

Name:

Maths Class:

Year 12 MATHEMATICS EXTENSION 2

HSC COURSE

ASSESSMENT 4 - TRIAL HSC

AUGUST, 2017

Time allowed: 180 minutes

General Instructions:

0	Write using black or blue pen	Total Marl	cs 100
6	In Questions 11–16, show relevant mathematical reasoning and/ or calculations	Section 1	Multiple Choice Questions 1-10 10 Marks
₿	Approved calculators may be used	Section II	Questions 11-16
0	Full marks may not be awarded for careless work or illegible writing		90 Marks
0	Begin each question on a new page		
0	All answers are to be in the writing booklet provided	5	
0	A reference sheet is provided at the back of this paper		

Section 1

Multiple Choice (10 marks) Use the multiple choice answer sheet for Question 1-10

1.	Write	$\frac{40}{1-3i}$ in the form $a + ib$, where a and b are real.
	(A)	4 – 12 <i>i</i>
	(B)	4 + 12 <i>i</i>
	(C)	-5 – 15 <i>i</i>
	(D)	-5 + 15 <i>i</i>

2. Consider the hyperbola with equation $\frac{x^2}{4} - \frac{y^2}{3} = 1$. What are the co-ordinates of the vertices of the hyperbola?

- (A) (± 2,0)
- (B) $(0, \pm 2)$
- (C) $(0, \pm 4)$
- (D) (± 4, 0)
- 3. Consider the equation $z^3 2z^2 + bz + c = 0$, where b and c are real numbers. If one of the roots of the equation is 2 i, what is the value of b?
 - (A) -3
 - (B) -19
 - (C) 3
 - (D) 19

4. What are the equations of the directrices of the ellipse $\frac{x^2}{4} + y^2 = 1$

(A) $x = \pm \frac{4}{\sqrt{3}}$

- (B) $x = \pm \sqrt{3}$
- (C) $x = \pm \frac{\sqrt{5}}{2}$

(D)
$$x = \pm \frac{2}{\sqrt{5}}$$

5. A stone of mass m is dropped from rest and falls in a medium in which the resistance is directly proportional to the square of the velocity. Suppose mk is the constant of proportionality and that the displacement downwards from the initial position is x at time t. The acceleration due to gravity is g.

Which of the following is true?

- (A) The terminal velocity is $\frac{g}{k}$.
- (B) As $t \to \infty, x \to L$ where L is a positive constant.
- (C) The equation of motion is given by $v \frac{dv}{dx} = g kv^2$.
- (D) The time for the stone to reach velocity V is given by $\int_{0}^{1} g kv^2 dv$.

The polynomial P(x) with real coefficients has x = 1 as a root of multiplicity 2 and x + i as a 6. factor.

Which one of the following expressions could be a factorized form of P(x)?

- $(x^2+1)(x-1)^2$ (A)
- (B) $(x + i)^{2}(x 1)^{2}$ (C) $(x i)^{2}(x 1)^{2}$

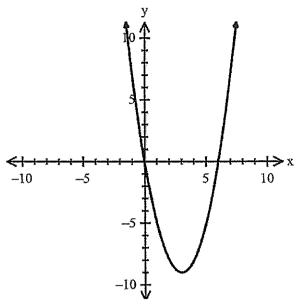
(D)
$$(x^2 + 1)(x - i)^2$$

The horizontal base of a solid is the circle $x^2 + y^2 = 1$. Each cross section taken perpendicular to 7. the x axis is a triangle with one side in the base of the solid. The length of this triangle side is equal to the altitude of the triangle through the opposite vertex. Which of the following is an expression for the volume of the solid?

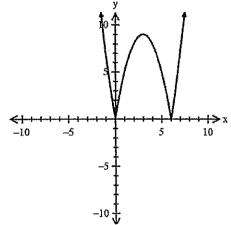
(A)
$$\frac{1}{2} \int_{-1}^{1} (1-x^2) dx$$

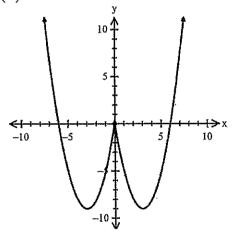
(B) $\int_{-1}^{1} (1-x^2) dx$
(C) $\frac{3}{2} \int_{-1}^{1} (1-x^2) dx$
(D) $2 \int_{-1}^{1} (1-x^2) dx$

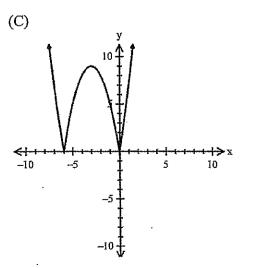
8. Consider the graph of y = f(x) drawn below.

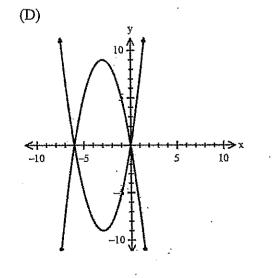


Which one of the following diagrams shows the graph of y = f(|x|)? (A) (B)



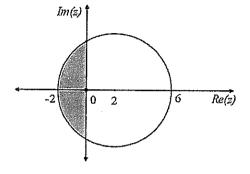






-6-

9. A circle with centre (2,0) and radius 4 units is shown on an Argand diagram below.



Which of the following inequalities represents the shaded region?

(A)
$$Re(z) \le 0$$
 and $|z-2| \le 4$

(B) $Re(z) \le 0 \text{ and } |z-2| \le 16$

- (C) $Im(z) \le 0 \text{ and } |z-2| \le 4$
- (D) $Im(z) \le 0 \text{ and } |z-2| \le 16$

10. Which of the following is the range of the function $f(x) = \sin^{-1}x + \tan^{-1}x$?

- (A) $-\pi < y < \pi$
- $(B) \qquad -\pi \leq y \leq \pi$

$$(C) \qquad -\frac{3\pi}{4} \le y \le \frac{3\pi}{4}$$

(D) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Section II

Total Marks (90) Attempt Questions 11 – 16.

Answer each question in your writing booklet. In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks)

(a)	Find	$\int \frac{\cos 2x}{\cos^2 x} dx.$	2
(b)	Let 2 i)	$r = \frac{3+i}{1+2i}$ Express z in the form $a + ib$ where a and b are real.	1
	ii)	Hence express z^7 in modulus argument form.	2
(c)	(i)	Find the square roots of $-24 - 10i$	2
	(ii)	Hence, or otherwise, solve $x^2 - (1 - i)x + 6 + 2i = 0$	2

(d) On an Argand diagram shade the region where both
$$|z-1| \ge 1$$
 and $-\frac{\pi}{4} \le \arg z \le \frac{\pi}{4}$. 3

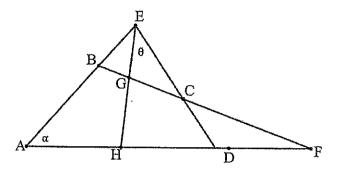
(e) (i) Show that
$$\cot \theta + \csc \theta = \cot \left(\frac{\theta}{2}\right)$$
. 2

(ii) Hence, or otherwise, find
$$\int (\cot \theta + \csc \theta) d\theta$$
. 1

Question 12 (15 Marks)

Use a Separate Sheet of paper

(a) Use the substitution
$$u = e^x + 1$$
 to find $\int \frac{e^{2x}}{(e^x + 1)^2} dx$ 3



(b) ABCD is a cyclic quadrilateral. AB produced and DC produced meet at E. AD produced 4 and BC produced meet at F. EGH bisects $\angle AED$ where H lies on AD and G lies on BC.

