Student Name

Teacher's Name:

Extension 2 Mathematics

TRIAL HSC

August 2020

General Instructions	 Reading time – 10 minutes Working time – 180 minutes Write using black pen NESA approved calculators may be used
	 A reference sheet is provided at the back of this paper In questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks: Section I – 10 marks

- 100
- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II – 90 marks

- Attempt questions 11-16
- Allow about 2 hours and 45 minutes for this section

Section I

10 Marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1-10.

- 1. If $z = 2e^{-\frac{\pi}{3}i}$, then which of the following is purely real?
 - (A) \bar{z}
 - (B) z^{3}
 - (C) *zⁱ*
 - (D) 3z
- 2. A particle's acceleration $\ddot{x} \text{ ms}^{-2}$ is defined by $\ddot{x} = -3x$, where x is the displacement in metres. How long, in seconds, does it take to travel between the endpoints of the motion?
 - (A) $\frac{\pi\sqrt{3}}{3}$
 - (B) $9\pi\sqrt{3}$
 - (C) $3\pi\sqrt{3}$
 - (D) $\pi\sqrt{3}$
- 3. In the parallelogram, $|\underline{a}| = 2|\underline{b}|$

Which one of the following statements is true?

- (A) a = 2b
- (B) a + b = c + d
- (C) a + c = 0
- (D) a b = c d

- 4. If z = 3 4i, then $\frac{1}{1-z}$ is equal to: (A) $\frac{-1 - 2i}{10}$ (B) $\frac{-1 + 2i}{10}$ (C) $\frac{-1 - i}{6}$ (D) $\frac{-1 + i}{6}$
- 5. Assume that a and b are negative real numbers with a > b. Which of the following might be false?

(A)
$$\frac{1}{a-b} < 0$$

(B) $\frac{a}{b} - \frac{b}{a} < 0$

- (C) a + b > 2b
- (D) 2a > 3b
- 6. If the vectors $\underline{a} = m\underline{i} + 4\underline{j} + 3\underline{k}$ and $\underline{b} = m\underline{i} + m\underline{j} 4\underline{k}$ are perpendicular, then:
 - (A) m = -6 or m = 2
 - (B) m = -2 or m = 6
 - (C) m = -2 or m = 0
 - (D) m = -1 or m = 1
- 7. Suppose that both x and y are odd. Which of the following statements is true?
 - (A) x + y is odd
 - (B) x y is even
 - (C) 3x + 5y is odd
 - (D) xy is even

8. Using a suitable substitution, $\int_{1}^{e^{3}} \frac{(\ln(x))^{3}}{x} dx$ may be expressed completely in terms of *u* as:

(A)
$$\int_{0}^{3} \frac{u^{3}}{e^{u}} du$$

(B)
$$\int_{0}^{e^{3}} u^{3} du$$

(C)
$$\int_{0}^{3} u^{3} du$$

(D)
$$\int_{1}^{\ln(3)} u^{3} du$$

- 9. Let the complex number z satisfy the equation |z + 4i| = 3. What are the greatest and least values of |z + 3|?
 - (A) 8 and 2
 - (B) 5 and 2
 - (C) 8 and 3
 - (D) 8 and 5
- 10. P, Q and R are three collinear points with position vectors p, q and r respectively. Q lies between P and R. If $2|\overrightarrow{QR}| = |\overrightarrow{PQ}|$, then \underline{r} is equal to:
 - (A) $\frac{3}{2}q \frac{1}{2}p$ (B) $\frac{3}{2}p - \frac{1}{2}q$ (C) $\frac{1}{2}p - \frac{3}{2}q$ (D) $\frac{1}{2}q - \frac{3}{2}q$

Section II

Total marks – 90 Attempt Question 11-16 Allow about 2 hours and 45 minutes for this section

Begin each question on a NEW page

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Begin a NEW page.

•		0	
a)	What is the unit vector that has the sar	me direction as $v_{\sim} = \left(\sum_{i=1}^{n} v_{i} \right)^{n}$	$\begin{pmatrix} 6\\3\\-1 \end{pmatrix} \qquad \qquad 2$
	π		
	· —		

b) If
$$z = 6e^{i \frac{\pi}{3}}$$

i.	Rewrite z in modulus argument form	1

ii. Simplify $(z)^4$ 2

iii. Find
$$\arg(iz)$$
 2

c) Integrate:

i.
$$\int \frac{x+1}{x^2+2x+5} dx$$
 2

ii.
$$\int \frac{1}{x^2 + 2x + 5} dx$$

d) Popularised on the internet, different types of dogs are given "names". Three of these names are given as the following propositions.

p: it is not a doggo q: it is a floofer r: it is a woofer

i.	Write down in words, $p \Rightarrow \operatorname{not} r$	2
ii.	Write down the converse of $p \Rightarrow (\text{not } q \text{ and } r)$	1
iii.	Write down the contrapositive of $p \Rightarrow \text{not } q$	1

End of Question 11

Question 12 (15 marks) Begin a NEW page.

