HSC	NUMBER:	

TAYLORS COLLEGE SYDNEY CAMPUS

YEAR 12 HSC ASSESSMENT TASK

MATHEMATICS EXTENSION 2 TRIAL HSC EXAMINATION

August 2003

WEIGHTING: 40%

Time Allowed: 3 hours (plus 5 mins reading time)

INSTRUCTIONS

- START EACH QUESTION IN A NEW ANSWER BOOKLET
- WRITE YOUR HSC NUMBER
 TOP OF ANSWER BOOKLET

 AT THE
- SHOW ALL NECESSARY WORKING
- APPROVED TEMPLATES AND CALCULATORS MAY BE USED

Question 1

Marks

(a) Find:

(i)
$$\int \sec^2 x (\tan^2 x + 2) \ dx$$

2

(ii)
$$\int \frac{x}{1+x^4} dx$$

2

(iii)
$$\int \frac{dx}{2 + \cos x}$$
 using the substitution $t = \tan \frac{x}{2}$

3

(b) Find the exact value of
$$\int_0^{\frac{1}{2}} \frac{1}{1-x^2} dx$$

2

(c) (i) Let
$$I_n = \int_0^1 x^n e^x dx$$
, where $n \ge 0$. Show that

3

$$I_n = e - n I_{n-1}$$
, for all $n \ge 1$

(ii) Hence evaluate
$$\int_0^{\frac{1}{5}} y^3 e^{5y} dy$$

3

Question 2 (START A NEW ANSWER BOOK)

(a) Let z=3-4i and w=2+5i. Express the following in the form x+iy, where x and y are real numbers:

(i)
$$z^2$$

1

(ii)
$$\frac{z}{w}$$

2

(b) (i) On an Argand diagram shade the region containing all the points representing complex numbers z such that both $|z| \le 1$ and $|z-1| \le \sqrt{2}$

2

(ii) Find the exact value of the area of the shaded region.

2

(c)

The diagram above shows a parallelogram OUVW in the complex plane. Let u, v and w be the complex numbers represented by the points U, V and W respectively.

Suppose that $u \overline{w} + \overline{u} w = 0$

(i) Show that
$$\operatorname{Re}(u\,\overline{w}) = 0$$
 and hence that $\operatorname{Re}(\frac{u}{w}) = 0$

- (ii) Show that OUVW is a rectangle. 2
- (iii) Suppose now that $\frac{u}{w} = 2i$
 - (a) Express $\frac{u-w}{u+w}$ in the form a+ib, where a and b are real numbers.
 - (β) Hence find the value of $\tan \theta$, where θ is the acute angle between the diagonals of *OUVW*.

Question 3 (START A NEW ANSWER BOOKLET)

(a) The polynomial P(z) is defined by $P(z)=z^4-2z^3-z^2+2z+10$ Given that z-2+i is a factor of P(z), express P(z) as a product of real quadratic factors.

3

Marks

- (b) A sequence $u_1, u_2, u_3, u_4, \dots$ satisfies the relationship $u_n = u_{n-1} + u_{n-2}$ for $n \ge 3$.
 - (i) Show that $u_1u_2 + u_2u_3 = u_3^2 u_1^2$
 - (ii) Use induction to show that, for $n \ge 1$,

$$u_1u_2 + u_2u_3 + u_3u_4 + \dots + u_{2n-1}u_{2n} + u_{2n}u_{2n+1} = u_{2n+1}^2 - u_1^2$$
 5

- (c) Suppose that $x = \alpha$ is a double root of the polynomial equation P(x) = 0. Show that $P'(\alpha) = 0$
 - (ii) The polynomial $Q(x) = mx^7 + nx^6 + 1$ is divisible by $(x+1)^2$. Find the values of m and n, where m and n are real numbers.

Question 4 (START A NEW ANSWER BOOKLET)

(a) The diagram below shows the graph of y = f(x) where $f(x) = 1 - 2e^{-x^2}$.

(i) Find the x intercepts

1

(ii) Draw, on separate diagrams, neat sketches of:

$$(\alpha) \qquad y = |f(x)| \qquad \qquad 2$$

$$(\beta) \qquad y = \frac{1}{f(x)}$$

$$(\chi) \qquad y = \cos^{-1} f(x) \qquad \qquad 2$$

2

A mould for a circular fish pond is made by rotating the region bounded by the curve $y = 2 - \cos^2 x$ and the x axis between $x = -\frac{\pi}{4}$ and $x = \frac{\pi}{4}$ through one complete revolution about the line x = 1. All measurements are in metres.

