Question 1 (15 marks) Commence each question on a SEPARATE page

a. Evaluate
$$\int_{0}^{\frac{\pi}{4}} \sec^2 x \tan^2 x \, dx.$$
 2

b. Find
$$\int_{0}^{3} \frac{5}{x^2 - 6x + 18} dx$$
 3

c. i. Find the real numbers *a*, *b* and *c* such that
$$\frac{4x-6}{(x+1)(2x^2+3)} \equiv \frac{a}{x+1} + \frac{bx+c}{2x^2+3}$$

ii. Hence, or otherwise, find
$$\int \frac{4x-6}{(x+1)(2x^2+3)} dx$$
.

d. Show that
$$\int_{0}^{1} \frac{2y}{1+2y} dy = 1 - \frac{1}{2} \ln 3.$$
 2

e. Using the substitution
$$t = \tan \frac{x}{2}$$
, evaluate $\int_{0}^{\frac{\pi}{3}} \frac{dx}{13 + 5\sin x + 12\cos x}$ **3**

Question 2 (15 marks) Commence each question on a SEPARATE page

a. Simplify
$$(1 - 2i)^2$$
 1

b. Solve $z^2 = 5 - 12i$, giving your answer in the form x + iy, where x and y are real. 2

c. i. Express 1 + i in modulus-argument form. **1**

ii. Hence evaluate $(1 + i)^{12}$ 2

d. i. On an Argand diagram, shade the region where both $|z - 1| \le 1$ and $0 \le \arg z \le \frac{\pi}{6}$.

ii. Find the perimeter of the shaded region.

e. The points *O*, *A*, *Z* and *C* on the Argand diagram represent the complex numbers 0, 1, *z* and *z* + 1 respectively, where $z = \cos \theta + i \sin \theta$ is any complex number of modulus 1, with $0 < \theta < \pi$.

- i.Explain why OACZ is a rhombus.1ii.Show that $\frac{z-1}{z+1}$ is purely imaginary.2
- iii. Find the modulus and argument of z + 1.

Question 3 (15 marks) Commence each question on a SEPARATE page

a. The function defined by $f(x) = x(x - 3)^2$ is drawn below.

Draw separate, one-third sketches, of the following:

i. y = f(|x|) 1

ii.
$$y = \frac{1}{f(x)}$$
 1

iii.
$$y^2 = f(x)$$
 2

iv.
$$y = \sin^{-1} f(x)$$
 2

v.
$$y = \log_e f(x)$$
 2

b. Consider the curve given by the equation $x^2 - y^2 + xy + 5 = 0$.

i. Show that
$$\frac{dy}{dx} = \frac{2x+y}{2y-x}$$
.

- ii. Hence find the coordinates of the points on the curve where the tangent **2** to the curve is parallel to the line y = x.
- c. Show that the line y = -3x is a tangent to the curve $f(x) = x + \frac{1}{x-1}$, and find **3** the co-ordinates of the point of contact.

Question 4 (15 marks) Commence each question on a SEPARATE page

a. i. Given
$$I_n = \int_{0}^{\frac{\pi}{2}} \cos^n x \, dx$$
. By writing $\cos^n x = \cos x . \cos^{n-1} x$, **3**

prove that
$$I_n = \frac{n-1}{n} . I_{n-2}$$
, where $n = 2, 3, 4, ...$

ii. Hence find the value of
$$\int_{0}^{\frac{\pi}{2}} \cos^4 x \, dx$$
.

b. For his visual arts major work, Lionel took a wooden cylinder and carved into it the shape shown in the diagram below.

The base of her shape is a circle with radius 8 cm.

Each vertical cross-section shown in the diagram is a square.

- i. Show that the area *A* of the cross-section distance *x* cm from the centre of **2** the base is $A = 4(64 x^2)$.
- ii. Hence show that the volume *V* of the art project is given by **2** $V = 8 \int_{0}^{8} (64 - x^{2}) dx$ and evaluate the integral.
- c. i. If α is a double root of the polynomial equation P(x) = 0, show that α is a **2** root of P'(x) = 0.
 - ii. The polynomial equation $x^5 ax^2 + b = 0$ has a multiple root. $(a \neq 0, b \neq 0)$. **3** Show that $108a^5 = 3125b^3$.

Question 5 (15 marks) Commence each question on a SEPARATE page

a. Find
$$\frac{dy}{dx}$$
 if $\sqrt{x} + \sqrt{y} = 1$.

b. $P(2p, \frac{2}{p})$ and $Q(2q, \frac{2}{q})$ are points on the rectangular hyperbola xy = 4.

M is the midpoint of the chord *PQ*.