- a) Consider the complex numbers $z_1 = 1 + i$ and $z_2 = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
 - i. Write z_1 in the form $r(\cos\theta + i\sin\theta)$

2

1

- ii. Find the modulus of $z_1 z_2$
- iii. By considering the expansion of $\cos(\alpha + \beta)$ and $\sin(\alpha + \beta)$, or otherwise, write $z_1 z_2$ in the form z = a + bi where $a, b \in \mathbb{R}$

iv. Hence find the value of
$$\tan \frac{5\pi}{12}$$
 in the form $c + d\sqrt{3}$, where $c, d \in \mathbb{Z}$ 2

v. Find the smallest value p > 0 such that $(z_2)^p$ is a positive real number 1

b) Find
$$\int x^2 e^x dx$$
 2

c) A mass has acceleration $a \text{ ms}^{-2}$ given by $a = v^2 - 3$, where $v \text{ ms}^{-1}$ is the velocity of the mass when it has a displacement of x metres from the origin. Find v in terms of x given that v = -2 where x = 1.

End of Question 12

Question 13 (15 marks) Begin a NEW page.

a) The equations of intersecting lines L and M are given below with respect to a fixed origin O.

$$L: \underbrace{r}_{\tilde{k}} = 11\underline{i}_{k} + 2\underline{j}_{k} + 17\underline{k}_{k} + \lambda(-2\underline{i}_{k} + \underline{j}_{k} - 4\underline{k}_{k})$$
$$M: \underbrace{r}_{\tilde{k}} = -5\underline{i}_{k} + 11\underline{j}_{k} + 1\underline{k}_{k} + \mu(p\underline{i}_{k} + 2\underline{j}_{k} + 2\underline{k}_{k})$$

where λ and μ are parameters and p is a constant. If L and M are perpendicular, what is the value of p?

b) Prove by induction that

 $\frac{1}{n!} < \frac{1}{2^{n-1}}$

for $n \ge 3, n \in \mathbb{Z}^+$

- c) Let ω be a non-real cube root of unity
 - i. Show that $1 + \omega + \omega^2 = 0$ 1
 - ii. Hence evaluate $(1 3\omega + \omega^2)(1 + \omega 8\omega^2)$ 3
- d) i. Show that

$$\frac{\tan x}{7\sin^2 x + 5\cos^2 x} = \frac{\tan x \sec^2 x}{7\tan^2 x + 5}$$

ii. Hence, by setting $s = \tan x$, or otherwise, find:

$$\int_0^{\frac{\pi}{3}} \frac{\tan x \, dx}{7 \sin^2 x + 5 \cos^2 x}$$

End of Question 13

2

3

Question 14 (15 marks) Begin a NEW page.

a) By writing
$$\frac{5x^2 - 3x + 1}{(x^2 + 1)(x - 2)}$$
 in the form $\frac{Ax + 1}{x^2 + 1} + \frac{B}{x - 2}$ find
$$\int \frac{5x^2 - 3x + 1}{(x^2 + 1)(x - 2)} dx$$

b) If a, b and $x \ge 0$,

i. Show that
$$a^2 + b^2 \ge 2ab$$
 1

ii. Hence, show that
$$\frac{x}{x^2+4} \le \frac{1}{4}$$
 2

iii. By integrating both sides between the limits of
$$x = 0$$
 and $x = X$, show that 2

$$e^{\frac{X}{2}} \ge \frac{X^2}{4} + 1$$
 where $X \ge 0$

c) A particle is undergoing simple harmonic motion about x = 0. At time t seconds the displacement x in cm is given by

$$x = \sqrt{3}\sin 3t - \cos 3t$$

i. Write $x = \sqrt{3} \sin 3t - \cos 3t$ in the form of $x = A \sin(nt - \theta)$, where A > 0 2

1

- ii. Find the period of the motion
- iii. When does the particle first reach maximum speed after time t = 0? 2
- iv.How long will it take for the particle to return to its original position,2and find its acceleration at that point.

End of Question 14

Question 15 (15 marks) Begin a NEW page.

- a) If *xyz* represents a three digit number (not the product of *x*, *y* and *z*), show that if x + z = y then the number is divisible by 11. (*x*, *y* and *z* are positive integers) 2
- b) A particle is moving under simple harmonic motion where $v = 9\sqrt{3 x^2}$. 2 Find the centre of motion.
- c) The points A and B have position vectors given by: (1) (-1)

$$\vec{OA} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 and $\vec{OB} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$

i. Find an expression for the vector \overrightarrow{AB} in the form of $x_1 \underbrace{i}_{\sim} + y_1 \underbrace{j}_{\sim} + z_1 \underbrace{k}_{\sim}$ 1

- ii. Show that the cosine of the angle between the vectors \vec{OA} and \vec{AB} is $\frac{4}{9}$ 2
- iii. Hence find the exact value of the area of $\triangle OAB$
- d) i. Show that

$$\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$$

ii. Consider $f(x) = \sin ax$, where a is a constant.

