose)) $b(1+(ose))$	
SIND X SIND	
a(e-1) $a(e+1)$	
$= -b^2(1-\cos^25)$	
$\frac{1}{2}\left(2^{2}+1\right)$	
$= -b^2$ but	
$a^{2}(e^{2}-i)$ $a^{2}(e^{2}-i)=b^{2}$	
= -1 .: LQSR=90°	(6

(5){

Question 15.	
Join AO, BF BC	as Bo=oc radii
	LOCB = LCBO (equal angles
1. LABD = LOCA = 90°	= 2 opposite equal sides)
(radii to tangent at point of	NOW IN ABOC
contact is 90°)	LBOC = 180-2x (angle sum
.: opposite angles in	: LBFC=90-2
ABOC are supplementary and	(angle at the circumference is
ABOC is a cyclic guadrilateral.	half the angle at the centic on
Now, LABO=90°	arc SC)
(AD is a diameter of Line from	· LBFC=LFGE (90-x)
midpt to centre is perpendicular)	and the alternate angles
LOGA = LOCA (angles at	are equal
=90° of circle OG-CA)	· BF   AE
: AOGC is a cyclic quad	
as opposite angles are	•
supplementary.	
··· • •	
U. LOGF=LOAC	
exterior angle of a cyclic	
quadrilateral equals opposite	5
interior angle (AOGC).	
". let LOGF=LOAC=~	
·: LFGE = 90'- & (straight,	
and	
LOBC = LOAC fangles in the	
= a of ABOČ)	(7)

•

Question 15 con 7 In= j1 x n J1- x3 dx n32  $= \int_{-\infty}^{1} \chi^{n-2} \cdot \chi^2 \sqrt{1-\chi^3} dx$  $= \left(\chi^{n-2} \left(1-\chi^{3}\right)^{3/2} - \frac{2}{9}\right) - \int (n-2) \chi^{n-3} - 2 \left(1-\chi^{3}\right) \sqrt{1-\chi^{3}} dx$  $\frac{=0 + 2(n-2) \int_{0}^{1} x^{n-3} \sqrt{1-x^{3}} dx - 2(n-2) \int_{0}^{1} x^{n} \sqrt{1-x^{3}} dx}{q}$  $\frac{In\left[1+2(n-2)\right]}{q} = \frac{a(n-2)\left[1-x^{n-3}\int_{1-x^{3}}dx\right]}{q}$  $\frac{I_n \left[ \frac{9+a_n-4}{9} \right]}{\left[ \frac{9}{9} \right]} = \frac{a_n-4}{9} \frac{T'}{n-3}$ In = 2n - 4 In - 320+5 11) J8 = (16-4) 16+5  $= \frac{12}{21} \left[ \frac{(10-4)}{10+5} \right]_{2}$ Now  $I_2 = \int_0^1 x^2 \sqrt{1-x^3} dx$ =  $(1-x^3)^{3/2}$  $3/2 \cdot -3$  $\frac{-12}{21}$ ,  $\frac{6}{15}$ ,  $\frac{2}{9}$  $\frac{-2(1-\chi^3)^{3/2}}{9}$ Jo = 16 315  $= -2 \left[ 0 - 1^{3/2} \right]$ = <u>2</u>

(8) 1

T	
Question 15 con 7	
٥)	
$T_1 = 6  T_2 = 27$	
Tn= 6Tn-1 - 9Tn-2 N?3	
$T_{n} = (n+1)3^{n}$ for $n \ge 1$	
Test n=1	*****
$T_{1} = (1+1) \times 3^{1}$	
= 2 × 3	
= 6 which is given	
True for n=1	
Assume true for n=K	
ie $T_{k} = (k+1)3^{k}$	
where	
$T_{K} = 6T_{K-1} - 9T_{K-2}$	
Prove true for n=K+1	
aim to prove	
$T_{K+1} = 6T_K - 9_{K-1} = (K+1+1) \cdot 3^{K+1}$	· · ·
$T_{k+1} = 6T_k - q_{k-1}$	
$= 6 (K+i) \cdot 3^{K} - 9 [k(3^{K-i})] By$	
assumption ;	
$= 2(K+1) \times 3 \times 3^{K} - 3^{2} \cdot k \cdot 3^{K-1}$	
$= 2(k+1) \cdot 3^{k+1} - k \cdot 3^{k+1}$	
$= (2K + 2 - K) 3^{K+1}$	
$= (K+2) \cdot 3^{K+1}$	
$= (1 + 1 + 1) \cdot 3^{1/2+1}$	
as required	
(statement Required).	(9)

