1999

1. (a) Find $\int \sqrt{e^x} dx$. (b) Find the exact value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (1 + \tan^2 x) \tan x dx$. (c) Use the substitution $u = \frac{1}{x}$ to show that $\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{\ln x}{1+x^2} dx = 0$. (d) Find $\int \frac{x+7}{x^2+16} dx$ (e) Evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{2+\sin x}$. **2.** (a) Given $z = \sqrt{6} - \sqrt{2}i$, find: (i) $\Re(z^2)$; (ii) |z|; (iii) $\arg z$; (iv) z^4 in the form x + iy; (v) $\frac{1}{z^3}$ in modulus-argument form.

(b) (i) Find that Cartesian equation of the locus represented by $2|z| = 3(z + \overline{z})$.

- (ii) Sketch the locus on an Argand diagram.
- (c)

The diagram above shows the fixed points A, B and C in the Argand plane, where $AB = BC, \ \angle ABC = \frac{\pi}{2}$, and A, B and C are in anticlockwise order. The point A represents the complex number $z_1 = 2$ and the point B represents the complex number $z_2 = 3 + \sqrt{5i}$.

(i) Find the complex number z_3 represented by the point C.

(ii) D is the point on the Argand plane such that ABCD is a square. Find the complex number z_4 represented by D.

3. (a) Consider the function f(x) = x-1/x.
(i) Sketch the graph y = f(x) showing clearly the coordinates of any points of intersection with the axes and the equations of any asymptotes.

(ii) Use the graph y = f(x) to sketch on separate axes the graphs

(
$$\alpha$$
) $y = |f(x)|$ (β) $y = f(|x|)$ (γ) $y = \{f(x)\}^2$ (δ) $y = f^{-1}(x)$ (ε) $y = \sin^{-1} f(x)$

- (b) (i) Show $\alpha = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$ is a root of the equation $z^5 + z 1 = 0$. (ii) Hence show $z^2 z + 1$ is a factor of $z^5 + z 1$. (iii) Simplify $(1 \alpha)^{20}$.

4. (a) (i) Simpson's rule gives the exact answer to the area under a papabola. Use Simpson's rule to find the area enclosed by the x-axis and the parabola shown in the diagram.

(ii) Write down the Cartesian equation of the parabola shown in (i).

(iii) The latus rectum of a parabola is the focal chord perpendicular to the axis of the parabola. Explain why the equation of the latus rectum is y = 0 for this parabola.

(iv) The base of a solid is an isosceles triangle with sides 13 cm, 13 cm and 10 cm. The cross-section of the solid is a parabola with its latus rectum lying on this base and perpendicular to the axis of symmetry of the triangle. Find the volume of this solid using the slicing method.

- (b) (i) Prove that $\int_0^a f(x) dx = \int_0^a f(a-x) dx$. (ii) Hence show that $\int_0^{\frac{\pi}{2}} (a\cos^2 x + b\sin^2 x) dx = \int_0^{\frac{\pi}{2}} (a\sin^2 x + b\cos^2 x) dx$.
- (iii) Deduce that $\int_0^{\frac{\pi}{2}} (a\cos^2 x + b\sin^2 x) \, dx = \frac{\pi(a+b)}{4}$.

5. (a) (i) Show that the tangent to the rectangular hyperbola xy = 4 at the point $T(2t, \frac{2}{t})$ has equation $x + t^2y = 4t$.

(ii) This tangent cuts the x-axis at point Q. Show that the line through Q which is perpendicular to the tangent at T has equation $t^2x - y = 4t^3$.

(iii) This line through Q cuts the rectangular hyperbola at the points R and S. Show that the midpoint M of RS has coordinates $M(2t, -2t^3)$.

(iv) Find the equation of the locus of M as T moves on the rectangular hyperbola.

(b) The hyperbola $xy = c^2$ touches the circle $(x - 1)^2 + y^2 = 1$ at the point Q.

(i) Show this information on a diagram.