P and *Q* move on the hyperbola so that the chord *PQ* always passes through the point R(4, 2).

i.	Show that the equation of the chord PQ is $x + pqy = 2(p + q)$.	2
----	--	---

- ii. Show that pq = p + q 2.
- iii. Hence sketch the locus of M, as P and Q move on the curve xy = 4. 4

c. i. If $z = \cos \theta + i \sin \theta$, explain why $z^n + z^{-n} = 2\cos n\theta$ and $z^n - z^{-n} = 2i \sin n\theta$ **2** for positive integers *n*.

ii. By considering the binomial expansions of $(z + z^{-1})^3$ and $(z - z^{-1})^3$, **2** show that $4(\cos^3 \theta + \sin^3 \theta) = (\cos 3\theta - \sin 3\theta) + 3(\cos \theta + \sin \theta)$.

iii. Hence evaluate
$$\cos^3 \frac{\pi}{12} + \sin^3 \frac{\pi}{12}$$
.

Question 6 (15 marks) Commence each question on a SEPARATE page

a. i. Verify that
$$\alpha = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$$
 is a root of $z^5 + z - 1 = 0$.

- ii. Find the monic cubic equation with real coefficients whose roots are also **3** roots of $z^5 + z 1 = 0$ but do not include α .
- b. $P(x_1, y_1)$ is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with centre *O*.

A line drawn from O, parallel to the tangent to the ellipse at P, meets the ellipse at Q.

The equation of the tangent to the ellipse at *P* is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$.

i. Show that the equation of the line
$$OQ$$
 is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 0.$ 2

ii. Show that the coordinates of
$$Q$$
, in terms of x_1 and y_1 are $\left(\frac{ay_1}{b}, \frac{-bx_1}{a}\right)$. **3**

iii. Show that the distance between the tangent at P and the line OQ is
$$\frac{ab}{OQ}$$
. 4

Question 7 (15 marks) Commence each question on a SEPARATE page

- a. A particle of mass *m* is moving vertically in a resisting medium in which the resistance to motion has magnitude $\frac{1}{10}mv^2$ when the particle has speed *v* ms⁻¹. The acceleration due to gravity is 10 ms⁻².
 - i. If the particle projected vertically upwards from rest with speed $U \text{ ms}^{-1}$. Show that during its upwards motion, its acceleration $a \text{ ms}^{-2}$ is given by $a = -\frac{1}{10}(100 + v^2)$
 - ii. Hence show that its maximum height, *H* metres, is given **3** by $H = 5 \ln \left(\frac{U^2 + 100}{100} \right)$.
 - iii. The particle falls vertically from rest. Show that during its downward **1** motion its acceleration $a \text{ ms}^{-2}$ is given by $a = \frac{1}{10}(100 v^2)$.
 - iv. Hence show that it returns to its point of projection with speed V ms⁻¹ given by $V = \frac{10U}{\sqrt{U^2 + 100}}$.

A circular flange is formed by rotating the region bounded by the curve $y = \frac{5}{x^2 + 1}$, the x axis and the lines x = 0 and x = 3, through one complete revolution about the line x = 10 (where all measurements are in cm).

- i. Use the method of cylindrical shells to show that the volume $V \text{ cm}^3$ of the **3** flange is given by $V = \int_0^3 \frac{\pi(100 10x)}{x^2 + 1} dx$.
- ii. Hence find the volume of the flange correct to the nearest cm³.

Question 8 (15 marks) Commence each question on a SEPARATE page

The curves $y = x^2 + kx$, where k > 0, and $y = \frac{1}{x}$ intersect at the points *P*, *Q* and *R* where $x = \alpha$, $x = \beta$ and $x = \gamma$.

- i. Show that α , β and γ are the roots of the equation $x^3 + kx^2 1 = 0$. **1**
- ii. Find the monic cubic equation with coefficients in terms of k whose roots **1** are $-\alpha$, $-\beta$ and $-\gamma$.
- iii. Find the monic cubic equation with coefficients in terms of k whose roots **1** are $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$.
- iv. Show that the gradient of *PQ*, *QR* and *RP* have a sum of *k* and a product **2** of -1.

