2002

1. (a) Find $\int \frac{d x}{\sqrt{9+4 x^{2}}}$.
(b) (i) Find real constants A, B and C such that $\frac{x^{2}+5 x+2}{\left(x^{2}+1\right)(x+1)}=\frac{A x+B}{x^{2}+1}+\frac{C}{x+1}$.
(ii) Hence find $\int \frac{x^{2}+5 x+2}{\left(x^{2}+1\right)(x+1)} d x$.
(c) Evaluate $\int_{1}^{5} x \sqrt{2 x-1} d x$.
(d) Evaluate $\int_{0}^{1} x^{5} e^{x^{3}} d x$.
(e) (i) Simplify $\sin (A-B)+\sin (A+B)$.
(ii) Hence find $\int \sin 5 x \cos 3 x d x$.
2. (a) Let $z=\frac{2-4 i}{1+i}$.
(i) Find \bar{z}, giving your answer in the form $a+b i$, where a and b are real.
(ii) Find $i z$.
(b) Find a and b if $(a+i b)^{2}=3-4 i$, where a and b are real and $a>0$.
(c) Consider the region defined by $|z-4 i| \leq 3$.
(i) Sketch the region.
(ii) Determine the maximum value of $|z|$.
(iii) Determine the maximum value of $\arg z$, where $-\pi<\arg z \leq \pi$.
(d)

In the diagram above, the complex numbers $z_{0}, z_{1}, z_{2}, z_{3}, z_{4}$ are represented by the vertices of a regular polygon with centre O and vertices A, B, C, D, E respectively. Given that $z_{0}=2$:
(i) Express z_{2} in modulus-argument form.
(ii) Find the value of z_{2}^{5}.
(iii) Show that the perimeter of the pentagon is $20 \sin \frac{\pi}{5}$.
3. (a) Let α, β and γ be the roots of $x^{3}-7 x^{2}=18 x-7=0$.
(i) Find a cubic equation that has roots $1+\alpha^{2}, 1+\beta^{2}$ and $1+\gamma^{2}$.
(ii) Hence, or otherwise, find the value of $\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\gamma^{2}\right)$.
(b) a lifebelt mould is made by rotating the circle $x^{2}+y^{2}=64$ through one complete revolution about the line $x=28$.
(i) Use the method of slicing to show that the volume, V, of the lifebelt is given by $V=112 \pi \int_{-8}^{8} \sqrt{64-y^{2}} d y$.
(ii) Find the exact volume of the lifebelt.
(c) Let $P(x)=x^{4}+a x^{3}+36 x^{2}-35 x+b$, where a and b are real numbers. It is known that $x=5$ and $x=\frac{1-i \sqrt{5}}{2}$ are zeroes of $P(x)$.
(i) Explain why $x^{2}-x+1$ must be a factor of $P(x)$.
(ii) Find a and b.
4. (a)

The sketch above shows the parabolic curve $y=f(x)$ where $f(x)=\frac{x^{2}-4 x}{5}$. Without the use of calculus, draw sketches of the following, showing interceps, asymptotes and turning points:
(i) $y=|f(x)|$, (ii) $y=\frac{1}{f(x)}$, (iii) $y=\frac{x}{5}|x-4|$, (iv) $y=\tan ^{-1}(f(x))$.
(b) Find the set of values of x for which the limiting sum exists for the series $1+\left(\frac{2 x-3}{x+1}\right)+\left(\frac{2 x-3}{x+1}\right)^{2}+\left(\frac{2 x-3}{x+1}\right)^{3}+\cdots$
5. (a)