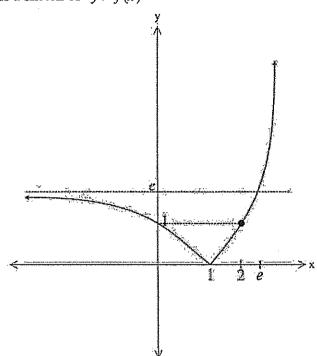
Copy the diagram and show that FG = FH.

(c) Find the equation of the tangent to the curve $x^2 - xy + y^3 = 1$ at the point P(1,1) on the curve.

(d) Let
$$I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$$
 for all integers $n \ge 0$.
(i) Show that $I_n = \frac{1}{n-1} - I_{n-2}$ for integers $n \ge 2$.
(ii) Hence find $\int_0^{\frac{\pi}{4}} \tan^5 x \, dx$.
2

3

(a) The diagram is a sketch of y = f(x)



Draw separate one third page sketches of the graphs of the following:

(i)	$y = \frac{1}{f(x)}$	2
(ii)	y = f(x+1)	2
(iii)	$y = \sqrt{f(x)}$	2
(iv)	$y = \ln(f(x))$	2

(b) For the hyperbola $\frac{y^2}{16} - \frac{x^2}{9} = 1$, find (i) the eccentricity 1 (ii) the coordinates of the foci S and S' and the equations of its directrices 2

1

(iii) Sketch the hyperbola showing all the above features.

(c) Find
$$\int \frac{2x-3}{x^2-4x+5} dx$$
 3

End of Question 13

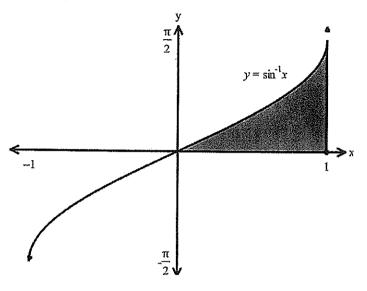
-10-

Question 14 (15 Marks)

Use a Separate Sheet of paper

(a) (i) Evaluate
$$\int_{0}^{1} x \sin^{-1} x \, dx$$

The area bounded by $y = \sin^{-1}x$, the x-axis and the line x = 1 (as shown below) (ii) is rotated about the y-axis. Use the method of cylindrical shells to determine the volume of the solid generated.

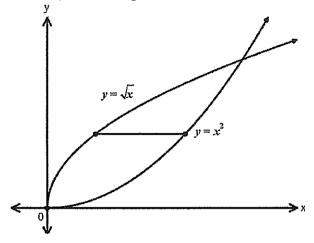


A particle of mass 4kg is projected vertically upwards. It is subjected to a (b) gravitational force of 40 Newtons and air resistance of $\frac{v^2}{10}$ Newtons. The height of the particle at time t seconds is x metres and its velocity is $v \text{ ms}^{-1}$.

Find the speed of the particle when it returns to its point of projection. (iv) 2 (Leave your answer in exact form)

2

(c) The area between curve $y = x^2$ and $y = \sqrt{x}$ is the base of the solid S. Cross sections perpendicular to the y-axis are squares.



Find the volume of S.

.

Question 15 (15 Marks)

Use a Separate Sheet of paper

(a) (i) Show that the normal to the hyperbola $xy = c^2, c \neq 0$, at $P\left(cp, \frac{c}{p}\right)$ is given

by
$$px - \frac{y}{p} = c \left(p^2 - \frac{1}{p^2} \right).$$
 2

2

3

(ii) The normal at P meets the hyperbola again at $Q\left(cq, \frac{c}{q}\right)$. Show that $q = -\frac{1}{p^3}$. 3

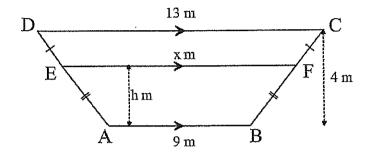
- (b) A projectile is fired with initial velocity V at an angle of projection α . The x and y components of its displacement at any time t are given by $x = Vt \cos \alpha$ and $y = Vt \sin \alpha - \frac{gt^2}{2}$, where g is the acceleration due to gravity.
 - (i) Show that the cartesian equation $y = x \tan \alpha \frac{gx^2}{2V^2}(1 + \tan^2 \alpha)$ describes the motion.
 - (ii) A projectile with initial velocity 50ms^{-1} hits a point 100m away at a height of 3 m above the point of projection. Taking $g = 10 \text{ms}^{-2}$, calculate the two angles of projection which allow this to happen. (Answers to the nearest degree.)

(c) (i) Show that if α is a zero of multiplicity 2 of a polynomial f(x), then $f'(\alpha) = 0$ 2

(ii) The polynomial $g(x) = px^3 - 3qx + r$ has a positive zero of multiplicity 2. Show that $4q^3 = pr^2$.

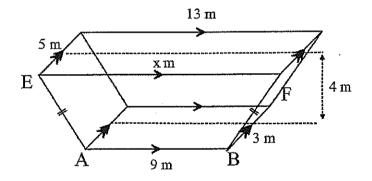
Question 16 (15 Marks)

(a) (i) The diagram below shows a trapezium ABCD whose parallel sides AB and DC are 2
 9cm and 13m respectively. The distance between the sides is 4cm and AD=BC.
 EF is parallel to AB at a distance of h m.



Show that EF = (9+h) m.

(ii) The trench in the diagram below has a rectangular base with sides 9 m and 3 m. Its
 3 Top is also rectangular with dimensions of 13 m and 5 m. The trench has a depth of 4m and each of its four sides faces is a symmetrical trapezium.



Find the volume of the trench.

(b) Find
$$\int \frac{x^3 dx}{x^2 + x + 1}$$

(c) Consider the polynomial equation $x^4 + Ax^2 + Bx + C = 0$ where A, B and C are real. Let the roots of this equation be α , β , γ and δ .