A light inextensible string *OP* is fixed at one end *O*. A particle *P* is attached to the other end and moves uniformly in a horizontal circle whose centre is vertically below and at a distance *h* centimetres from *O*.

i. By resolving the vertical and horizontal forces, show that
$$\omega = \sqrt{\frac{g}{h}}$$
 2

- ii. Hence, show that the period of the motion is given by $2\pi \frac{\sqrt{h}}{a}$.
- iii. If the number of revolutions per second of the rotating particle is decreased 2 from 2 rev/s to 1 rev/s, find the distance by which the level of the circle is lowered.
- c. i. By using de Moivres theorem and $(\cos \theta + i \sin \theta)^3$, or otherwise, show that $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$ and $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$

ii. Hence, show
$$\tan 3\theta = \frac{t(3-t^2)}{1-3t^2}$$
, where $t = \tan \theta$. **3**

8

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE : $\ln x = \log_e x$, x > 0

	Trial HSC WISdutions BI
2009 WHS Mathematics Extension 2 Question 1	1
	$= y - \frac{1}{2} \ln (1 + 2y)]_{0}^{1}$
a. S TH sec ² x tan ² x dr	$= 1 - \frac{1}{2} \ln 3 - (0)$
= = ton 3 x Jot by inspection	$=1-\frac{1}{2}\ln 3$
= = [tan 3]4 - tan 0]	$e \cdot t = \tan \frac{x}{2}$
$=\frac{1}{3}$ 2	$\frac{db}{dx} = \frac{1}{2} \sec^2 \frac{x}{2}$
b. $\int_{0}^{3} \frac{5}{x^{2}-6x+18} dx$	$=\frac{1}{2}\left[1+\tan^{2}\frac{\chi}{2}\right]$
	$= \frac{1}{2}(1+\frac{1}{2})$
$=\int_{0}^{3}\frac{5}{x^{2}-6x+9+9}dx$: $dt = \frac{1+t^2}{2}$: $dr = \frac{2 dt}{1+t^2}$
$=5\int_{0}^{3}\frac{1}{q+(x-3)^{2}}dx$	x=73 :. t= 1/3 and x=0, +=0
$=\frac{3}{3}$ tan -1 $\frac{x-3}{3}$ $\frac{3}{3}$	
$= 3[\tan^{-1}0 - \tan^{-1} - 1]$	$\int_{0}^{\sqrt{3}} \frac{\frac{2 d k}{1 + t^{2}}}{13 + \frac{5(2t)}{1 + t^{2}} + \frac{12(1 - t^{2})}{1 + t^{2}}}$
= = [0 7, 7]	$= \int \frac{t_3}{13 + 13t^2 + 10t + 12 - 12t^2}$
$= \frac{9\pi}{12}$ 3	
$c_{1} = a(2x^{2}+3)+(bx+c)(x+1)$	$= \int \sqrt[3]{3} \frac{2 dt}{t^2 + 10t + 25}$
het $x = -1$: $-10 = 5a$: $a = -2$	$= 2 \int_{0}^{\sqrt{3}} \frac{dt}{(t+5)^2}$
Let $x = 0 : -6 = 3a + c$	
: -6= -6+e : e=D	$= 2 \int_{0}^{\frac{1}{3}} (t+s)^{-2} dt$
Let $x = 2$: $2 = 11a + 6b + 3c$	$= -2(++5)^{-1} \int_{0}^{\sqrt{3}}$
2=-22+65	$= \left(\frac{-2}{1+5}\right)^{\frac{1}{3}}$
6b=24 - b=4	L44370
: a=-2, b=4, c=0 3	$= -2\left[\frac{1}{13+5} - \frac{1}{5}\right]$
ii. $\int \frac{4x-6}{(x+1)(2x^2+3)} dx = \int \frac{-2}{x+1} + \frac{4x}{2x^2+3} dx$	$= -2\left[\frac{\sqrt{3}}{1+5\sqrt{3}} - \frac{1}{5}\right]$
$= -2\ln(x+1) + \ln(2x^2+3) + c$	$= -2\left[\frac{5\sqrt{3}-1-5\sqrt{3}}{5(1+5\sqrt{3})}\right]$
$= \ln \left[\frac{2x^2 + 3}{(x+1)^2} \right] + c \qquad 2$	$=\frac{2}{5+25\sqrt{3}}$
d. $\int_{0}^{1} \frac{2y}{1+2y} dy = \int_{0}^{1} \frac{1+2y-1}{1+2y} dy$ dy	Question 2 a. $(1-2i)^{3} = 1-4i + 4i^{2}$
_	a. ((-2)) = (-4) + 4) 21 - 42 - 44
$= \int_{0}^{1} 1 - \frac{1}{1+2y} dy$	

