Question 1 (15 marks) Commence each question on a SEPARATE page

a. Evaluate $\int_{0}^{\frac{\pi}{4}} \sec ^{2} x \tan ^{2} x d x$
b. Find $\int_{0}^{3} \frac{5}{x^{2}-6 x+18} d x$
c. i. Find the real numbers a, b and c such that

$$
\frac{4 x-6}{(x+1)\left(2 x^{2}+3\right)} \equiv \frac{a}{x+1}+\frac{b x+c}{2 x^{2}+3}
$$

ii. Hence, or otherwise, find $\int \frac{4 x-6}{(x+1)\left(2 x^{2}+3\right)} d x$.
d. Show that $\int_{0}^{1} \frac{2 y}{1+2 y} d y=1-\frac{1}{2} \ln 3$.
e. Using the substitution $t=\tan \frac{x}{2}$, evaluate $\int_{0}^{\frac{\pi}{3}} \frac{d x}{13+5 \sin x+12 \cos x}$

Question 2 (15 marks) Commence each question on a SEPARATE page
a. Simplify $(1-2 i)^{2}$
b. Solve $z^{2}=5-12 i$, giving your answer in the form $x+i y$, where x and y are real.
c. i. Express $1+i$ in modulus-argument form.
ii. Hence evaluate $(1+i)^{12}$
d. i. On an Argand diagram, shade the region where both $|z-1| \leq 1$ and $0 \leq \arg \mathrm{z} \leq \frac{\pi}{6}$.
ii. Find the perimeter of the shaded region.
e. The points O, A, Z and C on the Argand diagram represent the complex numbers $0,1, z$ and $z+1$ respectively, where $z=\cos \theta+i \sin \theta$ is any complex number of modulus 1 , with $0<\theta<\pi$.
i. Explain why $O A C Z$ is a rhombus.
ii. Show that $\frac{z-1}{z+1}$ is purely imaginary.
iii. Find the modulus and argument of $z+1$.

1

Question 3 (15 marks) Commence each question on a SEPARATE page

a. The function defined by $f(x)=x(x-3)^{2}$ is drawn below.

Draw separate, one-third sketches, of the following:
i. $\quad y=f(|x|)$
ii. $\quad y=\frac{1}{f(x)}$
iii. $\quad y^{2}=f(x)$
iv. $\quad y=\sin ^{-1} f(x)$
v. $\quad y=\log _{e} f(x)$

1

1

2
2

2
b. Consider the curve given by the equation $x^{2}-y^{2}+x y+5=0$.
i. Show that $\frac{d y}{d x}=\frac{2 x+y}{2 y-x}$.
ii. Hence find the coordinates of the points on the curve where the tangent to the curve is parallel to the line $y=x$.
c. Show that the line $y=-3 x$ is a tangent to the curve $f(x)=x+\frac{1}{x-1}$, and find 3 the co-ordinates of the point of contact.

Question 4 (15 marks) Commence each question on a SEPARATE page

a. i. Given $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x$. By writing $\cos ^{n} x=\cos x \cdot \cos ^{n-1} x$,

3
prove that $I_{n}=\frac{n-1}{n} \cdot I_{n-2}$, where $n=2,3,4, \ldots$
ii. Hence find the value of $\int_{0}^{\frac{\pi}{2}} \cos ^{4} x d x$.
b. For his visual arts major work, Lionel took a wooden cylinder and carved into it the shape shown in the diagram below.

The base of her shape is a circle with radius 8 cm .
Each vertical cross-section shown in the diagram is a square.

i. Show that the area A of the cross-section distance $x \mathrm{~cm}$ from the centre of the base is $A=4\left(64-x^{2}\right)$.
ii. Hence show that the volume V of the art project is given by $V=8 \int_{0}^{8}\left(64-x^{2}\right) d x$ and evaluate the integral.
c. i. If α is a double root of the polynomial equation $P(x)=0$, show that α is a root of $P^{\prime}(x)=0$.
ii. The polynomial equation $x^{5}-a x^{2}+b=0$ has a multiple root. $(a \neq 0, b \neq 0)$.