Show that:

(i)
$$\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = -2A$$

Given that $(\alpha + \beta + \gamma + \delta)^2 = \alpha^2 + \beta^2 + \gamma^2 + \delta^2 + 2(\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta)$
1

(ii)
$$\alpha^4 + \beta^4 + \gamma^4 + \delta^4 = 2A^2 - 4C$$

(d) (i) Show that for
$$k > 0$$
,

$$\frac{1}{(k+1)^2} - \frac{1}{k} + \frac{1}{k+1} < 0$$
1

(ii) Use mathematical induction to prove that for all integers $n \ge 2$, 3

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$$

End of Examination

SUDNEY TECHNICAL HIGH SCHOOL	
TRIAL 2017.	
EXTENSION 2.	
Multiple Choice	
$\frac{1}{1-3i} + \frac{40}{1+3i} = \frac{40(1+3i)}{1+9}$	
$= 4(1\pm 3i)$	
$= \frac{4(1\pm3i)}{4+12i}$	(B)
2 2 2 2 2 2 2 2 2	
$\frac{2}{4} - \frac{x^2}{3} - \frac{y^2}{3} = 1$ hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	
$a=2 b=\sqrt{3}.$	-
Vertex $(\pm \alpha, o)$	
$=(\pm 2,0)$	(A).
	····
3. 2+i+2-i+a = 2 (sum of poots)	
.a=-2	+
b=-2(2+i)-2(2-i)+2(2+i)(2-i) sum of pe	aus of roots.
b=-8+5	
b = -3	(A)
$2 \cdot 2 \cdot 1 - 2$	
$4_{4} \qquad \underline{x^{2} + y^{2} = 1} \qquad \underbrace{1 = 4(1 - e^{2})}_{2^{2} - \frac{3}{2}}$	
<u> </u>	· · · · · · · · · · · · · · · · · · ·
$\frac{a=2 \ b=1}{2} \ e=\sqrt{3}$	
$b^2 = a^2 (1 - e^2)$	
	(A)
$x = \frac{+ \alpha}{2}$ $x = \frac{+ \alpha}{2}$ $x = \frac{+ \alpha}{2}$ $x = \frac{+ \alpha}{2}$	<u>4</u> 13

Equation of motion is $\frac{v dv}{dx} = \frac{g - kv^2}{v}$ (c) x=1 is a root 6. (x-1) 2 is a factor of P(x) is a factor so (x-i) is a factor. 17+1 = (22+i)(x-i)(x-P(x)~ <u>(A)</u> A A = = 2 (2y)2 = 2y2 7 2y2 dix V > $y^2 dx$ √= a $V = 2 \int^{1} (1 - \pi^{2}) d\pi$ (a) ÷ 2.

8. (B) $\frac{\chi_{\leq 0}}{|\text{nside region of a circle with centre (2,0)}}$ radius 4 |2-2| \leq 4 " Re(2) ≤0 and |z-2|≤4 (A) 10. $-\sin(-1) + \tan(-1) \le y \le \sin(1) + \tan(1)$ $-\frac{\pi}{2} - \frac{\pi}{4} \leq y \leq \frac{\pi}{2} + \frac{\pi}{4}$ $\frac{-\frac{3\pi}{4} \leq y \leq \frac{3\pi}{4}}{4}$ (c)3

Question 11. $\int \frac{\cos 2x}{\cos^2 x} \, dx = \int \frac{2\cos^2 x - 1}{\cos^2 x} \, dx$ $\frac{2-1}{\cos^{2}x}$ dx $= \int 2 - \sec^2 x \, dx$ = dx - tanx + c $\frac{b(i)}{1+2i} = \frac{3+i}{1-2i} \times \frac{1-2i}{1-2i}$ $= \frac{3-62+2-22^2}{5}$ = 5 - 5i= 1-2 $z = \sqrt{2}$ and $z = -\frac{1}{4}$ <u>ii)</u> $z = \sqrt{2} \left(\cos\left(\frac{\pi}{4}\right) + \lambda \sin\left(-\frac{\pi}{4}\right) \right)$ $= \left(\sqrt{2}\right)^{7} \left(\cos\left(\frac{-7\pi}{4}\right) + \lambda \sin\left(\frac{-7\pi}{4}\right) \right)$ $= 8\sqrt{2} \left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right) \right)$ 4.

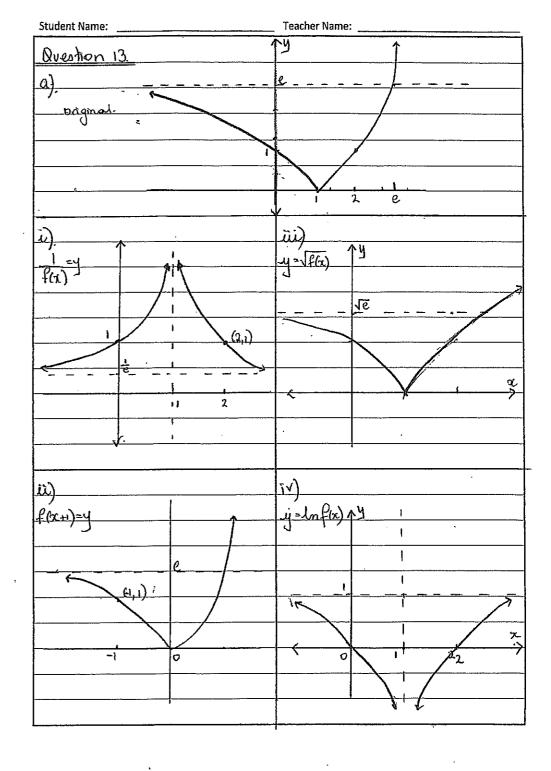
 $-24-10i = (a+ib)^2$ (نر اا a²-b²+ 2abi = -24-10i $\frac{\text{Real}}{1} = a^2 - b^2 = -24$ Imaginary = Zab = -10 b = -5Aub $b = \frac{5}{a}$ into $a^2 - b^2 = -24$ $a^{4}+24a^{2}-25=0$ $(a^2+25)(a^2-1) = 0$ a== 1 since a is real $b = \pm 5$ The roots are 1-52, -1+50 $2c = 1 - \dot{u} - \sqrt{(1 - \dot{u})^2 - 4(6 + 2\ddot{u})}$ ίũ. 2 $x = 1 - i \pm -24 - 10i$ x = 1 - i = (1 - 5i)2 x = 2ix = 1 - 3iŚ

d) Jy	
-1	<u>推摸紙</u> 」 オロダー など、アレー ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
-1-	
	191 1
	-
ei) Method 1	Method 2
eot O+ cosec O	let $t = \tan \frac{\theta}{2}$
	$\cot \theta + \csc \theta$
$= \frac{\cos \theta}{\sin \theta} + \frac{1}{\sin \theta}$	
$= \cos \theta + 1$	tan Q Sin Q
sin O	$1 + t^2 + 1 + t^2$
$= 2 \cos^2 \frac{\theta}{2}$	$\frac{-1-t^2 + 1+t^2}{at}$
$2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$	$= \frac{2t}{2}$
$\frac{\theta}{2}$ $\frac{\theta}{2}$	2
$sm \frac{\theta}{2}$	= 1
$= \cot \frac{\theta}{2}$	Ł
	$= \omega t \frac{\theta}{2}$
ii) floot 0+ cosec 0) d0 =	(wt 2 d0
<u> </u>	J
	$-\left(\cos\frac{\theta}{2} d\theta\right)$
	J sin q
	$= 2 \int \frac{1}{2} \cos \frac{\theta}{2} d\theta$ $\int \sin \frac{\theta}{2}$
	J sin 🦉
	$-2\ln(\sin\frac{\theta}{2})+c$
•	e e
	· · · · · · · · · · · · · · · · · · ·