2009 LHLS Mathematics Extension 2 Trial HSC Lillsoins P22
b.
$$2^2 = 5 - 12i$$
 Let $2 = x + iy$
 $\therefore x^2 - y^2 + 2xyi = 5 - 12i$
 $\therefore x^2 - y^2 = 5$ $2xy = -12i$
 $\therefore x^2 - y^2 = 5$ $2xy = -12i$
 $\therefore x^2 - y^2 = 5$ $2xy = -12i$
 $\therefore y^2 - \frac{1}{x}$
 $\therefore x^2 - \frac{34}{x^2} = 5$
 $x^4 - 5x^3 + 36 = 0$
 $(x^2 - 9)(x^1 + A) = 0$
 $\therefore x = \pm 3 - \frac{1}{2}y = 72i$
 $\therefore x = 3 - 2i, -3 + 2i$
 $2 = 1$ Diago of rhombus are perpendicular
 $\therefore x = \frac{1}{2} = 2i = 5$
 $z^4 - 5x^3 + 36 = 0$
 $(x^2 - 9)(x^1 + A) = 0$
 $\therefore x = \frac{1}{2} = 2i = 3 - 2i$
 $z = 3 - 2i, -3 + 2i$
 $z = 1$ is purely imaginary 2
 $(x^2 - 1)(x^1 + 2i = 5\pi)\pi\pi$
 $z = 2^{6} cis \pi\pi$
 $z = 2^{6} cis \pi\pi$
 $z = 6if$
 i $(1ci)^{12} = (2^{2})^{1/2}cis 3\pi$
 $z = 2^{6} cis \pi\pi$
 $z = 6if$
 i $(1ci)^{12} = (2^{2})^{1/2}cis 3\pi$
 $z = 6if$
 i $(1ci)^{1/2} = 2^{2} i = 1$
 i $(1ci)^{1/2} = 2^{2$

2009 with mathematics induced in 2 Trial HSC will be in 3
$$P_{3}$$

iii. y^{2}
 $y^{2} = S(x)$
 $y^{2} = S(x$

2009	WHS	Mathematics	Extensi	ion 2	Trial HSC	w/Solns	Pg 4
·- I.	= 772			. a	$\frac{5}{3}\left(\left(\frac{2}{5} \right)^{\frac{5}{3}} - \left(\right)^{\frac{5}{3}} \right)^{\frac{5}{3}} - \left(\left(\left(\frac{2}{5} \right)^{\frac{5}{3}} \right)^{\frac{5}{3}} - \left(\left(\left(\left(\frac{2}{5} \right)^{\frac{5}{3}} \right)^{\frac{5}{3}} - \left(\left(\left(\left(\left(\left(\frac{2}{5} \right)^{\frac{5}{3}} \right)^{\frac{5}{3}} \right)^{\frac{5}{3}} \right)^{\frac{5}{3}} \right)^{\frac{5}{3}} \right)$	2) 3 7 =	-b
$\cdot I_2$	$L = \frac{1}{2} \left(\frac{\pi}{2} \right)$)))			$(\frac{2}{5})^{\frac{2}{3}} [\frac{2}{3} - \frac{2}{3}]$	<i>,</i> ,	
	= 774	10 1			both sides:	5	
Σ.	4 = 3 (. ,		a	$5 \cdot \left(\frac{2}{5}\right)^2 \left[-\frac{3}{5}\right]$	$ ^{3} = -b^{3}$	
	= 371	-	3				
b. i.		81 ⁴ /5			-108a5 3125	- 6-	
		R P(x, 5)			. 108a = 31	25b ³	3
	-8	y 8 2		Questi	on 5		
	-8	a l z²+y	2=64	a. 7	2 + y = 1		
	L = 2y			÷. ,	the the and	=0	
·•• /		RS = 442					
	1	4[64-22]	2				
		our of areas			dy dr =	- 17	2
• - ⁻	÷	$4(64-x^2) dx$		b. gr	ad $PQ = \frac{2}{p}$	2	
	= & S	$\frac{8}{6}(64 - x^2)dx$		ì.	P 2p-:		
	=8[642.	- x ³ 78			= 29-20		
	= 8[512	- <u>512</u>]			= 2 <u>9</u> -2p pg	~ 20-29	
	= 2730	2 3 3 cm	2		= -1 P2		
c.i.1	f x is a	outole root,		·- 3	$-\frac{2}{p}=-\frac{1}{p_2}(x)$	-2p)	
ę	(x) = (x-	$-d)^2 Q(x)$			y-2g=-x.		
		-d)@(x) +(r.		÷.	x+pgy=2(-0 2
		2Q(x) + (x - a)	x)@'(Y)]	11. 50	bs R into D	-	
	(d)=0	E	Z		4+2pg=2p	+ 29	
		x ⁵ -ax ² +b					O I
		-2a)=0		TT. M	idpoint : M		
		$\chi = 3\sqrt{\frac{2a}{5}}$		L	2p+29, 2p+	$(\frac{2}{2})$	
	,				-		
	$P(0) \neq 0$	a is root		= (R+2, 29+2 Pg	$\left(\frac{p}{2} \times \frac{1}{2}\right)$	
1	-	- 15 root		= (P+9, P+9 P9)	
1	5005: (2a)=).	$\left(\frac{2a}{5}\right)^{\frac{5}{3}} - a\left(\frac{2a}{5}\right)^{\frac{5}{3}}$	13		r = p + 2		
(いっとう	(5) - a(5) =p=0	ł		J Pg	