Prove by mathematical induction that

$$f^{(n)}(x) = a^n \sin(ax + \frac{n\pi}{2})$$

where $n \in \mathbb{Z}^+$ and $f^{(n)}(x)$ represents the n^{th} derivative of $f(x)$

End of Question 15

3

1

Question 16 (15 marks) Begin a NEW page.

a) Let
$$I_n = \int_0^1 x^n e^{-x} dx$$

i. Show that
$$I_n = nI_{n-1} - \frac{1}{e}$$
 2

ii. Hence or otherwise, find the exact value of $I_3 = \int_0^1 x^3 e^{-x} dx$ 2

b) The point *P* representing the complex number *z* moves on the Argand diagram so that |z| = |z - 6 + 4i|

i.	Find the Cartesian equation that describes the locus of <i>P</i>	2
ii.	Graph the locus neatly on a number plane.	1
iii.	Hence find the minimum value of $ z $	1

Question 16 continues on the next page

c) The position vectors of the points A, B and C are a, b and c respectively, relative to an origin O. The following diagram shows the triangle \overrightarrow{ABC} and the points M, R, S and T.

M is the midpoint of \overrightarrow{AC} *R* is on \overrightarrow{AB} such that $\overrightarrow{AR} = \frac{1}{3}\overrightarrow{AB}$ *S* is on \overrightarrow{AC} such that $\overrightarrow{AS} = \frac{2}{3}\overrightarrow{AC}$ *T* is a point on \overrightarrow{RS} such that $\overrightarrow{RT} = \frac{2}{3}\overrightarrow{RS}$

i.Express
$$\overrightarrow{AM}$$
 in terms of a and c 1ii.Hence show $\overrightarrow{BM} = \frac{1}{2}a - b + \frac{1}{2}c$ 1iii.Show that $\overrightarrow{RT} = -\frac{2}{9}a - \frac{2}{9}b + \frac{4}{9}c$ 2iv.Prove that T lies on \overrightarrow{BM} 3

End of Exam

Extension 2	Mathematics	Trial	Solutions
Section 1.			
1. B	6. A		
2. A	7. B		л
3. C	8. C		
4. A	9. A		· · · · · · · · · · · · · · · · · · ·
5. A	10. A		
1 co i ^{T/} 3 3			<u> </u>
$\frac{1}{2e^{i\pi}} \frac{1}{2e^{i\pi}}$		5.	<u>a>b</u>
1			$\frac{a-b>0}{\frac{1}{a-b}>0}$
Puvely real. 2. $n = \sqrt{3}$			$a \cdot b = 0$
$\frac{2.}{T} = \frac{2\pi}{\sqrt{3}}$			$m^2 + 4m = 12 = 0$
Max -> min	is 1/2T	<u></u>	(m-2)(m+6)=0
. 11/13 ×	13/13		x = 2m + 1, $y = 2n + 1$
= \311	, 3 seconds		2x - y = 2m + 1 - (2n + 1)
3. a = - c			= 2m - 2n
a + c = 0			= 2 (m-n)
4. 1		8.	$(ef u = enx \Rightarrow du = \frac{1}{x} dx$
1 - (3 - 4i)	-2+4i	£	$x = e^3 \Rightarrow u = 3$
X	-2-4i		$\mathcal{X} = 1 \implies \mathcal{U} = 0$
-2+4i	-2-4i		$I = \int_0^3 u^3 du$
= -2(1+2		٩.	7 - (-4i) = 3
4 + 1	16		is a circle.
			where $ 3+3 = 3-(-3) $
. 10			magnitude of a vector

1

joining point on the circle to -3 1Im(3) 3 Π 4 -3 Re(3) 5 nin min value 1 5-3 math max value: 5+3 Tradius P - 20 9- - 9 GF Q 1 - 91 P 9 Y. 01 2(x-q) = q - g= 39 - 9 25 5 25 2 %

