Extension 2 Mathematics

TRIAL HSC

August 2020

General	-	Reading time -10 minutes
Instructions	- Working time -180 minutes	
	-	Write using black pen

Total marks: Section I-10 marks

100 - Attempt Questions 1-10

- Allow about 15 minutes for this section

Section II - 90 marks

- Attempt questions 11-16
- Allow about 2 hours and 45 minutes for this section

Section I

10 Marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple choice answer sheet for Questions 1-10.

1. If $z=2 e^{-\frac{\pi}{3} i}$, then which of the following is purely real?
(A) \bar{z}
(B) z^{3}
(C) z^{i}
(D) $3 z$
2. A particle's acceleration $\ddot{x} \mathrm{~ms}^{-2}$ is defined by $\ddot{x}=-3 x$, where x is the displacement in metres. How long, in seconds, does it take to travel between the endpoints of the motion?
(A) $\frac{\pi \sqrt{3}}{3}$
(B) $9 \pi \sqrt{3}$
(C) $3 \pi \sqrt{3}$
(D) $\pi \sqrt{3}$
3. In the parallelogram, $|\underset{\sim}{a}|=2|\underset{\sim}{b}|$

Which one of the following statements is true?
(A) $\underset{\sim}{a}=2 \underset{\sim}{b}$
(B) $\underset{\sim}{a}+\underset{\sim}{b}=\underset{\sim}{c}+\underset{\sim}{d}$
(C) $\underset{\sim}{a}+\underset{\sim}{c}=0$
(D) $\underset{\sim}{a}-\underset{\sim}{b}=\underset{\sim}{c}-\underset{\sim}{d}$
4. If $z=3-4 i$, then $\frac{1}{1-z}$ is equal to:
(A) $\frac{-1-2 i}{10}$
(B) $\frac{-1+2 i}{10}$
(C) $\frac{-1-i}{6}$
(D) $\frac{-1+i}{6}$
5. Assume that a and b are negative real numbers with $a>b$. Which of the following might be false?
(A) $\frac{1}{a-b}<0$
(B) $\frac{a}{b}-\frac{b}{a}<0$
(C) $a+b>2 b$
(D) $2 a>3 b$
6. If the vectors $\underset{\sim}{a}=m_{\sim}^{l}+4 \underset{\sim}{J}+3 \underset{\sim}{k}$ and $\underset{\sim}{b}=m_{\sim}^{l}+m_{\sim}^{J}-4 \underset{\sim}{k}$ are perpendicular, then:
(A) $m=-6$ or $m=2$
(B) $m=-2$ or $m=6$
(C) $m=-2$ or $m=0$
(D) $m=-1$ or $m=1$
7. Suppose that both x and y are odd. Which of the following statements is true?
(A) $x+y$ is odd
(B) $x-y$ is even
(C) $3 x+5 y$ is odd
(D) $x y$ is even
8. Using a suitable substitution, $\int_{1}^{e^{3}} \frac{(\ln (x))^{3}}{x} d x$ may be expressed completely in terms of u as:
(A) $\int_{0}^{3} \frac{u^{3}}{e^{u}} \mathrm{du}$
(B) $\int_{0}^{e^{3}} u^{3} d u$
(C) $\int_{0}^{3} u^{3} d u$
(D) $\int_{1}^{\ln (3)} u^{3} d u$
9. Let the complex number z satisfy the equation $|z+4 i|=3$. What are the greatest and least values of $|z+3|$?
(A) 8 and 2
(B) 5 and 2
(C) 8 and 3
(D) 8 and 5
10. P, Q and R are three collinear points with position vectors $\underset{\sim}{p}, \underset{\sim}{q}$ and $\underset{\sim}{r}$ respectively. Q lies between P and R. If $2|\overrightarrow{Q R}|=|\overrightarrow{P Q}|$, then $\underset{\sim}{r}$ is equal to:
(A) $\frac{3}{2} \underset{\sim}{q}-\frac{1}{2} \underset{\sim}{\sim}$
(B) $\frac{3}{2} \underset{\sim}{\sim}-\frac{1}{2} \underset{\sim}{q}$
(C) $\frac{1}{2} \underset{\sim}{\sim}-\frac{3}{2} \underset{\sim}{q}$
(D) $\frac{1}{2} \underset{\sim}{q}-\frac{3}{2} \underset{\sim}{q}$

Section II

Total marks - 90
Attempt Question 11-16
Allow about 2 hours and 45 minutes for this section

Begin each question on a NEW page

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Begin a NEW page.
a) What is the unit vector that has the same direction as $\underset{\sim}{v}=\left(\begin{array}{c}6 \\ 3 \\ -1\end{array}\right)$
b) If $z=6 e^{i \frac{\pi}{3}}$
i. Rewrite z in modulus argument form $\quad \mathbf{1}$
ii. Simplify $(z)^{4} \quad 2$
iii. Find $\arg (i z) \quad 2$
c) Integrate:
i. $\int \frac{x+1}{x^{2}+2 x+5} d x$
ii. $\int \frac{1}{x^{2}+2 x+5} d x$
d) Popularised on the internet, different types of dogs are given "names". Three of these names are given as the following propositions.