2009 WHS Mathematics	Extension 2 Trial MSC Wilsolms Pg 6
b. 13	$\frac{1}{2} x = \frac{a^2 y}{ab}$
P(x1, y1)	$x = \frac{ay_1}{b}$
	Subsin $ y = \frac{-bx_1}{a^2 y_1} \cdot \frac{a y_1}{b}$
	$= -\frac{bx_1}{a}$
i. Tangent at P: ZX1 + YY1 =	$\left(\frac{ag_i}{b}, -\frac{bk_i}{a}\right)$
Now, if OQ is parallel, of H	ne form 1111. Use perpendicular dist.formula:
$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = c$	$d = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $
Now, OQ passes through (0,0)	$= \frac{\frac{x_{1}^{2}}{a^{2}} + \frac{y_{1}^{2}}{b^{2}} + 0}{\sqrt{\frac{x_{1}^{2}}{a^{4}} + \frac{y_{1}^{2}}{b^{4}}} - \frac{x_{1}^{2}}{a^{2}} + \frac{y_{1}^{2}}{b^{2}} = 1$
1 $0+0=c$ $1(c=0)$	$\sqrt{\frac{x_1^2}{a^4} + \frac{x_1^2}{b^4}} \qquad \qquad a^2 + \frac{y_1^2}{b^2} = 1$
	$\frac{2}{1 - \sqrt{\frac{b^{4} \times z^{2} + a^{4} y^{2}}{a^{4} + b^{4}}}$
ii. From () $\frac{yy_1}{b^2} = \frac{xx_1}{a^2}$	
$y = -\frac{b^2 x_1 x}{a^2 y_1} - ($	$ = \frac{a^2b^2}{\sqrt{x_1^2b^4}+y_1^2a^4} \qquad \qquad$
and $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - 3$	Now, length UCL:
Subs (2) in (3) $\frac{\chi^2}{2} = b^2 \chi_1^2 \chi^2$	$= \sqrt{\frac{a^2 y_1^2}{b^2} + \frac{b^2 x_1^2}{a^2}}$
$\frac{x^2}{a^2} + \frac{b^2 x_1^2 x^2}{a^4 y_1^2} = 1$	$= \sqrt{\frac{a^{4}y_{1}^{2} + b^{4}x_{1}^{2}}{a^{2}b^{2}}}$
$\chi^{2}\left[\frac{1}{a^{2}}+\frac{b^{2}\chi_{1}^{2}}{a^{4}y_{1}^{2}}\right]=1$	$= \sqrt{a^{4}y_{1}^{2} + b^{4}x_{1}^{2}}$
$\chi^{2}\left[\frac{a^{2}y_{1}^{2}+b^{2}\chi_{1}^{2}}{a^{4}y_{1}^{2}}\right]=1$	
Now, from 3 5222 + a2y2 = a2b	
and subsin (X11 y1):	iv. Area BOPD = 1 x d x OD
$b^2 x_1^2 + a^2 y_1^2 = a^2 b^2$	$= \frac{1}{2} \times \frac{ab}{De} \times -96$
Now subs in (4) $\chi^{2} \left[\frac{a^{2}b^{2}}{a^{4}y^{2}} \right] = 1$	= 2 ab which is independent
21	of P. (ie of x, y,)
$\chi^2 = \frac{\alpha^4 y_1^2}{\alpha^2 b^2}$	