10

Mathematics Extension 1 Year 12 Assessment 2 March 2020

Section II $|1. a\rangle |X| = \sqrt{6^2 + 3^2 + 1^2}$ b) i. $3 = 6(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})$ ii. $3^{4} = [6(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})]^{4}$ By De Moivre's Theorem $z^{4} = 6^{4} (\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3})$ $= 6^{4} (\cos^{2\pi} - \sin^{2\pi})$ OR 6" (cis (-27/3)) $\frac{1111. \arg(i3) = \arg(i) + \arg(3)}{= \frac{7}{2} + \frac{7}{3}}$ $= \frac{5\pi}{6}$ $\frac{x+1}{x^2+2x+5} = \frac{1}{2} \int \frac{2x+2}{x^2+2x+5} dx$ c) i. $= \frac{1}{2} \ln |x^2 + 2x + 5| + C$ $\frac{1}{+5} \frac{dx}{dx} = \int \frac{1}{(2t^2+2x+1)+4t^2} \frac{1}{dt^2} \frac{dt}{dt}$ 7(2+2)(+5 $-\int \frac{1}{(x+1)^2+4}$ dx $-\frac{1}{2}$ tan $\left(\frac{x+1}{2}\right)$ t If it is not a doggo, then it implies that it is (not) a woofer. d) i. $(not q, and r) \Rightarrow p$ iii $not(not q_i) \Rightarrow not p$ 9 => not p

Mathematics Extension 1 Year 12 Assessment 2 March 2020

12. a) i. 3. = 1 + i
$ z = \sqrt{2}$
$\frac{ \delta_1 ^2}{ \alpha_1 ^2} = \frac{\pi}{4}$
$3, = \sqrt{2} \text{ cis } \frac{\pi}{4}$
$\ \cdot \ - \ - \ - \ - \ - \ - \ - \ - \ - $
$= 2 \times \sqrt{2}$
= 2/2
iii. $3.3_2 = 2\sqrt{2} \left(\cos \left(\frac{7}{6} + \frac{7}{4} \right) + \sin \left(\frac{7}{6} + \frac{7}{4} \right) \right)$
$\frac{111.}{\cos(\sqrt{1}}(\sqrt{1}\sqrt{1} + \sqrt{1}\sqrt{1}) = \cos(\sqrt{1}\sqrt{1})\cos(\sqrt{1}\sqrt{1}) - \sin(\sqrt{1}\sqrt{1})\sin(\sqrt{1}\sqrt{1})$ $= \frac{\sqrt{1}}{2} \times \frac{1}{\sqrt{2}} - \frac{1}{2} \times \frac{1}{\sqrt{2}}$
$=\frac{13}{2}\times\frac{12}{12}-\frac{1}{2}\times\frac{12}{12}$
$= \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}$
$\sin(\frac{\pi}{4} + \frac{\pi}{4}) = \sin^{2}/6 \cos^{2}/4 + \cos^{2}/6 \sin^{2}/4$
$= \frac{1}{2} \times \frac{1}{6} \times \frac{1}{6}$
$\frac{2 \sqrt{2} \sqrt{2} \sqrt{2}}{2\sqrt{2}} + \frac{\sqrt{3}}{2\sqrt{2}}$ $\therefore \sqrt{3}, \sqrt{3}, 2 = 2\sqrt{2} \left(\sqrt{\frac{3}{2\sqrt{2}}} + \frac{\sqrt{3}}{2\sqrt{2}} + \frac{\sqrt{3}}{2\sqrt{2}} + \frac{\sqrt{3}}{2\sqrt{2}} \right)$
$: 3_{1}3_{2} = 2\sqrt{2} \left(\frac{3}{2\sqrt{2}} - 2\sqrt{2} + i \left(\frac{2\sqrt{2}}{2\sqrt{2}} + \frac{2\sqrt{2}}{2\sqrt{2}} \right) \right)$
$= \sqrt{3} - 1 + c(1 + \sqrt{3})$
$\frac{1}{12} = \frac{1}{12} = \frac{1}{12}$
<u> </u>
53-1. (3+1
3 + 253 +1
3 - 1
= 2 + V3
v. $(\overline{\delta}_2)^p$ positive real. $\cos p\overline{\delta} > 0$
$\sin^{p}\pi = 0$
p - iz

4 . .