$$
\begin{gathered}
p: \text { it is not a doggo } \\
q: \text { it is a floofer } \\
r: \text { it is a woofer }
\end{gathered}
$$

i. Write down in words, $p \Rightarrow$ not r 2
ii. Write down the converse of $p \Rightarrow(\operatorname{not} q$ and $r)$ 1
iii. Write down the contrapositive of $p \Rightarrow \operatorname{not} q$ 1

End of Question 11

Question 12 (15 marks) Begin a NEW page.
a) Consider the complex numbers $z_{1}=1+i$ and $\quad z_{2}=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
i. Write z_{1} in the form $r(\cos \theta+i \sin \theta)$
ii. Find the modulus of $z_{1} z_{2} \quad \mathbf{1}$
iii. By considering the expansion of $\cos (\alpha+\beta)$ and $\sin (\alpha+\beta)$, or otherwise, 3 write $z_{1} z_{2}$ in the form $z=a+b i$ where $a, b \in \mathbb{R}$
iv. Hence find the value of $\tan \frac{5 \pi}{12}$ in the form $c+d \sqrt{3}$, where $c, d \in \mathbb{Z}$
v. Find the smallest value $p>0$ such that $\left(z_{2}\right)^{p}$ is a positive real number
b) Find $\int x^{2} e^{x} d x$
c) A mass has acceleration $a \mathrm{~ms}^{-2}$ given by $a=v^{2}-3$, where $v \mathrm{~ms}^{-1}$ is the velocity of 4 the mass when it has a displacement of x metres from the origin.
Find v in terms of x given that $v=-2$ where $x=1$.

End of Question 12

Question 13 (15 marks) Begin a NEW page.
a) The equations of intersecting lines L and M are given below with respect to a fixed origin O.

$$
\begin{aligned}
& L: \underset{\sim}{r}=11_{\sim}^{l}+2 \underset{\sim}{\jmath}+17 \underset{\sim}{k}+\lambda\left(-2 \underset{\sim}{l}+\underset{\sim}{\jmath}-4 \underset{\sim}{\underset{\sim}{\jmath}}+11_{\sim}^{\jmath}\right) \\
& M \underset{\sim}{k}+\mu\left(p_{\sim}^{l}+2 \underset{\sim}{\jmath}+2 \underset{\sim}{k}\right)
\end{aligned}
$$

where λ and μ are parameters and p is a constant.
If L and M are perpendicular, what is the value of p ?
b) Prove by induction that

$$
\frac{1}{n!}<\frac{1}{2^{n-1}}
$$

for $n \geq 3, n \in \mathbb{Z}^{+}$
c) Let ω be a non-real cube root of unity
i. Show that $1+\omega+\omega^{2}=0$
ii. Hence evaluate $\left(1-3 \omega+\omega^{2}\right)\left(1+\omega-8 \omega^{2}\right)$
d) i. Show that

$$
\frac{\tan x}{7 \sin ^{2} x+5 \cos ^{2} x}=\frac{\tan x \sec ^{2} x}{7 \tan ^{2} x+5}
$$

ii. Hence, by setting $s=\tan x$, or otherwise, find:

$$
\int_{0}^{\frac{\pi}{3}} \frac{\tan x d x}{7 \sin ^{2} x+5 \cos ^{2} x}
$$

End of Question 13

Question 14 (15 marks) Begin a NEW page.
a) By writing $\frac{5 x^{2}-3 x+1}{\left(x^{2}+1\right)(x-2)}$ in the form $\frac{A x+1}{x^{2}+1}+\frac{B}{x-2}$ find

$$
\int \frac{5 x^{2}-3 x+1}{\left(x^{2}+1\right)(x-2)} d x
$$

b) If a, b and $x \geq 0$,
i. Show that $a^{2}+b^{2} \geq 2 a b \quad 1$
ii. Hence, show that $\frac{x}{x^{2}+4} \leq \frac{1}{4} \quad \mathbf{2}$
iii. By integrating both sides between the limits of $x=0$ and $x=X$, show that

$$
e^{\frac{X}{2}} \geq \frac{X^{2}}{4}+1 \text { where } X \geq 0
$$

c) A particle is undergoing simple harmonic motion about $x=0$. At time t seconds the displacement x in cm is given by

$$
x=\sqrt{3} \sin 3 t-\cos 3 t
$$

i. Write $x=\sqrt{3} \sin 3 t-\cos 3 t$ in the form of $x=A \sin (n t-\theta)$, where $A>0$
ii. Find the period of the motion
iii. When does the particle first reach maximum speed after time $t=0$?
iv. How long will it take for the particle to return to its original position, and find its acceleration at that point.