2009 WHS Mathematics Extension 2 Trial Exam (2)Selves
$$\frac{P_07}{P_07}$$

Suestion 7:
a. χ $\frac{1}{12} \ln V^{2}$
 $\frac{1}{12} \ln V^$

2009 WHS Mathematics Extension	n2 Trial Exam W/Solns Pg8
Question 8:	=
ai. $y=x^2+kx$ — D	$= \frac{-1}{(\alpha\beta\delta)^2}$
y= 2@	$= -\frac{1}{1}$
$O = O$ $x^2 + kx = \frac{1}{x}$	= -)
$x^{3} + kx^{2} = 1$	\therefore sum = k, product = -1 2
$-1 x^3 + kx^2 - 1 = 0$	b. ì.
i. a, B, & are roots of equation.	TCOS O TO T
11. subs -x into x ³ +kx ² -1=0	
$(-x)^{3} + (-x)^{2} - 1 = 0$	mg
-x3+kx2-120	mg
$-1 - x^3 - kx^2 + 1 = 0$	Tsino
111. subs 1 into x3+kx2-1=0	Vertically: $\Sigma = 0$
$\frac{1}{x} \left(\frac{1}{x}\right)^3 + k \left(\frac{1}{x}\right)^2 - 1 = 0$: Tcost -mg=0
$\frac{1}{x^3} + \frac{k}{x^2} - 1 = 0$	i. Toos 0 ang - 0
$1 + kx - x^3 = 0$ 1	Horizontally: Z=mrw ²
$-x^{3}-kx-1=0$	·'. Tsind = mrw ² — @
$ir. P(\alpha, \dot{\alpha}), Q(\beta, \dot{\beta}), R(\gamma, \dot{\beta})$	$\Theta \doteq O$ tan $\Theta = \frac{1}{N^2 G}$
grad PQ: $\frac{a}{\alpha-\beta} = \frac{\beta-\alpha}{\alpha\beta} \times \frac{1}{\alpha-\beta}$	
	$-i + \tan \theta = \frac{\Gamma w^2}{9}$
$= \frac{-1}{\alpha\beta}$	But tan 0 = Th
Similarly, other gradients	$\frac{1}{3}\frac{1}{2}$
-1 and -1 or and BY	$\omega^2 = \frac{9}{12} \qquad 2$
	·-w= 1=
-: sum: -1 - 1 - 1 ap ar br	ii. Period = 211
• •	a a
$= \frac{-\delta - \beta - \alpha}{\alpha \beta \delta}$	$= 2\pi \div \sqrt{\frac{9}{h}}$
``	$= 2\pi \sqrt{\frac{h}{g}}$
$= -(\alpha + \beta + \delta)$	in. w = angular velocity
= $-(-k)$	2 rev sec = 2x 211
= k	= ATT and I revisec = 2TT
Product = $-\frac{1}{\alpha\beta} \cdot \frac{-1}{\alpha\gamma} \cdot \frac{-1}{\beta\gamma}$	From i. $w^2 = \frac{9}{2}$
	n i i i i i i i i i i i i i i i i i i i
= -1 ~2 p2 22	$h = \frac{3}{\omega^2}$