b) $\int x^2 e^x dx$		
$= \left[x^2 e^x \right] - \int 2x e^x dx$		
$= \frac{1}{2xe^{x}} - \left(\left[2xe^{x} \right] - \int 2e^{x} dx \right)$		
$= \chi^2 e^{\chi} - 2\chi e^{\chi} + 2e^{\chi} + C$	ņ	
c) $\vec{x} = d_{0c} \left(\frac{1}{2}V^2\right)$		
$\frac{c}{\sqrt{2-3}} = \frac{o}{\partial x} \left(\frac{1}{2} \sqrt{2} \right) \text{or}$		
$\frac{\sqrt{-5} - \sqrt{\sqrt{-5}}}{\sqrt{\sqrt{-6}} - \sqrt{\sqrt{-3}}} = \frac{\sqrt{\sqrt{-3}}}{\sqrt{\sqrt{-3}}}$	- v dv	
	1	
	$= \frac{dv}{dv}$	
$2v^2-6$ dv^2 V	dr	
$dv^2 = dz$	- dv = f dx	
J 212-6 J V2-	3 0	
$x = \frac{1}{2} \ln 2v^2 - 6 + C$	2ln 12-3 = 2+C	
when $\partial c = 1$, $v = -2$	= when x = 1, x=-2	
$1 = \frac{1}{2} e_{1} [8 - 6] + C$	C =-1	
$(= \frac{1}{2} \ln 2 + C$	=> = = ln v2-3 = x-1	
$c = 1 - \frac{1}{2} \ln 2$		
$\alpha = \frac{1}{2} e_n (2v^2 - 6) + 1 - \frac{1}{2}$	zen2	
$= \frac{1}{2} \ln v^2 - 3 + 1$		
$2(x-1) = en[v^2-3]$		
$2(x-1)$ = $x^2 - 2$		
$e^{-2\sqrt{-3}}$ $v^{2} = e^{-43}$		
$v^{2} = e^{\pm 3}$ $v = \pm \sqrt{e^{2(x-1)} \pm 3}$		
but as $x = 1$,	v=-2	
$= \frac{1}{2} \sqrt{1} = -\sqrt{1} \sqrt{1} \sqrt{1} + 3$	only.	
. 5	•	
	· ·	

Mathematics Extension 1 Year 12 Assessment 2 March 2020

13. a) If perpendicular, direction vectors mus-	t be perpendicular
i.e. dot product zero.	
$(-2i+j-4k)\cdot(pi+2j+2k) =$	- 0
-2p + 2 - 8 = 0	
-2p = 6	
p = -3	
b) $\frac{1}{n!} < \frac{1}{2^{n-1}}$, $n \ge 3$, $n \in \mathbb{Z}^+$	
Show true for n=3.	
LHS = 3!	
= 6	
$RHS = \frac{1}{2^{3-1}}$	
$=\frac{1}{4} > \frac{1}{6}$	1
: True for n=3.	OR:
Assume the for some k & n	LHS = CKH1)!
$1.e. k! < \frac{1}{2^{k-1}}$	= <u>k!(k+1)</u>
Now prove true for n=k+1	$< \frac{1}{\partial^{k-1}} \cdot \frac{1}{(let 1)} dsrump.$
$\frac{1}{1.e. Prove (k+i)!} < \frac{1}{2^{k+1-i}}$	$=\frac{1}{ka^{k-1}+2^{k+1}}, k73$
	$< \frac{1}{2.2^{k-1}+2^{k-1}}$
From the assumption: $\frac{1}{ k } \times \frac{1}{ k+1 } < \frac{1}{2^{ k-1 }} \times \frac{1}{ k+1 }$	= 1
	< 1/2.2 11-1
$\frac{1}{(k+i)!} < \frac{2^{k-i}(k+i)}{2} < \frac{2}{2^{k-i}(k+i)\times 2}$	$= \frac{1}{2^{k-1}\tau}$
$\frac{1}{2^{k+l-l}(k+l)}$	
$\begin{pmatrix} \frac{1}{2^{k+l-1}} \times \frac{2}{k+l} \\ \frac{1}{2^{k+l-1}} \times \frac{2}{k+l} \end{pmatrix}$	1+ · (K+1)! Quite
$\frac{1}{(k+1)!} < \frac{1}{2^{k+1-1}} 0 < 0$	< k+1 < 1 for k=3
. True for n=k+1, given true for n=k	
Since result is true for n=3, it fol	lows that it will

also be true for n=3+1=4, n=4+1=5 and so on for
all n 73 integers
c) 1. $3^3 = 1$
$3^{3}-1=0$
$(3-1)(3^2+3+1)=0$
NOW W is a non-real root of unity.
$i.e. (W-1)(W^2+W+1) = 0 but W \neq 1$
$\therefore \omega^2 + \omega + 1 = 0.$
ii. $(1 - 3\omega + \omega^2)(1 + \omega - 8\omega^2)$
$= ((1 + \omega^{2}) - 3\omega) ((1 + \omega) - 8\omega^{2})$
$= (-\omega - 3\omega) (-\omega^2 - 8\omega^2)$
$= -4\omega \times -9\omega^2$
$= 36W^3$ but $W^3 = 1$
= 36
d) i. LHS = tanx
$\frac{7}{7sin^2x} + 5cos^2x$
<u>+91x</u> COD ² 71
$\frac{7 \sin^2 \pi}{\cos^2 \pi} + 5 \frac{\cos^2 \pi}{\cos^2 \pi}$
tamsec ² x
$7tan^2n+5$
= RHS.
ii. 1 ^{4/3} tanz dr
$\int_{0}^{\infty} \frac{dx}{4563^2x} dx$
franxsec2x dx
$\int_{\partial} \frac{1}{7tan^2x + 5} dx$
from part i)