End of Question 14

Question 15 (15 marks) Begin a NEW page.
a) If $x y z$ represents a three digit number (not the product of x, y and z), show that if
$x+z=y$ then the number is divisible by 11. (x, y and z are positive integers)
b) A particle is moving under simple harmonic motion where $v=9 \sqrt{3-x^{2}}$.

Find the centre of motion.
c) The points A and B have position vectors given by:
$\overrightarrow{O A}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ and $\overrightarrow{O B}=\left(\begin{array}{c}-1 \\ 3 \\ 4\end{array}\right)$
i. Find an expression for the vector $\overrightarrow{A B}$ in the form of $x_{1} \underset{\sim}{i}+y_{1} \underset{\sim}{j}+z_{1} \underset{\sim}{k}$
ii. Show that the cosine of the angle between the vectors $\overrightarrow{O A}$ and $\overrightarrow{A B}$ is $\frac{4}{9}$
iii. Hence find the exact value of the area of $\triangle O A B$
d) i. Show that

$$
\sin \left(\theta+\frac{\pi}{2}\right)=\cos \theta
$$

ii. Consider $f(x)=\sin a x$, where a is a constant.

Prove by mathematical induction that

$$
f^{(n)}(x)=a^{n} \sin \left(a x+\frac{n \pi}{2}\right)
$$

where $n \in \mathbb{Z}^{+}$and $f^{(n)}(x)$ represents the $n^{\text {th }}$ derivative of $f(x)$.

End of Question 15

Question 16 (15 marks) Begin a NEW page.
a) Let $I_{n}=\int_{0}^{1} x^{n} e^{-x} d x$
i. Show that $I_{n}=n I_{n-1}-\frac{1}{e}$
ii. Hence or otherwise, find the exact value of $I_{3}=\int_{0}^{1} x^{3} e^{-x} d x$
b) The point P representing the complex number z moves on the Argand diagram so that $|z|=|z-6+4 i|$
i. Find the Cartesian equation that describes the locus of P
ii. Graph the locus neatly on a number plane.
iii. Hence find the minimum value of $|z|$
c) The position vectors of the points A, B and C are $\underset{\sim}{a}, \underset{\sim}{b}$ and $\underset{\sim}{c}$ respectively, relative to an origin O. The following diagram shows the triangle $A B C$ and the points M, R, S and T.

M is the midpoint of $\overrightarrow{A C}$
R is on $\overrightarrow{A B}$ such that $\overrightarrow{A R}=\frac{1}{3} \overrightarrow{A B}$
S is on $\overrightarrow{A C}$ such that $\overrightarrow{A S}=\frac{2}{3} \overrightarrow{A C}$
T is a point on $\overrightarrow{R S}$ such that $\overrightarrow{R T}=\frac{2}{3} \overrightarrow{R S}$
i. \quad Express $\overrightarrow{A M}$ in terms of $\underset{\sim}{a}$ and $\underset{\sim}{c}$
ii. Hence show $\overrightarrow{B M}=\frac{1}{2} \underset{\sim}{a} \underset{\sim}{\underset{\sim}{b}}+\frac{1}{2} \underset{\sim}{c}$
iii. Show that $\overrightarrow{R T}=-\frac{2}{9} \underset{\sim}{a}-\frac{2}{9} \underset{\sim}{b}+\frac{4}{9} \underset{\sim}{c}$
iv. Prove that T lies on $\overrightarrow{B M}$

End of Exam

Extension 2 Mathematics Trial Solutions
Section 1 .
L. B
6. A
2. A
7. B
3. C
8. C
4. A
9. A
5. A
10. A

1. $\left(2 e^{i \pi / 3}\right)^{3}$
2. $a>6$
$=8 e^{i \pi}$
purely real.
3. $n=\sqrt{3}$

$$
T=2 \pi / \sqrt{3}
$$

6. $a \cdot b=0$

Max \rightarrow min is $\frac{1}{2} T$

$$
m^{2}+4 m-12=0
$$

$$
\begin{aligned}
& \therefore \sqrt{3} \times \sqrt{3} / \sqrt{3} \\
& =\sqrt{3} \pi / 3 \text { seconds }
\end{aligned}
$$

$$
(m-2)(m+6)=0
$$

$$
\text { 7. } x=2 m+1, \quad y=2 n+1
$$

3.

$$
\begin{aligned}
& a=-c \\
& a+c=0
\end{aligned}
$$

4.

