2002

1. (a) Find $\int \frac{dx}{\sqrt{9+4x^2}}$.

- (b) (i) Find real constants A, B and C such that $\frac{x^2+5x+2}{(x^2+1)(x+1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x+1}$.
- (ii) Hence find $\int \frac{x^2 + 5x + 2}{(x^2 + 1)(x + 1)} dx$.
- (c) Evaluate $\int_1^5 x\sqrt{2x-1} dx$. (d) Evaluate $\int_0^1 x^5 e^{x^3} dx$.
- (e) (i) Simplify $\sin(A B) + \sin(A + B)$.
- (ii) Hence find $\int \sin 5x \cos 3x \, dx$.

2. (a) Let $z = \frac{2-4i}{1+i}$.

(i) Find \overline{z} , giving your answer in the form a + bi, where a and b are real.

(ii) Find iz.

(b) Find a and b if $(a + ib)^2 = 3 - 4i$, where a and b are real and a > 0.

(c) Consider the region defined by $|z - 4i| \leq 3$.

(i) Sketch the region.

(ii) Determine the maximum value of |z|.

(iii) Determine the maximum value of $\arg z$, where $-\pi < \arg z \le \pi$.

(d)

In the diagram above, the complex numbers z_0, z_1, z_2, z_3, z_4 are represented by the vertices of a regular polygon with centre O and vertices A, B, C, D, E respectively. Given that $z_0 = 2$:

(i) Express z_2 in modulus-argument form.

(ii) Find the value of z_2^5 .

(iii) Show that the perimeter of the pentagon is $20 \sin \frac{\pi}{5}$.

3. (a) Let α, β and γ be the roots of $x^3 - 7x^2 = 18x - 7 = 0$.

(i) Find a cubic equation that has roots $1 + \alpha^2$, $1 + \beta^2$ and $1 + \gamma^2$.

(ii) Hence, or otherwise, find the value of $(1 + \alpha^2)(1 + \beta^2)(1 + \gamma^2)$.

(b) a lifebelt mould is made by rotating the circle $x^2 + y^2 = 64$ through one complete revolution about the line x = 28.

(i) Use the method of slicing to show that the volume, V, of the lifebelt is given by $V = 112\pi \int_{-8}^{8} \sqrt{64 - y^2} \, dy.$

(ii) Find the exact volume of the lifebelt.
(c) Let P(x) = x⁴ + ax³ + 36x² - 35x + b, where a and b are real numbers. It is known that x = 5 and x = 1-i√5/2 are zeroes of P(x).
(i) Explain why x² - x + 1 must be a factor of P(x).
(ii) Find a and b.

4. (a)

The sketch above shows the parabolic curve y = f(x) where $f(x) = \frac{x^2 - 4x}{5}$. Without the use of calculus, draw sketches of the following, showing interceps, asymptotes and turning points:

(i) y = |f(x)|, (ii) $y = \frac{1}{f(x)}$, (iii) $y = \frac{x}{5}|x-4|$, (iv) $y = \tan^{-1}(f(x))$.

(b) Find the set of values of x for which the limiting sum exists for the series $1 + (\frac{2x-3}{x+1}) + (\frac{2x-3}{x+1})^2 + (\frac{2x-3}{x+1})^3 + \cdots$

5. (a)

Consider the ellipse sketch obove of eccentricity e with one focus S at the origin and its corresponding directrix at x = d.

(i) If P corresponds to the complex number z, where $z = r(\cos \theta + i \sin \theta)$, use the

focus-directrix definition of an ellipse to show that $r = \frac{ed}{1 + e \cos \theta}$.

(ii) Hence draw the ellipse represented by $r = \frac{33}{5+3\cos\theta}$ showing the coordinates of the points A and D. [There is no need to find the coordinates of any other point, or to write the Cartesian equation of the ellipse.]

(b) Consider the curve defined by the equation $3x^2 + y^2 - 2xy - 8x + 2 = 0$. (i) Show that $\frac{dy}{dx} = \frac{3x - y - 4}{x - y}$.