Mathematics Extension 1 Year 12 Assessment 2 March 2020

Let $s = tank$	
$ds = sec^2 x dx$	_
when $x = \frac{\pi}{3}$, $s = \sqrt{3}$	
When x o, o (= 0)	
<u> </u>	
$x = 0, s = 0$ $T = \int_{-75^{2} + 5}^{\sqrt{3}} \frac{s ds}{75^{2} + 5}$	
$1 \sqrt{\frac{1}{7}} \sqrt{\frac{1}{5}} \sqrt{\frac{1}{3}}$	
$\frac{1}{12} \left(\ln \left(\frac{7s^2}{7s^2} \neq 5 \right) \right)$	
$= \frac{1}{14} (\ln 26 - \ln 5)$ = $\frac{1}{14} \ln \frac{26}{5}$	
$= \frac{1}{26}$	
· · · · · · · · · · · · · · · · · · ·	
	-
٠	

8

$\frac{ 4 \ a)}{(x^{2}+1)(x-2)} = \frac{Ax+1}{x^{2}+1} = \frac{B}{x-2}$
$\frac{(x+1)(x-2)}{5x^2-3x+1} = (Ax+1)(x-2) + B(x^2+1)$
(lf x = 2)
$U_{f} = B(5)$
B = 3
$\frac{1}{(et x = 1)}$
3 = (A+1)(-1) + 3(2)
-3 = -A - 1
-2 = -A
A = 2
$\int \frac{2x+1}{x^2+1} + \frac{3}{x-2} dx$
$\frac{1}{2\pi} + \frac{1}{2\pi} + \frac{3}{2\pi} $
$\int \frac{1}{\chi^2 + 1} \frac{1}{\chi^2 + 1} \frac{1}{\chi^2 - 2} \frac{1}{\chi^2 - 2}$
$= ln x^{2} + 1 + tq - 1z + 3 ln x - 2 + C$
$= \ln \left (x^2 + 1)(x - 2)^3 \right + tan^{-1} x + C$
b) i $(a-b)^2 > 0$
$a^2 - 2ab + b^2 > 0$
a²+b² ? 2ab
ii. (at a = x, b = 2
$x^2 + 4 > 4x$
$\frac{1}{x^2 + 4} \leq \frac{1}{4x}$, x is positive so
x^2+4 $4x$, x is positive so
$\frac{x}{2\ell^2 + 4} \leq \frac{\ell}{4}$
76 * 4 4

Mathematics Extension 1 Year 12 Assessment 2 March 2020

۸.
$\lim_{x \to -\infty} \int_{0}^{\infty} \frac{x}{x^{2} + 4} dx \leq \int_{0}^{\infty} \frac{1}{4} dx$
$\int_0^{\infty} x^2 + 4 \qquad \int_0^{\infty} 4$
$\frac{\left[\frac{1}{2}\ell_{n}\left[2^{2}+4\right]\right]_{0}^{\chi} \leq \left[\frac{1}{4}\right]_{0}^{\chi}$
$\begin{bmatrix} \frac{1}{2} \ln \left[2 + 41 \right]_{0} &= \begin{bmatrix} 4 \\ 4 \end{bmatrix}_{0},$
$\frac{1}{2} \ln \left[\chi^2 + 4 \right] - \frac{1}{2} \ln 4 \leq \frac{1}{4} \chi$
$\frac{1}{2} \frac{\chi^2 + 4}{4} \leq \frac{\chi}{4}$
2 4 4
$\chi^2 + 4 \leq \chi$
$\frac{\chi^2 + 4}{4} \leq \frac{\chi}{2}$
$\frac{4}{2}$ $\frac{4}{2}$ $\frac{4}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
e
$\frac{\chi^2}{-1} + 1 + \frac{\chi_2}{2}$
<u> </u>
c) i $x = \sqrt{3} \sin 3t - \cos 3t$
$x = A \sin 3t \cos \theta - A \cos 3t \sin \theta$
$\Rightarrow A \cos \theta = \sqrt{3}$
Asin0 = 1
A = 2
$A = 2$ $tan \Theta = \sqrt{12}$
$A = \overline{X}$.
$x = 2 \sin (3t - \frac{\pi}{6})$
$\frac{1}{12} = 2 \sin (3t - \frac{\pi}{6})$ $\frac{1}{12} = \frac{2\pi}{3}$ $T = \frac{2\pi}{3}$
$T = \frac{2\pi}{3}$
iii. Max speed at $x = 0$.
$2\sin(3t - \frac{\pi}{6}) = 0$
i.e. $3t - \frac{\pi}{6} = 0, \pi, 2\pi,$

9

.

10 .

ø

. .