8. Let $u=\ln x \Rightarrow d u=\frac{1}{x} d x$

$$
x=e^{3} \Rightarrow u=3
$$

$x=1 \Rightarrow u=0$

$$
\therefore I=\int_{0}^{3} u^{3} d u
$$

$$
=\frac{-2(1+2 i)}{4+16}
$$

$$
=\frac{1+2 i}{10}
$$

is a circle.
where $|z+3|=|z-(-3)|$ magnitude of a rector
joining point on the circe to -3

min value : 5-3
max value: $\frac{5+3}{\pi}$
10.

$$
\begin{aligned}
2(r-q) & =q-p \\
2 r & =3 q-p \\
r & =\frac{3}{2} q-\frac{1}{2} p
\end{aligned}
$$

Section II.
II. a)

$$
\begin{aligned}
& |v|=\sqrt{6^{2}+3^{2}+1^{2}} \\
& \hat{v}=\frac{1}{\sqrt{466}}\left(\begin{array}{c}
6 \\
3 \\
-1
\end{array}\right)
\end{aligned}
$$

b) i. $z=6\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
ii. $3^{4}=\left[6\left(\cos \frac{\pi}{3}+\sin \frac{\pi}{3}\right)\right]^{4}$

By De Move's Theorem.

$$
\begin{aligned}
8^{4} & =6^{4}\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right) \\
& =6^{4}\left(\cos \frac{2 \pi / 3}{3}-i \sin \frac{2 \pi}{3}\right)
\end{aligned}
$$

OR $6^{4}(\operatorname{cis}(-2 \pi / 3))$
iii.

$$
\begin{aligned}
\arg (i z) & =\arg (i)+\arg (3) \\
& =\pi / 2+\pi / 3 \\
& =5 \pi / 6
\end{aligned}
$$

c) i.

$$
\begin{aligned}
\int \frac{x+1}{x^{2}+2 x+5} d x & =\frac{1}{2} \int \frac{2 x+2}{x^{2}+2 x+5} d x \\
& =\frac{1}{2} \ln \left|x^{2}+2 x+5\right|+C
\end{aligned}
$$

ii. $\int \frac{1}{x^{2}+2 x+5} d x=\int \frac{1}{\left(x^{2}+2 x+1\right)+4} d x$

$$
\begin{aligned}
& =\int \frac{1}{(x+1)^{2}+4} d x \\
& =\frac{1}{2} \tan ^{-1}\left(\frac{x+1}{2}\right)+C
\end{aligned}
$$

d) i. If it is not a doggo, then it implies that it is not a woofer.
ii. $\quad(n o t q$ and $r) \Rightarrow p$
iii $\operatorname{not}(\operatorname{not} q) \Rightarrow$ not p

$$
q \Rightarrow \text { not } p
$$

12. a) i.

$$
\text { i. } \begin{aligned}
& z_{1}= 1+i \\
&\left|z_{1}\right|=\sqrt{2} \\
& \arg \left(z_{1}\right)=\frac{\pi}{4} \\
& \therefore z_{1}=\sqrt{2} \text { is } \pi / 4 \\
& \text { ii. } \quad \begin{aligned}
\left|z_{1} z_{2}\right| & =\left|z_{1}\right|\left|z_{2}\right| \\
& =2 \times \sqrt{2} \\
& =2 \sqrt{2}
\end{aligned}
\end{aligned}
$$

iii.

$$
\begin{aligned}
& z_{1} z_{2}=2 \sqrt{2}(\cos (\pi / 6+\pi / 4)+\sin (\pi / 6+\pi / 4)) \\
& \cos (\pi / 6+\pi / 4)=\cos \pi / 6 \cos \pi / 4-\sin \pi / 6 \sin \pi / 4 \\
&=\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}-\frac{1}{2} \times \frac{1}{\sqrt{2}} \\
&=\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}} \\
& \sin (\pi / 6+\pi / 4)=\sin \pi / 6 \cos \pi / 4+\cos \pi / 6 \sin \pi / 4 \\
&=\frac{1}{2} \times \frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} \\
&=\frac{1}{2 \sqrt{2}}+\frac{\sqrt{3}}{2 \sqrt{2}} \\
& \therefore z_{1} z_{2}=2 \sqrt{2}\left(\frac{\left.\sqrt{3} / 2 \sqrt{2}-\frac{1}{2 \sqrt{2}}+i\left(\frac{1}{2 \sqrt{2}}+\sqrt{3} / 2 \sqrt{2}\right)\right)}{}=\right.
\end{aligned}
$$

iv. $\tan \frac{5 \pi}{12}=\frac{\sin \frac{5 \pi}{12}}{\cos 5 \pi / 12}$

$$
\begin{aligned}
& =\frac{\sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
& =\frac{3+2 \sqrt{3}+1}{3-1} \\
& =2+\sqrt{3}
\end{aligned}
$$

v. $\left(z_{2}\right)^{p}$ positive real. $\quad \cos \frac{p \pi}{6}>0$

$$
\begin{aligned}
& \quad \sin p \pi / 6=0 \\
& \therefore \quad p=12
\end{aligned}
$$

b)