(ii) Find the coordinates of the points on the curve where the tangent to the curve is parallel to the line y = 2x.

(c) Consider the complex number $z = \cos \theta + i \sin \theta$.

(i) Using de Moivre's theorem, show that $z^n + \frac{1}{z^2} = 2\cos n\theta$, for any integer n.

(ii) Hence or otherwise express $(z+\frac{1}{z})^6$ in the form $A\cos 6\theta + B\cos 4\theta + C\cos 2\theta + D$, where A, B, C and D are real constants.

(iii) Hence evaluate $\int_0^{\frac{\pi}{4}} \cos^6 \theta \ d\theta$.

The sketch above shows the curve with equation $y = \frac{e^{2x}-1}{e^{2x}+1}$ which has asymptotes at $y = \pm 1$. The line x = K (where K > 0) is also shown.

(i) Using the substitution $u = e^{2x}$ or otherwise, show that the shaded area is given by $A = \ln 2 + 2K - \ln(e^{2K} + 1)$

(ii) Explain why this area is always less than $\ln 2$ no matter how large K is.

- (b) (i) Use the substitution u = 1 + x to evaluate $\int_0^1 x(1+x)^n dx$
- (ii) Use the binomial theorem to write an expansion of $x(1+x)^n$
- (iii) Prove that $\sum_{r=0}^{n} \frac{1}{r+2} C_r = \frac{n \cdot 2^{n+1} + 1}{(n+1)(n+2)}$.
- (iv) Find the largest integer value of n such that $\sum_{r=0}^{n} \frac{1}{r+2} C_r < 50$

7. (a)

The diagram above shows a point X outside a triangle ABC. Show that $AX + BX + CX > \frac{AB + BC + CA}{2}$.

(b) (i) Show that the normal at the point $P(cp, \frac{c}{p})$ to the rectangular hyperbola $xy = c^2$ is given by $p^3x - py = c(p^4 - 1)$.

(ii) If this normal meets the hyperbola again at $Q(cq, \frac{c}{q})$, show that $p^3q = -1$.

(iii) Hence find the area of the triangle PQR, where R is the point of intersection of the tangent at P with the y-axis. You may assume that the equation of the tangent is given by $x + p^2y = 2cp$.

(iv) What is the value of p that produces a triangle of minimum area?

(c) (i) Using t results, or otherwise, find $\int \frac{1}{1+\sin x} dx$.

(ii) Hence find
$$\int_0^{\frac{\pi}{3}} \frac{2}{2+\sin x + \sqrt{3}\cos x} dx$$
.

8. (a) P, Q represent complex numbers α, β respectively in an Argand diagram, where O is the origin and O, P, Q are not collinear. In $\triangle OPQ$, the line from O to the midpoint M of PQ meets the line from Q to the midpoint N of OP in the point R, where R represents the complex number z.

(i) Show this information on a sketch.

(ii) Explain why there are positive real numbers k, l such that $kz = \frac{1}{2}(\alpha + \beta)$ and $l(z - \beta) = \frac{1}{2}\alpha - \beta$

(iii) Show that $z = \frac{1}{3}(\alpha + \beta)$

(iv) If S is the midpoint of OQ show that R lies on PS.

(b) Let $J_n = \int_0^1 x^n e^{-x} dx$, where $n \ge 0$.

(i) Show that $J_0 = 1 - \frac{1}{e}$.

(ii) Show that
$$J_n = nJ_{n-1} - \frac{1}{e}$$
, for $n \ge 1$.

(iii) Show that
$$J_n \to 0$$
 as $n \to \infty$

(iv) Deduce by the principle of mathematical induction that for all $n \ge 0$, $J_n = n! - \frac{n!}{e} \sum_{r=0}^n \frac{1}{r}$.

(v) Conclude the
$$e = \lim_{n \to \infty} (\sum_{r=0}^{n} \frac{1}{r!}).$$