$Take 3t - \frac{\pi}{6} = 0$
3t = 76
t = T/18 seconds.
iv. Original position: t=0. "
$x = 2 \sin \left(-\frac{\pi}{6}\right)$
$= 2 \times -\frac{1}{2}$
= _
$-1 = 2\sin(3t - \frac{7}{6})$
$-\frac{1}{2} = sig(k_{1} - \frac{5}{2}k_{1})$
$\Rightarrow 3t - \overline{y}_6 = -\overline{y}_6 \text{ or } \overline{7}\overline{\zeta} \text{ ov } \dots$
$\Rightarrow 3t - \overline{y_6} = -\overline{y_6} \text{ or } \overline{f_6} \text{ ov } \dots$
$\frac{77}{(.3t-7)} = \frac{77}{6}$
$z_{t} = \frac{s_{T}}{6}$
$t = \frac{4\overline{v}}{3x_3}$
= 4 T/q seconds
Acceleration at the point $t = \frac{4\pi}{9}$, $x = -1$
$\tilde{\chi} = -\eta^2 \chi$
$= -3^2 \times -1$
$= 9 \text{ cm}/s^2$
11

15. a) xyz = 100x + 10y + z
but $y = x + z$
$xy_{z} = 100x + 10(x+z) + z$
= (10x + 11z '
= (10x + z)
$\frac{1}{b} = 9\sqrt{3-x^2}$
(entre is where v is max, v ² is max.
$\frac{\sqrt{2}}{\sqrt{2}} = \frac{81(3-\chi^2)}{\sqrt{2}}$
243
$-\sqrt{3}$ 0 $\sqrt{3}$ x
- 15 13
· · · · · · · · · · · · · · · · · · ·
leutre of motion at z=0.
c) i. $\overrightarrow{AB} = -1i + 3j + 4k - (1i + 2j + 2k)$
$= -2\dot{y} + \dot{y} + 2\dot{k}$
$\frac{11}{1000} = \frac{\overline{0}\overline{A} \cdot \overline{A}\overline{B}}{1\overline{2}\overline{2}\overline{2}\overline{2}\overline{2}\overline{2}\overline{2}\overline{2}\overline{2}\overline{2}$
LOR X AB
- 2+2+4
$\sqrt{q} \times \sqrt{q}$
Ц
9
<u> </u>

iii. $\Delta OAB = \frac{1}{2} \left[\overrightarrow{OA} \times \left[\overrightarrow{AB} \right] \right] sin \theta$
$= \frac{1}{2} \times 9 \times \text{Sig} \Theta$
Y
<u> </u>
$\Delta OAB = \frac{1}{2} \times 9 \times \frac{\sqrt{15}}{9}$
$=\frac{1}{2}\sqrt{65}$ y ²
d) i sin $(\theta + \frac{T}{2}) = sin \theta \cos \frac{T}{2} + \cos \theta \sin \frac{T}{2}$
$=$ sin $\theta \times 0 + \cos \theta \times 1$
= 000
$ii. f^{(n)}(x) = a^{2} \sin(ax + \frac{n\pi}{2})$
Show true for n=1
$f'(x) = \alpha \cos \alpha x$
By formula : $f'(x) = a' \sin(ax + \frac{\pi}{2})$
= a cosax (by part i.)
Assume true for n=k
i.e. $f^{k}(x) = a^{k} \sin\left(ax + \frac{k\overline{u}}{2}\right)$
Prove true for n=k+1
i.e. $f^{(k+1)}(x) = a^{(k+1)} sin(ax + \frac{k\pi}{2})$
From the assumption:
$f^{(k)}(x) = a^{k} \sin\left(ax + \frac{k\pi}{2}\right)$
differentiate both sides
$f^{(k+1)}(x) = a^{k} \cos(ax + \frac{kT_{2}}{2}) \times a$
$= a^{k+1} \cos\left(a\gamma\left(\pm\frac{k\tau}{2}\right)\right)$
$= a^{k+1} \cos(ax + k\frac{x}{2})$ = $a^{k+1} \sin(ax + \frac{k}{2} + \frac{x}{2})$ (by part i.) = $a^{k+1} \sin(ax + (k+1)\frac{x}{2})$
$= a^{k+1} sin (ax + (k+1)T_2)$

Mathematics Extension 1 Year 12 Assessment 2 March 2020

	true for n=k+1 provided n=k is true.
	Since true for n=1, then it follows true for n=1+1=2,
	n=2+1=3 and so on for all integer n >1.
	р.
	· · · · · · · · · · · · · · · · · · ·
	¢
	· · · · · · · · · · · · · · · · · · ·
	· ·
•	· · · · · · · · · · · · · · · · · · ·
	14

13 .