2009 WHS Mathematics Extension 2 Trial Exam Worked forms $\frac{1}{3}$ $w = 4\pi$, $h = \frac{3}{16\pi^{2}}$ $w = 2\pi$, $h = \frac{3}{16\pi^{2}}$ $\therefore 2\pi$, $h = \frac{3}{16\pi^{2}}$ $\therefore 3\pi$ ifference $2 = \frac{3}{9} = \frac{3}{4\pi^{2}}$ $= \frac{3}{16\pi^{2}} - \frac{43}{4\pi^{2}}$ $= \frac{3}{16\pi^{2}} - \frac{43}{1-3}$ $= \frac{3}{16\pi^{2}} - \frac{43}{1-3}$ $= -\frac{3}{1-3} + \frac{1}{1-3}$ $\therefore 10wered by \frac{3}{9}$ cm $\frac{2}{16\pi^{2}}$ $\therefore 10wered by \frac{3}{9} = \cos 30 + i \sin 30$ $er (\cos 0 + i \sin 0)^{3} = \cos 30 + i \sin 30$ $= \cos^{3}0 + 3\cos^{2}0$. $i \sin 0$ $= 3\cos 0 \sin^{2}0 - i \sin^{3}0$ $= \cos^{3}0 - 3\cos 0 \sin^{2}0 - 3\cos 0$ $= \cos^{3}0 - 3\cos 0 \sin^{2}0 - 3\cos 0$ $= 4\cos^{3}0 - 3\cos 0 \sin^{2}0 - 3\cos 0$ $= 3\cos^{3}0 - 3\cos 0$ $\sin 30 = 3\cos^{3}0 - 3\cos 0$ $= 3(1-\sin^{3}0) - 3\cos^{3}0$
$W = 2\pi, h = \frac{3}{4\pi^{2}}$ $\therefore \text{ Difference : } \frac{3}{2} - \frac{3}{4\pi^{2}}$ $= \frac{3}{16\pi^{2}} - \frac{43}{4\pi^{2}}$ $= \frac{3}{16\pi^{2}} - \frac{43}{16\pi^{2}}$ $= \frac{3}{16\pi^{2}} - \frac{43}{16\pi^{2}}$ $= \frac{-39}{16\pi^{2}}$ $= -\frac{39}{16\pi^{2}}$ $= -\frac{39}{16\pi^{2}}$ $= -\frac{3}{16\pi^{2}}$ $= -\frac{3}{16\pi^{2}}$ $= -\frac{1}{(-3t^{2})}$ $= -1$
$W = 2\pi \Gamma, h = \frac{3}{4\pi^2}$ $\therefore \text{ Difference : } \frac{3}{9} = \frac{3}{4\pi^2}$ $= \frac{3}{16\pi^2} - \frac{43}{4\pi^2}$ $= \frac{3}{16\pi^2} - \frac{43}{1-34\pi^{10}}$ $= \frac{3}{16\pi^2} - \frac{43}{1-34\pi^{10}}$ $= \frac{3}{16\pi^2} - \frac{43}{1-34\pi^{10}}$ $= \frac{1}{1-34\pi^{10}}$ $= \frac{1}{$
$\int \frac{1}{2} \int \frac{1}{16\pi^2} = \frac{3}{4\pi^2}$ $= \frac{3}{16\pi^2} - \frac{43}{16\pi^2}$ $= \frac{3}{16\pi^2} - \frac{43}{16\pi^2}$ $= 4 \int \frac{3 - 4\pi^2}{1 - 34\pi^2}$ $= \frac{3}{16\pi^2}$ $= 4 \int \frac{3 - 4\pi^2}{1 - 34\pi^2}$ $= \frac{4(3 - 4\pi^2)}{1 - 34\pi^2}$ $=$
$= \frac{9}{16\pi^{2}} - \frac{49}{16\pi^{2}}$ $= -\frac{39}{16\pi^{2}}$ $= -\frac{39}{16\pi^{2}}$ $= -\frac{39}{16\pi^{2}}$ $= -\frac{1}{(-3t^{2})}$ $= -\frac{1}{(-3t^{2})$
$= \frac{-39}{16\pi^2}$ $= \frac{4(3-t^2)}{(-3t^2)}$ $= \frac{4(3-t^2)}{(-3t^2)}$ $= \frac{4(3-t^2)}{(-3t^2)}$ $= \frac{1}{(-3t^2)}$
$\begin{array}{c} (1-3t^{2}) \\ (1-3t^{2}) $
$\frac{(1-3)}{(1-3)}$
or $(\cos \theta + i \sin \theta)^3$ = $\cos^3 \theta + 3 \cos^2 \theta \cdot i \sin \theta$ + $3 \cos \theta \cdot i^2 \sin^2 \theta + i^3 \sin^3 \theta$ = $\cos^3 \theta + 3i \cos^2 \theta \sin \theta$ - $3 \cos \theta \sin^2 \theta - i \sin^3 \theta$ ($\cos 3\theta = 0$) and equating real $\cdot imag$. $\cos 3\theta = \cos^3 \theta - 3 \cos \theta \sin^2 \theta$ = $\cos^3 \theta - 3 \cos \theta (1 - \cos^3 \theta)$ = $\cos^3 \theta + 3 \cos^3 \theta - 3 \cos \theta$ = $4 \cos^3 \theta - 3 \cos \theta$ Sin $3\theta = 3 \cos^2 \theta \sin \theta - \sin^3 \theta$ = $3(1 - \sin^2 \theta) \sin \theta - \sin^3 \theta$
or $(\cos \theta + i \sin \theta)^3$ = $\cos^3 \theta + 3 \cos^2 \theta$. $i \sin \theta$ + $3 \cos \theta$. $i^2 \sin^2 \theta + i^3 \sin^3 \theta$ = $\cos^3 \theta + 3i \cos^2 \theta \sin \theta$ - $3 \cos \theta \sin^2 \theta - i \sin^3 \theta$ θ As $\theta = 0$ and equating real $\cdot i \mod \theta$. $\cos 3\theta^2 \cos^3 \theta - 3 \cos \theta \sin^2 \theta$ = $\cos^3 \theta - 3 \cos \theta (1 - \cos^3 \theta)$ = $\cos^3 \theta + 3 \cos^3 \theta - 3 \cos \theta$ = $4 \cos^3 \theta - 3 \cos \theta$ sin $3\theta = 3 \cos^2 \theta \sin \theta - \sin^3 \theta$ = $3 (1 - \sin^2 \theta) \sin \theta - \sin^3 \theta$