Consider the ellipse sketch obove of eccentricity e with one focus S at the origin and its corresponding directrix at $x=d$.
(i) If P corresponds to the complex number z, where $z=r(\cos \theta+i \sin \theta)$, use the
focus-directrix definition of an ellipse to show that $r=\frac{e d}{1+e \cos \theta}$.
(ii) Hence draw the ellipse represented by $r=\frac{33}{5+3 \cos \theta}$ showing the coordinates of the points A and D. [There is no need to find the coordinates of any other point, or to write the Cartesian equation of the ellipse.]
(b) Consider the curve defined by the equation $3 x^{2}+y^{2}-2 x y-8 x+2=0$.
(i) Show that $\frac{d y}{d x}=\frac{3 x-y-4}{x-y}$.
(ii) Find the coordinates of the points on the curve where the tangent to the curve is parallel to the line $y=2 x$.
(c) Consider the complex number $z=\cos \theta+i \sin \theta$.
(i) Using de Moivre's theorem, show that $z^{n}+\frac{1}{z^{2}}=2 \cos n \theta$, for any integer n.
(ii) Hence or otherwise express $\left(z+\frac{1}{z}\right)^{6}$ in the form $A \cos 6 \theta+B \cos 4 \theta+C \cos 2 \theta+D$, where A, B, C and D are real constants.
(iii) Hence evaluate $\int_{0}^{\frac{\pi}{4}} \cos ^{6} \theta d \theta$.
6. (a)

The sketch above shows the curve with equation $y=\frac{e^{2 x}-1}{e^{2 x}+1}$ which has asymptotes at $y= \pm 1$. The line $x=K$ (where $K>0$) is also shown.
(i) Using the substitution $u=e^{2 x}$ or otherwise, show that the shaded area is given by $A=\ln 2+2 K-\ln \left(e^{2 K}+1\right)$
(ii) Explain why this area is always less than $\ln 2$ no matter how large K is.
(b) (i) Use the substitution $u=1+x$ to evaluate $\int_{0}^{1} x(1+x)^{n} d x$
(ii) Use the binomial theorem to write an expansion of $x(1+x)^{n}$
(iii) Prove that $\sum_{r=0}^{n} \frac{1}{r+2}^{n} C_{r}=\frac{n .2^{n+1}+1}{(n+1)(n+2)}$.
(iv) Find the largest integer value of n such that $\sum_{r=0}^{n} \frac{1}{r+2}{ }^{n} C_{r}<50$
7. (a)

The diagram above shows a point X outside a triangle $A B C$. Show that $A X+B X+C X>\frac{A B+B C+C A}{2}$.
(b) (i) Show that the normal at the point $P\left(c p, \frac{c}{p}\right)$ to the rectangular hyperbola $x y=c^{2}$ is given by $p^{3} x-p y=c\left(p^{4}-1\right)$.
(ii) If this normal meets the hyperbola again at $Q\left(c q, \frac{c}{q}\right)$, show that $p^{3} q=-1$.
(iii) Hence find the area of the triangle $P Q R$, where R is the point of intersection of the tangent at P with the y-axis. You may assume that the equation of the tangent is given by $x+p^{2} y=2 c p$.
(iv) What is the value of p that produces a triangle of minimum area?
(c) (i) Using t results, or otherwise, find $\int \frac{1}{1+\sin x} d x$.
(ii) Hence find $\int_{0}^{\frac{\pi}{3}} \frac{2}{2+\sin x+\sqrt{3} \cos x} d x$.
8. (a) P, Q represent complex numbers α, β respectively in an Argand diagram, where O is the origin and O, P, Q are not collinear. In $\triangle O P Q$, the line from O to the midpoint M of $P Q$ meets the line from Q to the midpoint N of $O P$ in the point R, where R represents the complex number z.
(i) Show this information on a sketch.
(ii) Explain why there are positive real numbers k, l such that $k z=\frac{1}{2}(\alpha+\beta)$ and $l(z-\beta)=\frac{1}{2} \alpha-\beta$
(iii) Show that $z=\frac{1}{3}(\alpha+\beta)$
(iv) If S is the midpoint of $O Q$ show that R lies on $P S$.
(b) Let $J_{n}=\int_{0}^{1} x^{n} e^{-x} d x$, where $n \geq 0$.
(i) Show that $J_{0}=1-\frac{1}{e}$.
(ii) Show that $J_{n}=n J_{n-1}-\frac{1}{e}$, for $n \geq 1$.
(iii) Show that $J_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(iv) Deduce by the principle of mathematical induction that for all $n \geq 0$, $J_{n}=n!-\frac{n!}{e} \sum_{r=0}^{n} \frac{1}{r}$.
(v) Conclude the $e=\lim _{n \rightarrow \infty}\left(\sum_{r=0}^{n} \frac{1}{r!}\right)$.