Question 5 (15 marks) Commence each question on a SEPARATE page

a. Find $\frac{d y}{d x}$ if $\sqrt{x}+\sqrt{y}=1$.
b. $\quad P\left(2 p, \frac{2}{p}\right)$ and $Q\left(2 q, \frac{2}{q}\right)$ are points on the rectangular hyperbola $x y=4$.
M is the midpoint of the chord $P Q$.
P and Q move on the hyperbola so that the chord $P Q$ always passes through the point $R(4,2)$.

i. Show that the equation of the chord $P Q$ is $x+p q y=2(p+q)$.
ii. Show that $p q=p+q-2$.
iii. Hence sketch the locus of M, as P and Q move on the curve $x y=4$.
c. i. If $z=\cos \theta+i \sin \theta$, explain why $z^{n}+z^{-n}=2 \cos n \theta$ and $z^{n}-z^{-n}=2 i \sin n \theta \quad 2$ for positive integers n.
ii. By considering the binomial expansions of $\left(z+z^{-1}\right)^{3}$ and $\left(z-z^{-1}\right)^{3}$, show that $4\left(\cos ^{3} \theta+\sin ^{3} \theta\right)=(\cos 3 \theta-\sin 3 \theta)+3(\cos \theta+\sin \theta)$.
iii. Hence evaluate $\cos ^{3} \frac{\pi}{12}+\sin ^{3} \frac{\pi}{12}$.

Question 6 (15 marks) Commence each question on a SEPARATE page

a. i. Verify that $\alpha=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$ is a root of $z^{5}+z-1=0$.
ii. Find the monic cubic equation with real coefficients whose roots are also roots of $z^{5}+z-1=0$ but do not include α.
b. $\quad P\left(x_{1}, y_{1}\right)$ is a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with centre O.

A line drawn from O, parallel to the tangent to the ellipse at P, meets the ellipse at Q.
The equation of the tangent to the ellipse at P is $\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1$.

i. Show that the equation of the line $O Q$ is $\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=0$.

2

3
iii. Show that the distance between the tangent at P and the line $O Q$ is $\frac{a b}{O Q}$.
iv. Hence prove the area of the triangle $O P Q$ is independent of the position P.

Question 7 (15 marks) Commence each question on a SEPARATE page

a. A particle of mass m is moving vertically in a resisting medium in which the resistance to motion has magnitude $\frac{1}{10} m v^{2}$ when the particle has speed $v \mathrm{~ms}^{-1}$. The acceleration due to gravity is $10 \mathrm{~ms}^{-2}$.
i. If the particle projected vertically upwards from rest with speed $U \mathrm{~ms}^{-1}$.

1
Show that during its upwards motion, its acceleration $a \mathrm{~ms}^{-2}$ is given by $a=-\frac{1}{10}\left(100+v^{2}\right)$
ii. Hence show that its maximum height, H metres, is given by $H=5 \ln \left(\frac{U^{2}+100}{100}\right)$.
iii. The particle falls vertically from rest. Show that during its downward motion its acceleration $a \mathrm{~ms}^{-2}$ is given by $a=\frac{1}{10}\left(100-v^{2}\right)$.
iv. Hence show that it returns to its point of projection with speed $V \mathrm{~ms}^{-1}$ 4 given by $V=\frac{10 U}{\sqrt{U^{2}+100}}$.
b.

A circular flange is formed by rotating the region bounded by the curve $y=\frac{5}{x^{2}+1}$, the x axis and the lines $x=0$ and $x=3$, through one complete revolution about the line $x=10$ (where all measurements are in cm).
i. Use the method of cylindrical shells to show that the volume $V \mathrm{~cm}^{3}$ of the flange is given by $V=\int_{0}^{3} \frac{\pi(100-10 x)}{x^{2}+1} d x$.
ii. Hence find the volume of the flange correct to the nearest cm^{3}.