$ + 3\cos\theta \cdot i^{2}\sin^{2}\theta + i^{3}\sin^{3}\theta $ $ = \cos^{3}\theta + 3i\cos^{2}\theta \sin\theta $ $ - 3\cos\theta \sin^{2}\theta - i\sin^{3}\theta - 0 $ $ As = 0 and equating real ormag. $ $ \cos 3\theta = \cos^{3}\theta - 3\cos\theta \sin^{2}\theta $ $ = \cos^{3}\theta - 3\cos\theta (1 - \cos^{3}\theta) $ $ = \cos^{3}\theta + 3\cos^{3}\theta - 3\cos\theta $ $ = 4\cos^{3}\theta - 3\cos\theta $ $ sin 3\theta = 3\cos^{2}\theta \sin\theta - \sin^{3}\theta $ $ = 3(1 - \sin^{2}\theta)\sin\theta - \sin^{3}\theta $
$= \cos^{3}\theta + 3i\cos^{2}\theta + \sin^{2}\theta - i\sin^{3}\theta - 0$ $- 3\cos\theta + 3i^{2}\theta - i\sin^{3}\theta - 0$ As $\theta = 0$ and equating real $\sin^{2}\theta$. $\cos^{3}\theta - 3\cos\theta + \sin^{2}\theta$ $= \cos^{3}\theta - 3\cos\theta (1 - \cos^{3}\theta)$ $= \cos^{3}\theta + 3\cos^{3}\theta - 3\cos\theta$ $= 4\cos^{3}\theta - 3\cos\theta$ $\sin^{3}\theta = 3\cos^{2}\theta + \sin^{2}\theta - \sin^{3}\theta$ $= 3(1 - \sin^{2}\theta) + \sin^{2}\theta - \sin^{3}\theta$
$-3\cos\theta \sin^{2}\theta - i\sin^{3}\theta = 0$ As $\theta = 0$ and equating real $e imag$. $\cos 3\theta = \cos^{3}\theta - 3\cos\theta \sin^{2}\theta$ $= \cos^{3}\theta - 3\cos\theta (1 - \cos^{3}\theta)$ $= \cos^{3}\theta + 3\cos^{3}\theta - 3\cos\theta$ $= 4\cos^{3}\theta - 3\cos\theta$ sin $3\theta = 3\cos^{2}\theta \sin\theta - \sin^{3}\theta$ $= 3(1 - \sin^{2}\theta)\sin\theta - \sin^{3}\theta$
As $0 = 0$ and equating real $imag$. $\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$ $= \cos^3 \theta - 3\cos \theta (1 - \cos^3 \theta)$ $= \cos^3 \theta + 3\cos^3 \theta - 3\cos \theta$ $= 4\cos^3 \theta - 3\cos \theta$ $\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta$ $= 3(1 - \sin^2 \theta) \sin \theta - \sin^3 \theta$
$cos 30 = cos^{3}0 - 3 cos 0 sin^{2}0$ = cos^{3}0 - 3 cos 0 (1 - cos^{3}0) = cos^{3}0 + 3 cos^{3}0 - 3 cos 0 = 4 cos^{3}0 - 3 cos 0 sin 30 = 3 cos^{2}0 sin 0 - sin^{3}0 = 3 (1 - sin^{2}0) sin 0 - sin^{3}0
$cos 30 = cos^{3}0 - 3 cos 0 sin^{2}0$ = cos^{3}0 - 3 cos 0 (1 - cos^{3}0) = cos^{3}0 + 3 cos^{3}0 - 3 cos 0 = 4 cos^{3}0 - 3 cos 0 sin 30 = 3 cos^{2}0 sin 0 - sin^{3}0 = 3 (1 - sin^{2}0) sin 0 - sin^{3}0
$= \cos^{3}\theta + 3\cos^{3}\theta - 3\cos\theta$ = $4\cos^{3}\theta - 3\cos\theta$ sin $3\theta = 3\cos^{2}\theta \sin\theta - \sin^{3}\theta$ = $3(1-\sin^{2}\theta)\sin\theta - \sin^{3}\theta$
$= 4\cos^{3}\theta - 3\cos\theta$ sin 30 = 3\cos^{2}\theta sin \theta - sin^{3}\theta = 3(1-sin^{2}) sin \theta - sin^{3}\theta
$\sin 3\theta = 3\cos^2\theta \sin \theta - \sin^3\theta$ = 3 (1 - sin ² θ) sin θ - sin ³ θ
$= 3 \left(1 - \sin^2 \theta \right) \sin \theta - \sin^3 \theta$
$= 3\sin\theta - 3\sin^3\theta - \sin^3\theta$
$= 3 \sin \theta - 4 \sin^3 \theta $ 2
$ii. \tan 3\theta = \frac{\sin 3\theta}{\cos 3\theta}$
$= 3 \sin \theta - 4 \sin^3 \theta$
4 00530 - 30050
$= \sin \Theta \left(3 - 4 \sin^2 \Theta \right)$
$\cos \Theta \left(4 \cos^2 \Theta - 3 \right)$
Divide top · bottom by cos20
$= \tan \theta \left(\frac{\frac{3}{\cos^2 \theta} - 4 \tan^2 \theta}{4 - \frac{3}{\cos^2 \theta}} \right)$