$$
\begin{aligned}
& \int x^{2} e^{x} d x \\
= & {\left[x^{2} e^{x}\right]-\int 2 x e^{x} d x } \\
= & x^{2} e^{x}-\left(\left[2 x e^{x}\right]-\int z e^{x} d x\right) \\
= & x^{2} e^{x}-2 x e^{x}+2 e^{x}+C
\end{aligned}
$$

c) $\dot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$
when $x=1, v=-2$ when $x=1, v=-2$

$$
\begin{aligned}
& 1=\frac{1}{2} \ln |8-6|+C \\
& 1=\frac{1}{2} \ln 2+C
\end{aligned}
$$

$$
c=-1
$$

$$
\Rightarrow \frac{1}{2} \ln \left|v^{2}-3\right|=x-1
$$

$$
c=1-\frac{1}{2} \ln 2
$$

$$
x=\frac{1}{2} \ln \left(2 v^{2}-6\right)+1-\frac{1}{2} \ln 2
$$

$$
=\frac{1}{2} \ln \left|v^{2}-3\right|+1
$$

$$
\begin{aligned}
2(x-1) & =\ln \left|v^{2}-3\right| \\
e^{2(x-1)} & =v^{2}-3 \\
v^{2} & =e^{2(x-1)}+3 \\
v & = \pm \sqrt{e^{2(x-1)}+3}
\end{aligned}
$$

but as $x=1, v=-2$

$$
\Rightarrow v=-\sqrt{e^{2(x-1)}+3} \text { only. }
$$

$$
\begin{aligned}
& v^{2}-3=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \quad O R \\
& 2 v^{2}-6=\frac{d v^{2}}{d x} \\
& v^{2}-3=v \frac{d v}{d x} \\
& \left.\begin{array}{l|l}
\frac{1}{2 v^{2}-6}=\frac{d x}{d v^{2}} & \frac{v^{2}-3}{v}=\frac{d v^{\circ}}{d x} \\
\int \frac{d v^{2}}{2 v^{2}-6} & =\int d x
\end{array} \right\rvert\, \frac{v}{v^{2}-3} d v=\int d x \\
& x=\frac{1}{2} \ln \left|2 v^{2}-6\right|+C \quad \frac{1}{2} \ln \left|v^{2}-3\right|=x+C
\end{aligned}
$$

13. a) If perpendicular, direction vectors must be perpendicular ie. dot product zero.

$$
\begin{aligned}
(-2 i+j-4 k) \cdot(p i+2 j+2 k) & =0 \\
-2 p+2-8 & =0 \\
-2 p & =6 \\
p & =-3
\end{aligned}
$$

b) $\frac{1}{n!}<\frac{1}{2^{n-1}}, n \geqslant 3, n \in \mathbb{Z}^{+}$

Show true for $n=3$.

$$
\begin{aligned}
\text { CHS } & =\frac{1}{3!} \\
& =\frac{1}{6} \\
\text { RUS } & =\frac{1}{2^{3-1}} \\
& =\frac{1}{4}>\frac{1}{6}
\end{aligned}
$$

\therefore True for $n=3$.
Assume the for some $k \in n$ ie. $\frac{1}{k!}<\frac{1}{2^{k-1}}$
Now prove true for $n=k+1$
ie Prove $\frac{1}{(k+1)!}<\frac{1}{2^{k+1-1}}$
From the assumption:

$$
\begin{aligned}
& \frac{1}{k!} \times \frac{1}{k+1}<\frac{1}{2^{k-1}} \times \frac{1}{k+1} \\
& \frac{1}{(k+1)!}<\frac{1}{3 \cdot \frac{2^{k-1}}{2^{k-1}(k+1)}} \\
&<\frac{2}{2^{k-1}(k+1) \times 2} \\
&<\frac{\frac{2}{2^{k+1-1}(k+1)}}{22^{k-1}} \\
&=\frac{2}{2^{k-1+1}} \\
&<\frac{1}{2^{k+1-1}} \times \frac{2}{2^{k+1-1}} \\
& \frac{1}{k+1} \therefore \frac{1}{(k+1)!}<\frac{1}{2^{k+1-1}} \quad 0 \frac{1}{2^{k+1-1}} \\
& \hline \frac{2}{k+1}<1 \text { for } k \geqslant 3
\end{aligned}
$$

\therefore True for $n=k+1$, given true for $n=k$ Since result is true for $n=3$, if follows that it will
also be true for $n=3+1=4, n=4+1=5$ and so on for all $n \geqslant 3$ integers.
c) $1 \quad z^{3}=1$

$$
\begin{aligned}
& z^{3}-1=0 \\
& (z-1)\left(z^{2}+z+1\right)=0
\end{aligned}
$$