Question 12 $u=e^{\chi}+1.$ $\int \frac{e^{2\chi}}{(e^2+1)^2} d\chi = \int \frac{e^{\chi}}{(e^{\chi}+1)^2} d\chi$ $du = e^{\alpha} d\alpha$ = $\mathcal{U} - \mathcal{I} du$ $= ln(e^{2l}+1) + \frac{1}{\rho^{2l}+1} + C$ <u>b)</u> Á. H Ď LFGH = LECG + LCEG (exterior angle of DGEC To equal to the sum of interior opposite angles) = ZEAH + ZCEG (exterior angle of cyclic quadolateral ABCD is equal to interner apposite angle) = LEAH + LAEH (given EGH bisects LAED) = 2FHG (exterior angle is equal to the sum of the two pposite interior angles) So AFGH, FG = FH (sides opposite equal angles are equal)

<u> 26²-264 + 4³=1</u> $2x - (y + x dy) + 3y^2 dy = 0$ $\frac{(3y^2 - 3c) dy}{dy} = y - 2x$ At P(1,1) $\frac{dy}{dx} = \frac{4y-2x}{3y^2-x} = \frac{1-2}{3-1} = -\frac{1}{2}$ z = Tangent at p has gradient - 1/2 and equations $<math>y - 1 = -\frac{1}{2}(x - 1)$ z + 2y - 3 = 0d) $T_n = \int_{-\infty}^{\infty} dx dx$ $=\int_{-\infty}^{\frac{N}{2}} \tan^{n-2} \tan^2 x \, dx$ $= \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^{n-2} x \left(\sec^2 x - i \right) dx$ $= \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^{n-2} x \sec^{2} x \, dx - \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^{n-2} x \, dx$ Let u= tanoi $\chi = 0$ $\mu = 0$ $\int \frac{du}{du} = \int \frac{u^{n-2}}{u^{n-2}} \frac{du}{du} = I_{n-2}$ $= \left(\underbrace{u^{n-1}}_{n-1} \right)^{l} - \ln_{2}$

 $= \left(1^{n-1} - 0 \right) - I_{n-2}$ 11-1 = 1 - In-2 as required $\int_{0}^{\frac{\pi}{4}} \tan^{5} x \, dx = I_{5}$ ù) $I_{5} = \frac{1}{4} - I_{3}
 I_{3} = \frac{1}{2} - I_{1}
 I_{1} = \int_{0}^{\pi/4} tan x dx$ = $\left[\log_e (\cos x)\right]^{\frac{14}{4}}$ $= - \left(\log_e \left(\cos \frac{\pi}{4} \right) - \log_e \left(\cos 0 \right) \right)$ = - loge 1/2 $= -log_{e} 2^{-\frac{1}{2}}$ $=\frac{1}{2}\log 2$ $\overline{I}_3 = \frac{1}{2} - \frac{1}{2} \log_e 2$ $I_{5} = \frac{1}{4} - \left(\frac{1}{2} - \frac{1}{2} \log_{e} 2\right)$ $\int \frac{1}{4} \tan^3 x \, dx = \frac{1}{2} \log 2 - \frac{1}{4}$



9.

<u>b ī)</u>____ $\frac{y^2 - x^2}{16} =$ لم (نسّ <u>'y=4x</u> $9 = 16(e^2 \frac{\dot{q}}{lb} = e^2 - 1$ <u>मुडे</u>ष्ट्रि $e^2 = 25$ 16 <u>e = 5</u> i) Foci (0, ±5) Directnices $y = \frac{\pm 16}{5}$ $\frac{2x-3}{x^2-4x+5} \frac{dx}{x^2-4x+5} = \int \frac{2x-3-1+1}{x^2-4x+5} \frac{dx}{x^2-4x+5}$ $= \int \frac{\partial x - 4}{\chi^2 - 4\chi + 5} + \frac{1}{\chi^2 - 4\chi + 5} \frac{dx}{\chi^2 - 4\chi + 5}$ $= \ln (x^2 - 4x + 5) + \int (x - 2)^2 + 1$ _ dr $= lm(x^2 - 4x + 5) + lam'(x + 2) + c$ η_i

Teacher Name: Student Name: Question 14. L= Sin JC $\frac{v = x^2}{v = x^2}$ a i) By parts $\frac{1}{\sqrt{1-2t^2}}$ $= \left[\frac{x^2}{2} \frac{\sin^2 x}{\sin^2 x} \right]^2 - \frac{1}{2} \int_{0}^{1} \frac{x^2}{2} dx$ $= \int \frac{1}{2} s_{1n} \frac{1}{1 - 0} - \frac{1}{2} \frac{\pi}{4}$ <u>n - T</u> 4 8 -= 11 & bii) VShell = TR2h - TT2h $= \pi y (x + \delta x + x)(x + \delta x - x)$ $= \pi y (2x + \delta x)(\delta x)$ $= 2\pi x y \delta x$ as 822 is negligible Sz->0. Volume of Solid = 275 / 2.4 dz $= 2\pi \int_{n}^{1} \frac{x \sin^{2} x \, dx}{2}$ = 211 x 11 = # enits 3 12.

Stüdent Name:	Teacher Name:
<u>bi</u>) $v^2 = 400(10e^{-720}-1)$	At maximum height v=0
ie 10e -1 =0	0
$e^{-\frac{2}{20}} = \frac{1}{10}$	
$e^{\frac{y}{20}} = 10$	
<u> </u>	10
$x = log_e$ 20	10
<u> </u>	ge 10 max height
<u>bii) $4x = 40 - v^2$</u>	
$450 = 400 - v^2$	
$\frac{3}{2} = \frac{400 - v^2}{40}$	
biti) $\dot{x} = 400 - \sqrt{2}$ 40	
40	
$\frac{-v dv}{d^{3L}} = \frac{400 - v^2}{40v}$	
dsc 40v.	
$\frac{dx}{dv} = \frac{40v}{400 - v^2}$	
dv 400-v2	
$x = -20 \log_{e} (400 - v^2) + c$: when x=0 v=0
<u>_</u>	c= 20 loge 400
$\frac{1}{2} = \frac{1}{20} \log \frac{400}{400}$	<u> </u>
$\frac{\partial}{\partial x} = \frac{\partial}{\partial y} \log \frac{400}{400 - \sqrt{2}}$	

	Student Name: Teacher Name:
	From ii) ž->0 as v ² -> 400.
•	t Torrainal valoatty in a -
	when $v = 10$ $x = 20 \log_{e} 400$ 400 - 100
	400-100
	$\chi = 20 \log_{e} \frac{4}{3}$
	Body has fallen 2010g 3 metres when its speed
	Body has fallen 20 loge 3 metres when its speed is 50% of terminal velocity
	J
	$\frac{1}{1} x = \frac{20 \log_e 400}{400 - v^2}$
	JE 400-V2
	When x = 20 loge 10 when body returns to point
	of projection : 20 loge 10 = 20 loge 400 400-12
	110 Je Je 400-12
	400 = 10
	400-V ²⁻
	$400 - v^2 = 4.0$
	$v^2 = 360$
	$v = 6\sqrt{10} \text{ ms}^{-1}$
	•
	j r.