Question 16	
let P= ae ^{mx} + be ^{-mx}	b) the Is IR making
$dP = mae^{mx} - mbe^{-mx} = 0$	
$dx$ $ae^{mx} = be^{-mx}$	$1. m^2 = -mq - g \gamma^2 m = 1$
$ae^{m\chi} = b$	$\overline{k}^{i}$
e ^{mz}	$\therefore x = -q - g v^2$
e ^{2ma} = ^b /a	<u> </u>
· 2m2 = ln (b/a)	$\sqrt{dv} = -g(\kappa^2 + v^2)$
$x = 1 \ln(b)$	$dx \left(\frac{1}{\kappa^2}\right)$
amial	$\frac{dv}{dx} = -g \left(\frac{k^2 + v^2}{\sqrt{k^2}}\right)$
test	$dx = -1  \sqrt{\kappa^2}$
$d^2 f'_d x^2 = m^2 e^{mx} + m^2 b e^{-mx}$	$dv g \kappa^2 + v^2$
at $x = \frac{1}{2} m \ln \left( \frac{1}{2} n \right)$	$\chi = -\kappa^2 \left( \nu d\nu \right)$
d ² p o as e ^{-m} x>0	$\overline{g} \int \kappa^2 + v^2$
dx2 emx >0	$\chi = -K^2$ . $\frac{1}{2} \ln \left( K^2 + V^2 \right) + C_1$
and $a, b, m > O$	<u> </u>
.' min value is when	v = 2k
$pl = \frac{1}{am} ln(b/a)$	: $C_1 = \frac{k^2}{2q} ln(5k^2)$
$\rho = m(\frac{1}{2m\ln b/a}) - m(\frac{1}{2m\ln b/a})$	
ae +be	$x = -\frac{k^2}{2} ln(k^2 + v^2) + k^2 ln(sk^2)$
$= ae^{\frac{1}{2}\ln \frac{b}{a}} + be^{-\frac{1}{2}\ln \frac{b}{a}}$	2g , 2g
$= a e^{in\sqrt{57a}} + b e^{in\sqrt{97b}}$	max height v=0
=a/b + b/a	$\chi = \frac{-K^{2}}{2q} \ln K^{2} + \frac{K^{2}}{2q} \ln (sk^{2})$
Vā Vīb	= K2/2q ln [5K2/K2]
$= \int a^2 b + \int b^2 a$	$= K^2 \ln 5.$
v a v b	29
$=\sqrt{ab} + \sqrt{ba} = 2\sqrt{ab}.$	

*.* 

Question 16 con't	
b) x=0 t=0 v=0	$K^{2} \ln 5 = -K^{2} \ln (K^{2} - v^{2}) + K^{2} \ln (1)$
+ mg	$\overline{zg}$ $\overline{zg}$ $2g$
(m=1)	$45 = -4n(k^2 - v^2) + lnk^2$
<u> </u>	$ln5 = ln (k^2)$
	$\left(\frac{K^2-V^2}{V^2}\right)$
$\dot{x} = q - R$	$5(K^2-v^2) = K^2$
$\dot{x} = q - \dot{q} v^2$	$-5v^2 = -4K^2$
K ²	$V^{2} = 4K^{2}$
$V dV = q - qv^2$	5
dx K2	$\therefore V = [4]K^2$
dv = g = gv	J 5
$dx \overline{v} \overline{k^2}$	٧ > ن
$= gK^2 - gv^2$	V= 2K
	<u>√5</u>
$dx = \sqrt{k_1}$	
$dv gk^2 - gV^2$	
$\chi = \left( V K^2 - dV \right)$	
g 12 ² - gv ²	
$\chi = \frac{K^2}{x} - \frac{1}{x} \ln(\frac{K^2 - v^2}{x}) + C_{2}$	
9 2 x=0	
$C_2 = \frac{K^2}{2g} \ln K^2$	
$\chi = -W^{2} \ln \left( K^{2} - V^{2} \right) + K^{2} \ln K^{2}$	
29 29	
Now z = K2 In 5	
2g	

U

Question 16 conit  $V = \frac{\pi^2}{2} \left| \frac{\pi}{2} - 2(0) + 0 - \left( \frac{\pi}{2} \cdot \frac{1}{\sqrt{2}} - 2 \cdot \frac{\pi}{\sqrt{2}} \right) \right|$ (2, 3) +<u>2</u>) 52 ₹^{∆y} X lies of y = cosx 上 = T² <u>+ 2</u> 52 <del>ل</del>الع - / T <u>T - T</u> . x=cos-14 ( used -symmetry can do sin'ly # costy) × <u>u</u>³. Ξ <u>F</u> 12 (=== = cos - 14  $\rightarrow$ R  $R = \frac{\pi}{2} - x = \frac{\pi}{2} - \cos \frac{1}{2}$  $\Delta V = \overline{D} \left( R^2 - \Gamma^2 \right) \Delta Y$  $= \Pi \left[ \frac{T}{2} - \cos^2 y - \cos^2 y \right] \left[ \frac{T}{2} - \cos^2 y + \cos^2 y \right] A$ other solutions such as 12 (1  $\frac{\mathbb{T}}{2} - 2\cos^2 y$ 2sin y = 77 7/52 can be used.  $\frac{=\overline{1}^{2}\left(\overline{1} - 2\cos^{2}y\right)}{2} \Delta y$ ΰ Total volume  $= \lim_{\Delta y \to 0} \frac{\pi^2}{\sqrt{5\Sigma}} \left[ \frac{\pi^2}{2} - 2\cos^2 t \right] \Delta y$ <u>- 2 cos⁻¹y dy</u>  $=\overline{\mathbf{n}^2}$ *Y5*5 = 112 2 <u>"y</u>-~  $\frac{\pi y - 2y \cos^2 y + 2\sqrt{1-y^2}}{2}$ <u>= آا^ر</u> ک 1/52

(2)