Question 8 (15 marks) Commence each question on a SEPARATE page

a.

The curves $y=x^{2}+k x$, where $k>0$, and $y=\frac{1}{x}$ intersect at the points P, Q and R where $x=\alpha, x=\beta$ and $x=\gamma$.
i. \quad Show that α, β and γ are the roots of the equation $x^{3}+k x^{2}-1=0$.
ii. Find the monic cubic equation with coefficients in terms of k whose roots are $-\alpha,-\beta$ and $-\gamma$.
iii. Find the monic cubic equation with coefficients in terms of k whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$.
iv. Show that the gradient of $P Q, Q R$ and $R P$ have a sum of k and a product of -1 .
b. A light inextensible string $O P$ is fixed at one end O. A particle P is attached to the other end and moves uniformly in a horizontal circle whose centre is vertically below and at a distance h centimetres from O.
i. By resolving the vertical and horizontal forces, show that $\omega=\sqrt{\frac{g}{h}}$
ii. Hence, show that the period of the motion is given by $2 \pi \frac{\sqrt{h}}{g}$.
iii. If the number of revolutions per second of the rotating particle is decreased from $2 \mathrm{rev} / \mathrm{s}$ to $1 \mathrm{rev} / \mathrm{s}$, find the distance by which the level of the circle is lowered.
c. i. By using de Moivres theorem and $(\cos \theta+i \sin \theta)^{3}$, or otherwise, show that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$ and $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
ii. Hence, show $\tan 3 \theta=\frac{t\left(3-t^{2}\right)}{1-3 t^{2}}$, where $t=\tan \theta$.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

2009 whyS mathematics Extension 2 Trial HSC WI solutions

Question 1
a.

$$
\begin{aligned}
& \int_{0}^{\pi / 4} \sec ^{2} x \tan ^{2} x d x \\
& \left.=\frac{1}{3} \tan ^{3} x\right]_{0}^{\pi} \text { by inspection } \\
& =\frac{1}{3}\left[\tan ^{3} \pi / 4-\operatorname{tag} / 0\right] \\
& =\frac{1}{3}
\end{aligned}
$$

b. $\int_{0}^{3} \frac{5}{x^{2}-6 x+18} d x$

$$
\begin{aligned}
& =\int_{0}^{3} \frac{5}{x^{2}-6 x+9+9} d x \\
& =5 \int_{0}^{3} \frac{1}{9+(x-3)^{2}} d x \\
& \left.=\frac{5}{3} \tan ^{-1} \frac{x-3}{3}\right]_{0}^{3} \\
& =\frac{5}{3}\left[\tan ^{-1} 0-\tan ^{-1}-1\right] \\
& =\frac{5}{3}[0--\pi / 4] \\
& =\frac{5 \pi}{12}
\end{aligned}
$$

ci. $4 x-6=a\left(2 x^{2}+3\right)+(b x+c)(x+1)$

Let $x=-1 \therefore-10=5 a \quad \therefore a=-2$
Let $x=0 \therefore-6=3 a+c$

$$
\therefore-6=-6+c \therefore c=0
$$

Let $x=2 \therefore 2=11 a+6 b+3 c$

$$
\begin{aligned}
& \therefore 2=-22+6 b \\
& \quad 6 b=24 \quad \therefore b=4
\end{aligned}
$$

$$
\therefore a=-2, b=4, c=0
$$

ii. $\int \frac{4 x-6}{(x+1)\left(2 x^{2}+3\right)} d x=\int \frac{-2}{x+1}+\frac{4 x}{2 x^{2}+3} d x$

$$
=-2 \ln (x+1)+\ln \left(2 x^{2}+3\right)+c
$$

$$
=\ln \left[\frac{2 x^{2}+3}{(x+1)^{2}}\right]+c
$$

$$
2
$$

d. $\int_{0}^{1} \frac{2 y}{1+2 y} d y=\int_{0}^{1} \frac{1+2 y-1}{1+2 y} d y d x$