c) Curves interset at (0,0) and (1,1)	
$\frac{\text{length of slice } \sqrt{y} - y^2}{\text{thickness of slice = } Sy}$ Area of cross section = $(\sqrt{y} - y^2)^2$	
thickness of slice = Sy	
Area of cross section = (1y-y2)	
Valume of slice = $(\sqrt{y} - y^2)^2$ Sy	
Valume of solid = $\int_{b}^{b} (\sqrt{y} - y^2)^2 dy$	
$= \int_0^1 y - 2y^{\frac{5}{2}} + y^{\frac{1}{2}} dy$	
$= \left[\begin{array}{c} \frac{y^{2}}{2} - \frac{4}{7} y^{\frac{7}{2}} + \frac{1}{5} y^{5} \\ 2 \end{array} \right]_{b}$	
$= \begin{bmatrix} 1 - 4 + 1 \\ 2 & 7 & 5 \end{bmatrix}$	
= 9 units ³	
6	15

Teacher Name: Student Name: _ Question 15 $\frac{x_{y} = c^{2}}{dx} = \frac{y = c^{2}x^{-1}}{y^{2}}$ ai) $\frac{At}{dx} \frac{p}{dy} = \frac{-c^2}{c^2p^2} = -\frac{1}{p^2}$: gradient of the normal at p is p^2 Equation of normal $y - c = p^2(x - cp)$ $\frac{y-c}{p^2} = px - cp^2$ $\frac{px-y}{p} = \frac{cp^2-c}{p^2}$ $\frac{p_2 - y_1}{p} = c(p^2 - \frac{1}{p^2})$ Method 1 $M_{pQ} = \frac{c}{p} - \frac{c}{q}$ a -29/ = <u>c (q - p)</u> Cpq (D-q) :. The gradient of the normal is p^2 :. $p^2 = -\frac{1}{pq}$ 16.

qui) Method 2 Method 3 Solving $y = \frac{c^2}{2}$ and $p_{z, +} = c(p^2 - p^2)$ simultaneously The normal meets the hyperbola y= c², again at Q(cq, c) the co-ordinates of Q must $\frac{p\chi + c^2}{p\chi} = c\left(p^2 - \frac{1}{p^2}\right)$ satisfy the equation of the $\frac{p^{2}x^{2}-cpx(p^{2}-1)}{p^{2}+c^{2}=0}$ normal $\frac{i}{p(cq)} - \frac{(c)}{q} = c(p^2 - 1)$ The roots of this equation are the z-values of the points P and $\frac{cpq-c}{pq} = c\left(p^2 - \frac{1}{p^2}\right)$ Q: cp and cq $pq - \frac{1}{pq} = p^2 - \frac{1}{p^2}$ Using the product of the roots. $pq - p^2 = \frac{1}{pq} - \frac{1}{p^2}$ $\frac{c_{p}c_{q} = -c^{2}}{p^{2}}$ q = -1 p^{2} p^{3} $pq - p^2 = p^2 - pq$ Using the sum of the roots. $cp+cq = pc(p^2 - \frac{1}{p^2})$ $\frac{p(q-p) = p(p-q)}{p^{3}q}$ $\frac{-1 = -1}{p^3 q}$ p+q = p- + i q=-1 p3 24 17.

bi) t= oc from the 1st equation sub ento $y = \sqrt{t} \sin \alpha - \frac{gt^2}{g_1}$ $\frac{y = \sqrt{\sin\alpha} \left(\frac{\pi}{\sqrt{\cos\alpha}}\right) - \frac{g}{2} \left(\frac{x}{\sqrt{\cos\alpha}}\right)^2}{\frac{1}{2} \left(\sqrt{\cos\alpha}\right)^2}$ $y = x \tan \alpha - 9x^2 \sec^2 \alpha \quad \text{but } \sec^2 \alpha = 1 + \tan^2 \alpha$ $\frac{y = x \tan \alpha - qx^2 \left(1 + \tan^2 \alpha\right)}{\sqrt{1}}$ <u>bü) y=3</u> $\frac{3 = 100 \tan \alpha - 10 \times 100^2 - 10 \times 100^2 \tan^2 \alpha}{2 \times 50^2} = \frac{10 \times 100^2 \tan^2 \alpha}{2 \times 50^2}$ x=100. 3=100 tanx - 100 000 - 100 000 tana 5000 \$000 $\frac{g}{g} = 10$. √ = 50 20 tan2 - 100 tand + 23 = 0 $tan \alpha = 100^{+} \sqrt{100^{2} - 4x} 20 \times 23^{-}$ tan x = 3.5723, 1.4-276. $\alpha = 78^{\circ}, 14^{\circ}$

ci) Given & is a zero of multiplicity 2. $f(x) = (x - \alpha)^2 q(x)$ for some polynomial q(x) $f'(x) = (x - \alpha)^2 q'(x) + 2(x - \alpha) q(x)$ $= (x - \alpha) [(x - \alpha)q'(x) + 2q(x)]$ $\frac{\partial^2 \sigma}{\partial r} f(\alpha) = (\alpha - \alpha)^2 q(\alpha)$ = Oxq(x) $f'(\alpha) = (\alpha - \alpha)[(\alpha - \alpha)g'(\alpha) + 2g(\alpha)]$ $= \upsilon \left(\upsilon + 2q(\alpha) \right)$ Hence if a is a zero multiplicity 2 of a polynomial for) then $f(\alpha) = f'(\alpha) = 0$ <u>c ü)</u> $-\frac{q(x)=px^3-3qx+r}{2}$ $\frac{g'(x)}{g'(x)} = \frac{3px^2 - 3q}{2}$ Let a be the root of multiplicity 2. Then $g(\alpha) = p\alpha^3 - 3q\alpha + \tau = 0$ and $g'(\alpha) = 3p\alpha^2 - 3q = 0$ $\frac{3pa^2 - 3q = 0}{a^2} = q_{\perp}$ $pa^{3}-3qa+\tau=0$ $\gamma = \alpha \left(3q - p\alpha^2 \right)$ $\gamma^2 = \alpha^2 (3q - p\alpha^2)^2$ $= \frac{q}{p} \left(\frac{3q - p \times q}{p} \right)^2$ $= \frac{4}{p} \left(2q^{2} \right)$ $\tau^{2} = \frac{4q^{3}}{p}$ $\tau^{2} = \frac{4q^{3}}{p}$ 19.