:

•

$16. a) I_n = \int_0^1 x^n e^{-x} dx$
$I_{n} = \left[x^{n} \times -e^{-x} \right]_{0}^{1} - \int_{0}^{1} nx^{n-1} \left(-e^{-x} \right) dx$
$= 1^{n} \times (-e^{-1}) - 0^{n} \times (-e^{0}) + \int_{0}^{1} n x^{n-1} e^{-x} dx$
$= -\frac{1}{e} + n \int_0^1 x^{n-1} e^{-x} dx$
$=-\frac{1}{2}$ + nI_{n-1}
$II. I_3 = 3I_2 - te$
$= 3 \left(2I_1 - \frac{1}{e} \right) - \frac{1}{e}$
= 6I, - 7e
$= 6(I_0 - \frac{V_e}{e}) - \frac{V_e}{V_e}$
$= 6I_{o} - \frac{19}{e}$
$= 6 \int_0^1 x^2 e^{-x} dx - \frac{1}{2} e$
$= 6 \int_0^1 e^{-x} dx - \frac{10}{e}$
$= 6 \left[-e^{-x} \right]_{0}^{1} - \frac{10}{e}$
$= 6(-e^{-1}+1)-\frac{10}{6}$
$=-\frac{6}{6} + 6 - \frac{10}{6}$
$= 6 - \frac{1}{2}$
b)i 3 = 3 - 6 + 4i
= [3-(6-4i)] perpendicular bisector
ii. 19
.6
x (3,-2)

Mathematics Extension 1 Year 12 Assessment 2 March 2020

i M = (3, -2)
$m = -\frac{4}{6} \Rightarrow perpendicular gives \frac{3}{2}$
$y + 2 = \frac{3}{2}(x-3)$
$y = \frac{3}{2}x - \frac{9}{2} - 2 \qquad ,$ $= \frac{3}{2}x - \frac{13}{2}$
$=\frac{3}{2}\kappa - \frac{13}{2}$
OR 3x-2y-13=0
iii. Minimum value by Pythagorad' Theorem: $\sqrt{3^2 + 2^2} = \sqrt{13}$
c) i. $\overrightarrow{AM} = \frac{1}{2} \left(\begin{array}{c} \underline{\zeta} - \alpha \end{array} \right)$
$ii. \vec{BM} = \frac{1}{2} \alpha - \frac{1}{2} + \frac{1}{2} \alpha$
$= \overline{ON} - \overline{OB}$
$\overline{30} - \overline{MA} + \overline{A0} =$
$= \alpha + \frac{1}{2}(2-\alpha) - \frac{1}{2}$
$= \frac{1}{2} \frac{1}{2} - \frac{1}{2} $
$iii. R^{T} = \vec{oT} - \vec{oR}$
$\overrightarrow{RT} = \overrightarrow{7}_{3}\overrightarrow{RS}$
$= \frac{7}{3} \left(\vec{os} - \vec{oR} \right)$
$= \frac{7}{3} \left(\left[\overrightarrow{oc} + \frac{1}{3} \overrightarrow{cA} \right] - \left[\overrightarrow{oB} + \frac{7}{3} \overrightarrow{BA} \right] \right)$
$=\frac{2}{3}(4+\frac{1}{3}(a-\frac{1}{3})-\frac{1}{2}-\frac{2}{3}(a-\frac{1}{2}))$
$=\frac{2}{3}\left(\frac{2}{3}\underbrace{c}-\frac{1}{3}\underbrace{a}-\frac{1}{3}\underbrace{b}\right)$
$= \frac{4}{4} \underline{c} - \frac{3}{4} \underline{a} - \frac{3}{4} \underline{b}$
iv. Collinear:
Prove BT = ABM
$\overrightarrow{BT} = \Im \left(\frac{1}{2} \overrightarrow{a} - \cancel{b} + \frac{1}{2} \overrightarrow{a} \right) (from part ii)$
Now $\overrightarrow{BT} = \overrightarrow{BR} + \overrightarrow{RT}$
$=$ ⁻² 3 \overrightarrow{AB} + \overrightarrow{RT}

15 .

16

.

$=\frac{-2}{3}(\frac{1}{2}-\frac{1}{2})+(\frac{4}{4}\frac{1}{2}-\frac{2}{4}\frac{1}{2}-\frac{2}{3}\frac{1}{2})$ (from part iii)
 $= -\frac{9}{4} + \frac{4}{4} + \frac{4}{4} + \frac{4}{4} = \frac{1}{4}$
 $= \frac{4}{9} \left(\underline{\alpha} - 2\underline{b} + \underline{c} \right)$
$= \frac{8}{9} \left(\frac{1}{2} \frac{\alpha}{2} - \frac{b}{2} + \frac{1}{2} \frac{c}{2} \right) *$
$= \frac{8}{8}$
T lies on BM.

...

4

ε.