Now ω is a non-real root of unity.
ie. $(\omega-1)\left(\omega^{2}+\omega+1\right)=0$ but $\omega \neq 1$

$$
\therefore w^{2}+w+1=0 .
$$

ii. $\quad\left(1-3 \omega+\omega^{2}\right)\left(1+\omega-8 \omega^{2}\right)$

$$
\begin{aligned}
& =\left(\left(1+\omega^{2}\right)-3 \omega\right)\left((1+\omega)-8 \omega^{2}\right) \\
& =(-\omega-3 \omega)\left(-\omega^{2}-8 \omega^{2}\right) \\
& =-4 \omega \times-9 \omega^{2} \\
& =36 \omega^{3} \quad \text { bot } \omega^{3}=1 \\
& =36
\end{aligned}
$$

d) i. LHS $=\frac{\tan x}{7 \sin ^{2} x+5 \cos ^{2} x}$

$$
\begin{aligned}
& =\frac{\frac{\tan x}{\cos ^{2} x}}{7 \frac{\sin ^{2} x}{\cos ^{2} x}+5 \frac{\cos ^{2} x}{\cos ^{2} x}} \\
& =\frac{\tan x \sec ^{2} x}{7 \tan ^{2} x+5} \\
& =R H S
\end{aligned}
$$

ii. $\int_{0}^{\pi / 3} \frac{\tan x}{7 \sin ^{2} x+5 \cos ^{2} x} d x$

$$
=\int_{0}^{\pi / 3} \frac{\tan x \sec ^{2} x}{7 \tan ^{2} x+5} d x
$$

from part i)

Let $s=\tan x$

$$
\begin{aligned}
d s & =\sec ^{2} x d x \\
\text { when } x= & \pi / 3, s=\sqrt{3} \\
x & =0, s=0 \\
\therefore I= & \int_{0}^{\sqrt{3}} \frac{s d s}{7 s^{2}+5} \\
& =\frac{1}{14}\left[\ln 17 s^{2}+51\right]_{0}^{\sqrt{3}} \\
& =\frac{1}{14}(\ln 26-\ln 5) \\
& =\frac{1}{14} \ln 26 / 5
\end{aligned}
$$

(1)

14 a)

$$
\begin{aligned}
& \frac{5 x^{2}-3 x+1}{\left(x^{2}+1\right)(x-2)}=\frac{A x+1}{x^{2}+1}+\frac{B}{x-2} \\
& 5 x^{2}-3 x+1=(A x+1)(x-2)+B\left(x^{2}+1\right)
\end{aligned}
$$

Let $x=2$

$$
15=B(5)
$$

$$
B=3
$$

Let $x=1$

$$
\begin{aligned}
B & =(A+1)(-1)+3(2) \\
-3 & =-A-1 \\
-2 & =-A \\
A & =2
\end{aligned}
$$

$$
\begin{aligned}
I & =\int \frac{2 x+1}{x^{2}+1}+\frac{3}{x-2} d x \\
& =\int \frac{2 x}{x^{2}+1}+\frac{1}{x^{2}+1}+\frac{3}{x-2} d x \\
& =\ln \left|x^{2}+1\right|+\tan ^{-1} x+3 \ln |x-2|+C \\
& =\ln \left|\left(x^{2}+1\right)(x-2)^{3}\right|+\tan ^{-1} x+C
\end{aligned}
$$

b) $i(a-b)^{2} \geqslant 0$

$$
\begin{aligned}
a^{2}-2 a b+b^{2} & \geqslant 0 \\
a^{2}+b^{2} & \geqslant 2 a b
\end{aligned}
$$

ii. Let $a=x, b=2$

$$
\begin{aligned}
& \frac{x^{2}+4}{\frac{1}{x^{2}+4}} \leqslant \frac{4 x}{4 x} \text {, } x \text { is positive so } \\
& \frac{x}{x^{2}+4} \leqslant \frac{1}{4}
\end{aligned}
$$

iii. $\int_{0}^{x} \frac{x}{x^{2}+4} d x \leqslant \int_{0}^{x} \frac{1}{4} d x$

$$
\left[\frac{1}{2} \ln \left|x^{2}+4\right|\right]_{0}^{x} \leqslant\left[\frac{1}{4} x\right]_{0}^{x}
$$

$$
\frac{1}{2} \ln \left|x^{2}+4\right|-\frac{1}{2} \ln 4 \leq \frac{1}{4} x
$$

$$
\frac{1}{2} \ln \frac{x^{2}+4}{4} \leqslant \frac{x}{4}
$$

$$
\ln \frac{x^{2}+4}{4} \leq \frac{x}{2}
$$

$$
e^{\ln \left(\frac{x^{2}+4}{4}\right)} \leqslant e^{\pi / 2}
$$

$$
\frac{x^{2}}{4}+1 \leq e^{x / 2}
$$

c) i

$$
\begin{aligned}
& i x=\sqrt{3} \sin 3 t-\cos 3 t \\
& x=A \sin 3 t \cos \theta-A \cos 3 t \sin \theta \\
& \Rightarrow A \cos \theta=\sqrt{3} \\
& A \sin \theta=1 \\
& A=2 \\
& \tan \theta=\frac{1}{\sqrt{3}} \\
& \theta=\pi / 6 \\
& \therefore x=2 \sin (3 t-\pi / 6)
\end{aligned}
$$

ii. $T=\frac{2 \pi}{n}, n=3$

$$
T=2 \pi / 3
$$

iii. Max speed at $x=0$.