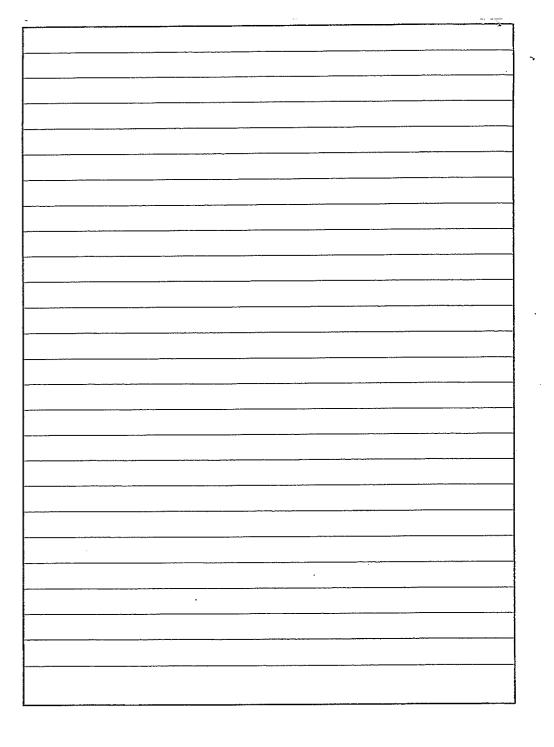
Ruestion 16. 13m . DAXD and DRUC are congrient 4m (RHS) DX = CU = 29m By Similar triangles Vertical cross-sections through $\frac{EY}{AY} = DX$ centre of the base and parallel to the sides of the base will be $\frac{EY}{h} = \frac{2}{4} = \frac{1}{2}$ symmetric trapeziums $EY = \frac{h}{2}$ <u>5</u>m **ה**' Similarly VF = 12 EF = EY + 9 + VFhm EF=9+h 3m ii) Cross sections parallel to the base of the trench will be rectangles with sides x and y as shown in diagram above. x=9+h from bi From second diagram D'x'=c'u'=1 Using Similar triangles EY' = 1

y= 3+2× 4 y = 3 + h: Area of cross-section = (9+h)/3+ $\frac{h}{2}$) $=\frac{h^2}{2}+\frac{15h}{2}+27$ $\frac{1}{2} \text{ Volume} = \left(\frac{h}{2}, \frac{1}{2}, \frac{15h}{2}, \frac{1}{2}, \frac{15h}{2}, \frac{1}{2}, \frac$ $= \int \frac{h^3 + 15h^2 + 27h}{6} \frac{4}{7}$ $= 178 \frac{2}{5} m^{3}$

 $\frac{b}{x^2 + x + i} \int \frac{x^3}{dx} = \int \frac{x^3 - i + i}{x^2 + x + i} dx$ $\frac{x-1+1}{(x+\frac{1}{2})^2+\frac{3}{4}}$ $\frac{\chi^2 - \chi + 2}{2} \frac{\tan^{-1}\left(\chi + \frac{1}{2}\right) + c}{\sqrt{3}}$ $= \frac{x^2 - x + 2}{2} \frac{\tan^{-1}(2x+1)}{\sqrt{3}} + c$ c) $\alpha^{2} + \beta^{2} + \gamma^{2} + \beta^{2} = (\alpha + \beta + \gamma + \beta)^{2} - 2(\alpha\beta + \alpha\gamma + \alpha\beta + \beta\gamma + \beta\beta + \gamma\beta)$ $= \left(\frac{-b}{a}\right)^2 + -2x\frac{A}{1}$ = 0-2A = -2A as required cii) Since x, B, y and S are roots then x4+ Ax2+ Bx+c=0 B++AB2+BB+ c =0 2++A2+By+c=0 St + AS2+BS+C =0 Adding $\alpha^{+} + \beta^{+} + \beta^{+} + \beta^{+} = -A(\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2}) - B(\alpha + \beta + \gamma + \delta) - 4C$ = -A(-2A) - B(0) - 4C= $2A^2 - 4C$ as required