$$
=\int_{0}^{1} 1-\frac{r}{1+2 y} d y
$$

$$
\begin{aligned}
& \left.=y-\frac{1}{2} \ln (1+2 y)\right]_{0}^{1} \\
& =1-\frac{1}{2} \ln 3-(0) \\
& =1-\frac{1}{2} \ln 3
\end{aligned}
$$

e. $t=\tan \frac{x}{2}$

$$
\begin{aligned}
& \frac{d t}{d x}=\frac{1}{2} \sec ^{2} \frac{x}{2} \\
& =\frac{1}{2}\left[1+\tan ^{2} \frac{x}{2}\right] \\
& =\frac{1}{2}\left(1+t^{2}\right) \\
& \therefore \quad \frac{d t}{d x}=\frac{1+t^{2}}{2} \quad \therefore d x=\frac{2 d t}{1+t^{2}} \\
& x=7)_{3} \quad \therefore t=\frac{1}{\sqrt{3}} \text { and } x=0, t=0 \\
& \int_{0}^{\frac{1}{\sqrt{3}}} \frac{2 d t}{1+t^{2}} \frac{5(2 t)}{1+t^{2}}+\frac{12\left(1-t^{2}\right)}{1+t^{2}} \\
& \begin{array}{l}
=\int_{0}^{\frac{1}{3}} \frac{2 d t}{13+13 t^{2}+10 t+12} \\
=\int_{0}^{\sqrt{3}} \frac{2 d t}{t^{2}+10 t+25}
\end{array} \\
& =2 \int_{0}^{\sqrt{3}} \frac{d t}{(t+5)^{2}} \\
& =2 \int_{0}^{\sqrt{3}}(t+5)^{-2} d t \\
& =-2(t+5)^{-1} J_{0}^{\frac{1}{\sqrt{3}}} \\
& =\left[\frac{-2}{t+5}\right]_{0}^{\frac{1}{3}} \\
& =-2\left[\frac{1}{\frac{1}{3}+5}-\frac{1}{5}\right] \\
& =-2\left[\frac{\sqrt{3}}{1+5 \sqrt{3}}-\frac{1}{5}\right] \\
& =-2\left[\frac{5 \sqrt{3}-1-5 \sqrt{3}}{5(1+5 \sqrt{3}}\right] \\
& =\frac{2}{5+25 \sqrt{3}}
\end{aligned}
$$

Question 2

$$
\begin{aligned}
a \cdot(1-2 i)^{2} & =1-4 i+4 i^{2} \\
& =1-4 i-4 \\
& =-3-4 i
\end{aligned}
$$

2009 WHS Mathematics Extension 2 Trial HSC wlsolns Pg 4

$$
\begin{aligned}
\therefore I_{0} & =T_{2} \\
\therefore I_{2} & =\frac{1}{2}\left(\nabla_{2}\right) \\
& =D_{4} \\
I_{4} & =\frac{3}{4}\left(T_{4}\right) \\
& =3 D_{16}
\end{aligned}
$$

b

$$
P Q=2 y
$$

\therefore Area PQRS $=4 y^{2}$

$$
\begin{equation*}
=4\left[64-x^{2}\right] \tag{2}
\end{equation*}
$$

ii. Volume $=$ Sum of areas

$$
\begin{align*}
\therefore V & =\int_{-8}^{8} 4\left(64-x^{2}\right) d x \\
& =8 \int_{0}^{8}\left(64-x^{2}\right) d x \\
& =8\left[64 x-\frac{x^{3}}{3}\right]_{0}^{8} \\
& =8\left[512-\frac{512}{3}\right] \\
& =2730 \frac{2}{3} \mathrm{~cm}^{3} \tag{2}
\end{align*}
$$