(i) Use the method of cylindrical shells to show that the volume of the fish pond is given by

$$V = \pi \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (1-x)\cos 2x dx \qquad \qquad 4$$

(ii) Hence find the capacity of the fish pond to the nearest litre. 3

Question 5 (START A NEW ANSWER BOOKLET)

- (a) Consider the rectangular hyperbola $x^2 y^2 = 4$.
 - (i) Find the coordinates of the foci S and S' and the equations of the asymptotes.
 - (ii) Sketch the curve, showing vertices, foci and asymptotes. 1
- (b) (i) Show that $a^2 + b^2 > 2ab$, where a and b are distinct positive real numbers.
 - (ii) Hence show that $a^2 + b^2 + c^2 > ab + bc + ca$, where a, b and c are distinct positive real numbers.
 - (iii) Hence, or otherwise, prove that

$$\frac{a^2b^2 + b^2c^2 + c^2a^2}{a + b + c} > abc$$

where a, b and c are distinct positive real numbers.

- (c) The normal at a point $P(cp, \frac{c}{p})$ on the hyperbola $xy = c^2$ meets the x axis at Q. Let M be the midpoint of PQ.
 - (i) Show that the normal at P has equation $p^3x py = c(p^4 1)$.
 - (ii) Show that M has coordinates $\left(\frac{c(2p^4-1)}{2p^3}, \frac{c}{2p}\right)$.
 - (iii) Hence, or otherwise, find the equation of the locus of M.

Question 6 (START A NEW ANSWER BOOKLET)

- (a) Consider the function $f(x) = \frac{x}{1-x^2}$
 - (i) Show that the function is increasing for all values of x in its domain.
 - (ii) Sketch the graph of y = f(x) showing the intercepts on the axes and the equations of any asymptotes. 2
 - (iii) Find the values of k such that the equation $\frac{x}{1-x^2} = kx$ has three distinct real roots.
- (b) A particle of mass m kilograms is dropped from rest in a medium where the resistance to motion has a magnitude $\frac{1}{10}mv^2$ Newtons when the speed of the particle is v ms⁻¹.

After t seconds, the particle has fallen x metres, and has a velocity v ms⁻¹ and acceleration a ms⁻².

The particle hits the ground $\ln(1+\sqrt{2})$ seconds after it is dropped. Take $g = 10 \text{ ms}^{-2}$.

- (i) Draw a diagram showing the forces acting on the particle and deduce that $a = \frac{1}{10}(100 v^2)$.
- (ii) Express v as a function of t. Hence find the speed with which the particle hits the ground. Give your answer in simplest exact form.
- (iii) Find, in simplest exact form, the distance fallen by the particle before it hits the ground.

Question 7 (START A NEW ANSWER BOOKLET)

(a)

 $P(a\cos\theta, b\sin\theta)$, where $0 < \theta < \frac{\pi}{2}$, is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > b > 0. The normal at P cuts the x axis at A and the y axis at B.

- (i) Show that the normal at P has equation $ax \sin \theta by \cos \theta = (a^2 b^2) \sin \theta \cos \theta$ 1
- (ii) Show that triangle OAB has area $\frac{(a^2 b^2)^2}{2ab} \sin \theta \cos \theta$ 2
- (iii) Find the maximum area of triangle *OAB* and the coordinates of *P* when this maximum occurs.

(b)

The diagram above shows the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with major diameter 2a and minor diameter 2b, where a and b are positive real numbers.

- (i) Show that the shaded area of the ellipse is given by $\frac{4b}{a} \int_0^a \sqrt{a^2 x^2} dx$.
- (ii) Hence show that the shaded area is πab square units.

2

3

3

(iii)

The diagram above shows a solid of height 10 cm. At height h cm above the vertex, the cross-section of the solid is an ellipse with major diameter $10\sqrt{h}$ cm and minor diameter $8\sqrt{h}$ cm.

- α. Show that the cross-section at height h cm above the vertex has area $2 \cos \pi h \cos^2 \theta$.
- β. Find the volume of the solid.

Question 8 (START A NEW ANSWER BOOKLET)

- (a) (i) Express the roots of the equation $z^5 + 32 = 0$ in modulus-argument form.
 - (ii) Hence show that $z^4 2z^3 + 4z^2 8z + 16 = \left\{z^2 (4\cos\frac{\pi}{5})z + 4\right\} \left\{z^2 (4\cos\frac{3\pi}{5})z + 4\right\}$
 - (iii) Hence find the exact values of $\cos \frac{\pi}{5}$ and $\cos \frac{3\pi}{5}$ in simplest surd form.
- (b) (i) Show that $\sin(2r+1)\theta \sin(2r-1)\theta = 2\sin\theta\cos 2r\theta$ Hence show that $\sin\theta \sum_{r=1}^{n}\cos 2r\theta = \frac{1}{2}\{\sin(2n+1)\theta - \sin\theta\}$ 3
 - (ii) Hence evaluate $\sum_{r=1}^{100} \cos^2\left(\frac{r\pi}{100}\right)$ 3