21

$\begin{array}{c} di) & 1 & -1 + 1 & = -k - (k+1)^2 + k(k+1) \\ \hline & (k+1)^2 & k & k+1 & k(k+1)^2 \\ & & - k(k+1)^2 \\ \hline & & - 1 & 20 & \text{since } k > 0 \\ \hline & & k(k+1)^2 \\ \hline & & - 1 & 20 & \text{since } k > 0 \\ \hline & & k(k+1)^2 \\ \hline & & - 1 & 20 & \text{since } k > 0 \\ \hline & & k(k+1)^2 \\ \hline & & - 1 & 20 & \text{since } k > 0 \\ \hline & & k(k+1)^2 \\ \hline & & - 1 & 2 & - 1 & 2 \\ \hline & & - 1 & 2 & - 1 & 2 \\ \hline & & - 1 & 2 & - 1 & 2 \\ \hline & & - 1 & 2 & - 1 & 2 \\ \hline & & - 1 & 2 & - 1 & 2 \\ \hline & & - 1 & 2 & - 1 & 2 \\ \hline & & - 1 & 2 & - 1 & 2 \\ \hline & & - 1 & - 1 & 2 & - 1 \\ \hline & & - 1 & 2^2 & - 1 & - 1 \\ \hline & & - 1^2 & 2^2 & - 1 & - 1 \\ \hline & & - 1 & 2^2 & - 1 \\ \hline & & - 1 & 2^2 & - 1 \\ \hline & & - 1 & 2^2 & - 1 \\ \hline & & - 1 & 2^2 & - 1 \\ \hline & & - 1 & 2^2 & - 1 \\ \hline & & - 1 & 2^2 & - 1 \\ \hline & & - 1 & 2^2 & - 1 \\ \hline & & - 1 & 2^2 & - 1 \\ \hline & & - 1 & 2^2 & - 1 \\ \hline & & - 1 & 2^2 & - 1 \\ \hline & & - 1 & 2^2 & - 1 \\ \hline & & - 1 & - 1 \\ \hline & & - 1 & 2^2 & - 1 \\ \hline & & - 1 \\ \hline & & - 1 & - 1 \\ \hline & & - 1 $	
$\int (k_{+})^{2} - k - k_{++} + \frac{k(k_{++})^{2}}{k(k_{++})^{2}}$ $= \frac{k(k^{2}+2k+1) + k^{2}+k}{k(k_{++})^{2}}$ $= -1 - 20 - 5ince - k>0$ $\frac{k(k_{++})^{2}}{k(k_{++})^{2}}$ $\frac{ii}{k_{+}} = \frac{1}{1^{2}} + \frac{1}{2^{2}} = 1\frac{1}{4}$ $\frac{k_{+}}{k_{+}} = \frac{1}{2} - \frac{1}{2} = 1\frac{1}{2}$ $\frac{1}{k_{-}} + \frac{1}{k_{-}} = 2 - \frac{1}{2} = 1\frac{1}{2}$ $\frac{1}{k_{-}} + \frac{1}{k_{-}} = 2 - \frac{1}{k_{-}} = 2 - \frac{1}{k_{-}} = 1\frac{1}{2}$ $\frac{1}{k_{-}} + \frac{1}{k_{-}} = 2 - \frac{1}{k_{-}} = 2 - \frac{1}{k_{-}} = \frac{1}{k_{-}}$ $\frac{1}{k_{-}} + \frac{1}{k_{-}} + \frac{1}{k_{-}} + \frac{1}{k_{-}} < 2 - \frac{1}{k_{-}}$ $\frac{1}{k_{-}} + \frac{1}{k_{-}} + \frac{1}{k_{-}} + \frac{1}{k_{-}} + \frac{1}{k_{-}} < 2 - \frac{1}{k_{-}}$ $\frac{1}{k_{-}} + \frac{1}{k_{-}} + \frac{1}{k_{-}} + \frac{1}{k_{-}} + \frac{1}{k_{-}} + \frac{1}{k_{-}} = \frac{1}{k_{-}} + \frac{1}$	d_{i} = $l_{i} + l_{i} = k - (k+1)^{2} + k(k+1)$
$\frac{k(k+1)^{2}}{k(k+1)^{2}}$ $= -1 \leq 0 \text{since } k>0$ $\frac{k(k+1)^{2}}{k(k+1)^{2}}$ $\frac{iii}{k+s} = \frac{1}{1^{2}} + \frac{1}{2^{2}} = \frac{1}{2}$ $\frac{1}{2} + \frac{1}{1^{2}} + \frac{1}{2^{2}} = \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \dots + \frac{1}{k^{2}} \leq \frac{2}{k}$ $\frac{1}{k+s} = \frac{1}{2} - \frac{1}{2} \text{some integer } k$ $\frac{1}{k+s} = \frac{1}{2^{2}} + \frac{1}{3^{2}} + \dots + \frac{1}{k^{2}} \leq \frac{2}{k}$ $\frac{1}{k} \text{be for some integer } k$ $\frac{1}{k+s} = \frac{1}{k^{2}} + \frac{1}{(k+1)^{2}} \text{ket } \frac{1}{k} + \frac{1}{k} + \frac{1}{k^{2}} + \frac{2}{k} + \frac{1}{k}$ $\frac{1}{k^{2}} + \frac{1}{2^{2}} + \frac{1}{k^{2}} + \frac{1}{(k+1)^{2}} \text{ket } \frac{1}{k} + $	$(k+)^2 - k - k+1 - k(k+1)^2$
$\frac{k(k+1)^{2}}{k(k+1)^{2}}$ $= -1 \leq 0 \text{since } k>0$ $\frac{k(k+1)^{2}}{k(k+1)^{2}}$ $\frac{iii}{k+s} = \frac{1}{1^{2}} + \frac{1}{2^{2}} = \frac{1}{2}$ $\frac{1}{2} + \frac{1}{1^{2}} + \frac{1}{2^{2}} = \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \dots + \frac{1}{k^{2}} \leq \frac{2}{k}$ $\frac{1}{k+s} = \frac{1}{2} - \frac{1}{2} \text{some integer } k$ $\frac{1}{k+s} = \frac{1}{2^{2}} + \frac{1}{3^{2}} + \dots + \frac{1}{k^{2}} \leq \frac{2}{k}$ $\frac{1}{k} \text{be for some integer } k$ $\frac{1}{k+s} = \frac{1}{k^{2}} + \frac{1}{(k+1)^{2}} \text{ket } \frac{1}{k} + \frac{1}{k} + \frac{1}{k^{2}} + \frac{2}{k} + \frac{1}{k}$ $\frac{1}{k^{2}} + \frac{1}{2^{2}} + \frac{1}{k^{2}} + \frac{1}{(k+1)^{2}} \text{ket } \frac{1}{k} + $	$= K(k^{2}+2k+1) + K^{2}+K$
ii) For $n=2$ $2\cdot H\cdot S = \frac{1}{1^2} + \frac{1}{2^2} = 1\frac{1}{4}$ $R\cdot H\cdot S = 2 - \frac{1}{2} = 1\frac{1}{2}$ \therefore True for $n=2$ Since $ \frac{1}{4} < 1\frac{1}{2}$ $det = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{K^2} < 2 - \frac{1}{K}$ be true for some integer k Then for $n=k+1$ we need to prove that : $1 + 1 + \dots + 1 + \dots + 2 - \frac{1}{K+1}$ $L\cdot H\cdot S = 1 + 1 + \dots + 1 + 1 < 2 - \frac{1}{K}$ $l^2 = 2^k - \frac{1}{K^2} - \frac{1}{(k+1)^2} - \frac{1}{K} + \frac{1}{(k+1)^2}$ but $1 - 1 < -1$ $k + 1 + \dots + 1 + \frac{1}{K+1} - \frac{1}{K+1}$ $L + 1 + \dots + \frac{1}{K} + \frac{1}{K+1} - \frac{1}{K} - \frac{1}{(k+1)^2} - \frac{1}{K} + \frac{1}{(k+1)^2} - \frac{1}{K} - \frac{1}{(k+1)^2} - \frac{1}{K+1}$ but $1 - \frac{1}{K} - \frac{1}{(k+1)^2} - \frac{1}{K+1}$ $L + \frac{1}{K} - \frac{1}{(k+1)^2} - \frac{1}{K+1} - \frac{1}{K} - \frac{1}{K} - \frac{1}{(k+1)^2} - \frac{1}{K+1} - \frac{1}{K} - $	$\frac{1}{(K(K+I))^2}$
$\begin{array}{rcl} R.H.S &=& 2-\frac{1}{2} &=& 1\frac{1}{2} \\ \hline &\vdots & True for & n=2 & Since & \frac{1}{4} < \frac{1}{2} \\ \hline & & \\ & \\ Let & \frac{1}{2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{K^2} < 2-\frac{1}{K} \\ \hline & \\ & \\ & \\ be true for & some integer & \\ \hline & \\ \hline & \\ Then for & n=k+1 & we & need to prove that : \\ \hline & \\ & 1 + 1 + \dots + 1 + 1 \\ & \\ & \\ & \\ L.H.S &=& 1 + 1 + \dots + 1 + 1 \\ & \\ & \\ & \\ & \\ L^H.S &=& 1 + 1 + \dots + 1 + 1 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	= -1 <0 since k>0 K(K+1) ²