$$
\begin{aligned}
& 2 \sin (3 t-\pi / 6)=0 \\
& \text { i.e. } 3 t-\pi / 6=0, \pi, 2 \pi, \ldots
\end{aligned}
$$

Take $3 t-\pi / 6=0$

$$
\begin{aligned}
& 3 t=\pi / 6 \\
& t=\pi / 18 \text { seconds. }
\end{aligned}
$$

iv. Original position: $t=0$.

$$
\begin{aligned}
x & =2 \sin (-\pi / 6) \\
& =2 \times-\frac{1}{2} \\
& =-1 \\
\therefore-1 & =2 \sin (3 t-\pi / 6) \\
-1 / 2 & =\sin (3 t-\pi / 6) \\
\Rightarrow 3 t-\pi / 6 & =-\pi / 6 \text { or } \frac{7 \pi}{6} \text { or } \ldots
\end{aligned}
$$

this is $t=0$.

$$
\begin{aligned}
\therefore 3 t-4 / 6 & =7 \frac{6}{6} \\
3 t & =8 \pi / 6 \\
t & =4 \pi / 3 \times 3 \\
& =4 \pi / 9 \text { seconds }
\end{aligned}
$$

Acceleration at the point $t=4 \pi / 9, x=-1$

$$
\begin{aligned}
\ddot{x} & =-n^{2} x \\
& =-3^{2} x-1 \\
& =9 \mathrm{~cm} / \mathrm{s}^{2}
\end{aligned}
$$

15. a)

$$
\begin{aligned}
& x y z=100 x+10 y+z \\
& \text { but } y=x+z \\
& \therefore x y z=100 x+10(x+z)+z \\
&=110 x+11 z \\
&=11(10 x+z)
\end{aligned}
$$

\therefore divisible by 11 as x, z are positive integer.
b) $\quad v=9 \sqrt{3-x^{2}}$

Centre is where v is \max , v^{2} is max.

$$
v^{2}=81\left(3-x^{2}\right)
$$

Centre of motion at $x=0$.
c)

$$
\text { i. } \begin{aligned}
\overrightarrow{A B} & =-1 i+3 j+4 k-(1 i+2 j+2 k) \\
& =-2 i+j+2 k
\end{aligned}
$$

$$
=\frac{4}{9}
$$

$$
\text { ii. } \begin{aligned}
\cos \theta & =\frac{\overrightarrow{O A} \cdot \overrightarrow{A B}}{|\overrightarrow{O A}| \times|\overrightarrow{A B}|} \\
& =\frac{-2+2+4}{\sqrt{9} \times \sqrt{9}}
\end{aligned}
$$

iii. $\triangle O A B=\frac{1}{2}\|\overrightarrow{O A}\| \times\|\overrightarrow{R B}\| \sin \theta$
$=\frac{1}{2} \times 9 \times \sin \theta$
$\sqrt{65} \quad 9$
$\frac{1}{4}$
$\triangle O A B=\frac{1}{2} \times 9 \times \frac{\sqrt{65}}{9}$
$=\frac{1}{2} \sqrt{65} u^{2}$
d) $i \sin \left(\theta+\frac{\pi}{2}\right)=\sin \theta \cos \frac{\pi}{2}+\cos \theta \sin \frac{\pi}{2}$
$=\sin \theta \times 0+\cos \theta \times 1$
$=\cos \theta$
ii. $f^{(n)}(x)=a^{n} \sin \left(a x+\frac{n \pi}{2}\right)$
Show true for $n=1$
$f^{\prime}(x)=a \cos a x$
By formula: $f^{\prime}(x)=a^{\prime} \sin \left(a x+\frac{\pi}{2}\right)$
, $=a \cos a x$ (by part i.)
Assume true for $n=k$
$\text { i.e. } f^{k}(x)=a^{k} \sin \left(a x+\frac{k \pi}{2}\right)$
Prove true for $n=k+1$
$\text { i.e. } f^{(k-1)}(x)=a^{(k+1)} \sin \left(a x+\frac{k \pi}{2}\right)$
Fhom the assumption:$f^{(k)}(x)=a^{k} \sin \left(a x+\frac{k \pi}{2}\right)$
$f^{(k+1)}(x)=a^{k} \cos (a x+k / 2) \times a$
$=a^{k+1} \cos (a x+k \pi / 2)$
$=a^{k+1} \sin \left(a x+\frac{k-1 / 2}{+5 / 2}\right)($ by parti. $)$
$=a^{k+1} \sin \left(a x+(k+1) \frac{\pi}{2}\right)$

\therefore true for $n=k+1$ provided $n=k$ is true.
Since true for $n=1$, then if follows true for $n=1+1=2$, $n=2+1=3$ and so on for all integea $n \geqslant 1$.