(ii) Explain why $x^2(x-1)^2 + c^4 = x^2$ has a repeated real root and two complex roots.

(iii) Prove that if k is a repeated real root of the polynomial equation P(x) = 0then k is also a root of P'(x) = 0.

(iv) If k is the repeated real root of $x^2(x-1)^2 + c^4 = x^2$, find the value of k and c^2 .

6. (a) (i) Show that $\int x \tan^{-1} x \, dx = \frac{1}{2}(x^2+1) \tan^{-1} x - \frac{1}{2}x + c$, c constant. (ii) $I_n = \int_0^1 x^n \tan^{-1} x \, dx, \ n = 0, 1, 2, \dots$ Show that $I_0 = \frac{\pi}{4} - \frac{1}{2} \ln 2, \ I_1 = \frac{\pi}{4} - \frac{1}{2}$ and $I_n = \frac{1}{n+1} \cdot \frac{\pi}{2} - \frac{1}{n(n+1)} - \frac{n-1}{n+1} \cdot I_{n-2}, \ n = 2, 3, 4, \dots$

(b) Two tangents are drawn from the external point $T(x_0, y_0)$ to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} =$ 1, meeting it at P and Q.

(i) Write down the equation of the chord PQ.

(ii) If the chord PQ touches the circle $x^2 + y^2 = 9$, then by considering the distance of the chord from the origin, or otherwise, show that the point $T(x_0, y_0)$ statisfies $\frac{9x_0^2}{256} + \frac{y_0^2}{9} = 1.$ (iii) Give a geometrical description of the locus of *T*.

7. (a) The equation $x^3 - x^2 - 3x + 2 = 0$ has roots α, β and χ .

(i) Use the value of $\alpha + \beta + \chi$ to find the monic polynomial equation with roots $2\alpha + \beta + \chi, \alpha + 2\beta + \chi \text{ and } \alpha + \beta + 2\chi.$

(ii) Find the monic polynomial equation with roots α^2 , β^2 and χ^2 .

(b) (i) The diagram shows the graph of y = g(x) where $g(x) = 2 - \frac{x^4}{8}$. Use it to sketch the graph of $y = \frac{1}{q(x)}$.

(ii) Find the area enclosed by $y = \frac{1}{g(x)}$, the x-axis and the lines x = 1 and $x = \sqrt{2}$. (c) (i) Consider the following statements.

(α) If P(x) is an odd function and Q(x) is an even function then P(Q(x)) is odd.

(β) If P(x) is an odd function and Q(x) is an even function then Q(P(x)) is even. Indicate whether each of these statements is true or false. Give a reason for your answer.

(ii) The diagram shows the graph of y = f(x) where $f(x) = \frac{2x}{x^2+1}$.

Sketch the graph of y = g(f(x)) where $g(x) = 2 - \frac{x^4}{8}$.

8. (a) (i) Show that for all values of A and $B \sin(A+B) - \sin(A-B) = 2 \cos A \sin B$. (ii) Use the method of mathematical induction to show that for all positive integers $n, \cos x + \cos 2x + \cos 3x + \cdots + \cos nx = \frac{\sin(n+\frac{1}{2})x - \sin \frac{1}{2}x}{2 \sin \frac{1}{2}x}$. (iii) Hence show that $\cos 2x + \cos 4x + \cos 6x + \cdots + \cos 16x = 8 \cos 9x \cos 4x \cos 2x \cos x$. (b) (i) If x > 0, y > 0 show that $x + y \ge 2\sqrt{xy}$.

(ii) Hence show that if x > 0, y > 0, z > 0 then $(x + y)(y + z)(z + x) \ge 8xyz$.

(iii) If a, b, c are the sides of a triangle with semi-perimeter $S = \frac{1}{2}(a+b+c)$ then Heron's formula states that the area Δ of the triangle is given by $\Delta = \sqrt{S(S-a)(S-b)(S-c)}$. By choosing suitable values for x, y, z show that $\Delta^2 \leq \frac{(a+b+c)abc}{16}$.