$\begin{array}{rcl} R.H.S &=& 2-\frac{1}{2} &=& 1\frac{1}{2} \\ \hline &\vdots & True for & n=2 & Since & \frac{1}{4} < \frac{1}{2} \\ \hline & & \\ & \\ Let & \frac{1}{2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{K^2} < 2-\frac{1}{K} \\ \hline & \\ & \\ & \\ be true for & some integer & \\ \hline & \\ \hline & \\ Then for & n=k+1 & we & need to prove that : \\ \hline & \\ & 1 + 1 + \dots + 1 + 1 \\ & \\ & \\ & \\ L.H.S &=& 1 + 1 + \dots + 1 + 1 \\ & \\ & \\ & \\ & \\ L^H.S &=& 1 + 1 + \dots + 1 + 1 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	·
$\begin{array}{rcl} R.H.S &=& 2-\frac{1}{2} &=& 1\frac{1}{2} \\ \hline &\vdots & True for & n=2 & Since & \frac{1}{4} < \frac{1}{2} \\ \hline & & \\ & \\ Let & \frac{1}{2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{K^2} < 2-\frac{1}{K} \\ \hline & \\ & \\ & \\ be true for & some integer & \\ \hline & \\ \hline & \\ Then for & n=k+1 & we & need to prove that : \\ \hline & \\ & 1 + 1 + \dots + 1 + 1 \\ & \\ & \\ & \\ L.H.S &=& 1 + 1 + \dots + 1 + 1 \\ & \\ & \\ & \\ & \\ L^H.S &=& 1 + 1 + \dots + 1 + 1 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$\frac{ii}{1} \text{For } m = 2$ $\frac{1}{12} + \frac{1}{12} = \frac{1}{14}$
$\frac{1}{1^{2} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \dots + \frac{1}{k^{2}} < 2 - \frac{1}{k}}{k}$ $\frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \dots + \frac{1}{k^{2}} < 2 - \frac{1}{k}}{k}$ $\frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \dots + \frac{1}{k^{2}} + \frac{1}{k^{2}} < 2 - \frac{1}{k}}{k}$ $\frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{k^{2}} + \frac{1}{(k+1)^{2}} + \frac{1}{k} + \frac{1}{k^{2}} < 2 - \frac{1}{k}}{k^{2}} + \frac{1}{(k+1)^{2}} + \frac{1}{k} + \frac{1}{k} + \frac{1}{k^{2}} < \frac{2 - 1}{k} + \frac{1}{(k+1)^{2}} + \frac{1}{k} +$	
be true for some integer k Then for $n=k+1$ we need to prove that: $1 + 1 + \dots + 1 + \dots + 2 - \frac{1}{k+1}$ $1^2 + \frac{1}{2^2} + \frac{1}{k^2} + \frac{1}{(k+1)^2} + \frac{1}{k+1}$ $\frac{1^2 + \frac{1}{2^2} + \frac{1}{k^2} + \frac{1}{(k+1)^2} + \frac{1}{k} + \frac{1}{(k+1)^2} + \frac{1}{k} + \frac{1}{(k+1)^2} + \frac{1}{k} + \frac{1}{(k+1)^2} + \frac{1}{k} + \frac{1}{(k+1)^2} + \frac{1}{k+1}$ $\frac{2R \cdot H \cdot S}{k} + \frac{1}{k+1} + \frac{1}{k+1} + \frac{1}{k+1} + \frac{1}{k} + \frac{1}{k+1} + \frac{1}{k} + \frac{1}{k}$:. True for $n=2$ Since $ \frac{1}{4} < \frac{1}{2}$
be true for some integer k Then for $n=k+1$ we need to prove that: $1 + 1 + \dots + 1 + \dots + 2 - \frac{1}{k+1}$ $1^2 + \frac{1}{2^2} + \frac{1}{k^2} + \frac{1}{(k+1)^2} + \frac{1}{k+1}$ $\frac{1^2 + \frac{1}{2^2} + \frac{1}{k^2} + \frac{1}{(k+1)^2} + \frac{1}{k} + \frac{1}{(k+1)^2} + \frac{1}{k} + \frac{1}{(k+1)^2} + \frac{1}{k} + \frac{1}{(k+1)^2} + \frac{1}{k} + \frac{1}{(k+1)^2} + \frac{1}{k+1}$ $\frac{2R \cdot H \cdot S}{k} + \frac{1}{k+1} + \frac{1}{k+1} + \frac{1}{k+1} + \frac{1}{k} + \frac{1}{k+1} + \frac{1}{k} + \frac{1}{k}$	$\int_{at} \frac{1}{1^2 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{K^2} < 2 - \frac{1}{K}$
Then for $n=k+1$ we need to prove that: $ \begin{array}{c} 1 + 1 + \dots + 1 + \dots + 2 - 1 \\ 1^{2} 2^{2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
$\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{k^{2}} + \frac{1}{(k+1)^{2}} + \frac{1}{k+1}$ $\frac{1^{2}}{2^{2}} + \frac{1}{2^{2}} + \frac{1}{k^{2}} + \frac{1}{(k+1)^{2}} + \frac{1}{k} + $	/ 0
$\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{k^{2}} + \frac{1}{(k+1)^{2}} + \frac{1}{k+1}$ $\frac{1^{2}}{2^{2}} + \frac{1}{2^{2}} + \frac{1}{k^{2}} + \frac{1}{(k+1)^{2}} + \frac{1}{k} + $	Then for n= k+1 we need to prove that :
$\begin{array}{rcl} \mathcal{L} \cdot \mathcal{H} \cdot \mathcal{S} &= 1 + 1 + \dots + 1 + 1 + 2 + 2 - 1 + 1 & \text{from (i)} \\ & & & & & \\ 1^2 & 2^2 & & & & \\ \mathcal{L}^2 & & & & \\ & & & & \\ \end{array}$ $\begin{array}{rcl} but & 1 & - 1 & & & -1 \\ & & & & \\ \hline but & 1 & - 1 & & & \\ \hline but & 1 & - 1 & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \end{array}$ $\begin{array}{rcl} but & 1 & - 1 & & & \\ \hline & & & & \\ \hline &$	
but $1 - \frac{1}{(k+1)^2} - \frac{1}{(k+1)^2}$ So $2 - \frac{1}{(k+1)^2} - \frac{1}{(k+1)^2}$ $\frac{1}{(k+1)^2} - \frac{1}{(k+1)}$ $\frac{1}{(k+1)^2} - \frac{1}{(k+1)}$ $\frac{1}{(k+1)^2} - \frac{1}{(k+1)}$ $\frac{1}{(k+1)^2} - \frac{1}{(k+1)^2}$ $\frac{1}{(k+1)^2} - \frac{1}{($	$1^{2} 2^{2} K^{2} (k+1)^{2} K+1$
So $2 - \frac{1}{k} + \frac{1}{(k+1)^2} < \frac{2-1}{k+1}$ $2 R \cdot H \cdot S$ i. By Mathematical Induction $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$	$\frac{L \cdot H \cdot S = 1 + 1 + \dots + 1 + 1}{1^2 2^2 K^2 (k+1)^2 K (k+1)^2} from (i)$
So $2 - \frac{1}{k} + \frac{1}{(k+1)^2} < \frac{2-1}{k+1}$ $2 R \cdot H \cdot S$ i. By Mathematical Induction $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$	$\frac{but}{(k+i)^2} - \frac{1}{k} - \frac{1}{k+i}$
$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ \hline \\ \hline$	
: By Mathematical Induction $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$	$\frac{36 \alpha - 1}{k} + \frac{1}{(k+1)^2} + \frac{1}{k+1}$
: By Mathematical Induction $\frac{1}{12} + \frac{1}{12} + \frac{1}{32} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$ is true for all integers $n \ge 2$ 23.	2 R · H ·S
is true for all integers n>2 23.	: By Mathematical Induction $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$
, ~ ~ ~ ~	is the for all integers n>2 23.



•