\qquad
\qquad
\qquad
\qquad

$$
f^{(k)}(x)=a^{k} \sin \left(a x+\frac{k \pi}{2}\right)
$$

$$
\begin{aligned}
f^{(k+1)}(x) & =a^{k} \cos (a x+k \pi / 2) \times a \\
& =a^{k+1} \cos (a x+k \pi / 2) \\
& =a^{k+1} \sin \left(a x+\frac{k \pi}{2}+\pi / 2\right)(b y-p a r+i .) \\
& =a^{k+1} \sin \left(a x+(k+1)^{\pi / 2}\right)
\end{aligned}
$$

$$
\text { 16. a) } \begin{aligned}
I_{n} & =\int_{0}^{1} x^{n} e^{-x} d x \\
\text { i. } I_{n} & =\left[x^{n} \times-e^{-x}\right]_{0}^{1}-\int_{0}^{1} n x^{n-1}\left(-e^{-x}\right) d x \\
& =1^{n} \times\left(-e^{-1}\right)-0^{n} \times\left(-e^{0}\right)+\int_{0}^{1} n x^{n-1} e^{-x} d x \\
& =-\frac{1}{e}+n \int_{0}^{1} x^{n-1} e^{-x} d x \\
& =-\frac{1}{e}+n I_{n-1}
\end{aligned}
$$

ii.

$$
\begin{aligned}
I_{3} & =3 I_{2}-\frac{1}{e} \\
& =3\left(2 I_{1}-\frac{1}{e}\right)-\frac{1}{e} \\
& =6 I_{1}-4 / e \\
& =6\left(I_{0}-1 / e\right)-4 / e \\
& =6 I_{0}-10 / e \\
& =6 \int_{0}^{1} x^{0} e^{-x} d x-1 / e \\
& =6 \int_{0}^{1} e^{-x} d x-\frac{10}{e} \\
& =6\left[-e^{-x}\right]_{0}^{1}-\frac{10}{e} \\
& =6\left(-e^{-1}+1\right)-\frac{10}{e} \\
& =-6 / e+6-1 / e \\
& =6-16 / e
\end{aligned}
$$

b) $i \quad|z|=|z-6+4 i|$

$$
=|z-(6-4 i)| \text { perpendicular bisector }
$$

ii.

$$
M=(3,-2)
$$

$m=-4 / 6 \Rightarrow$ perpendicular gives $3 / 2$

$$
\begin{aligned}
\therefore y+2 & =3 / 2(x-3) \\
y & =3 / 2 x-9 / 2-2 \\
& =3 / 2 x-13 / 2
\end{aligned}
$$

or $\quad 3 x-2 y-13=0$
iii. Minimum value by Pythagoras' Theorem:

$$
\sqrt{3^{2}+2^{2}}=\sqrt{13}
$$

c) i. $\overrightarrow{A M}=\frac{1}{2}(c-a)$
ii.

$$
\begin{aligned}
\overrightarrow{B M} & =\frac{1}{2} a-b+\frac{1}{2} a \\
& =\overrightarrow{O M}-\overrightarrow{O B} \\
& =\overrightarrow{O A}+\overrightarrow{A M}-\overrightarrow{O B} \\
& =a+\frac{1}{2}(b-a)-b \\
& =\frac{1}{2} a-b+\frac{1}{2} c
\end{aligned}
$$

iii

$$
\begin{aligned}
\overrightarrow{R T} & =\overrightarrow{O T}-\overrightarrow{O R} \\
\overrightarrow{R T} & =2 / 3 \overrightarrow{R S} \\
& =2 / 3(\overrightarrow{O S}-\overrightarrow{O R}) \\
& =2 / 3\left(\left[\overrightarrow{O C}+\frac{1}{3} \overrightarrow{C A}\right]-[\overrightarrow{O B}+2 / 3 \overrightarrow{B A}]\right) \\
& =2 / 3\left(5+\frac{1}{3}(a-c)-b-2 / 3(a-b)\right) \\
& =2 / 3(2 / 3 c-1 / 3 a-1 / 3 b) \\
& =4 / 9 \approx-2 / 9 a-2 / 9 b
\end{aligned}
$$

iv. Collinear:

Prove $\overrightarrow{B T}=\lambda \overrightarrow{B M}$

$$
\overrightarrow{B T}=\lambda\left(\frac{1}{2} a-b+\frac{1}{2} c\right) \text { (from part ii) }
$$

Now

$$
\begin{aligned}
\overrightarrow{B T} & =\overrightarrow{B R}+\overrightarrow{R T} \\
& =-2 / 3 \overrightarrow{A B}+\overrightarrow{R T}
\end{aligned}
$$

Mathematics Extension 1 Year 12 Assessment 2 March 2020