ci. If α is double root,

$$
\begin{aligned}
& P(x)=(x-\alpha)^{2} Q(x) \\
& P^{\prime}(x)=2(x-\alpha) Q(x)+(x-\alpha)^{2} Q^{\prime}(x) \\
& =(x-\alpha)\left[2 Q(x)+(x-\alpha) Q^{\prime}(x)\right] \\
& \therefore P^{\prime}(\alpha)=0 \\
& \therefore \text { Let } P(x)=x^{5}-a x^{2}+b \\
& P^{\prime}(x)=5 x^{4}-2 a x=0 \\
& \quad x\left(5 x^{3}-2 a\right)=0 \\
& \therefore \quad x=0, \quad x=\sqrt[3]{\frac{2 a}{5}}
\end{aligned}
$$

But $P(0) \neq 0$
$\therefore x=\sqrt[3]{\frac{2 a}{5}}$ is root
Now subs:

$$
P\left(\left(\frac{2 a}{5}\right)^{\frac{1}{3}}\right)=\left(\frac{2 a}{5}\right)^{5 / 3}-a\left(\frac{2 a}{5}\right)^{2 / 3}-b=0
$$

$$
\begin{aligned}
& a^{5 / 3}\left[\left(\frac{2}{5}\right)^{5 / 3}-\left(\frac{2}{5}\right)^{2 / 3}\right]=-b \\
& a^{5 / 3} \cdot\left(\frac{2}{5}\right)^{2 / 3}[2 / 5-1]=-b
\end{aligned}
$$

aube both sides:

$$
\begin{gathered}
a^{5} \cdot\left(\frac{2}{5}\right)^{2}\left[-\frac{3}{5}\right]^{3}=-b^{3} \\
\frac{-108 a^{5}}{3125}=-b^{3} \\
\therefore 108 a^{5}=3125 b^{3}
\end{gathered}
$$

$$
3
$$

Question 5
a. $x^{\frac{1}{2}}+y^{\frac{1}{2}}=1$

$$
\begin{array}{r}
\therefore \frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}} \frac{d y}{d x}=0 \\
\frac{1}{\sqrt{y} \frac{d y}{d x}}=-\frac{1}{\sqrt{x}} \\
\frac{d y}{d x}=-\sqrt{\frac{y}{x}}
\end{array}
$$

$$
\text { b. grad } \begin{align*}
P Q & =\frac{\frac{2}{p}-\frac{2}{2}}{2 p-2 q} \\
& =\frac{2 q^{-1}-2 p}{p q} \times \frac{1}{2 p y^{2} q} \\
& =\frac{-1}{p q} \\
\therefore y-\frac{2}{p} & =-\frac{1}{p q}(x-2 p) \\
p q y-2 q & =-x+2 p \\
\therefore x+p q y & =2(p+q)
\end{align*}
$$

ii. subs R into (1)

$$
\begin{gather*}
\therefore 4+2 p q=2 p+2 q \\
p q=p+q-2 \tag{2}
\end{gather*}
$$

iii. Midpoint $=M$

$$
\begin{aligned}
& \left(\frac{2 p+2}{2}, \frac{\frac{2}{p}+\frac{2}{2}}{2}\right) \\
= & \left(p+q, \frac{z q+2 p}{p q} \times \frac{1}{2}\right) \\
= & \left(p+q, \frac{p+q}{p q}\right) \\
\therefore & \text { Let } x=p+q \quad y=\frac{p+q}{p q}
\end{aligned}
$$

2009 WHS Mathematics Extension 2 Trial HSC w/Solns Pg 5

From (3) $p q=p+q-2$

$$
\therefore p q=x-2
$$

Now, from $y=\frac{p+q}{p q}$

c. $i, z=\cos \theta+i \sin \theta$

By deMoivres theorem:

$$
\begin{align*}
z^{n} & =\cos n \theta+i \sin n \theta \tag{10}\\
z^{-n} & =\cos -n \theta+i \sin -n \theta \\
& =\cos n \theta-i \sin n \theta
\end{align*}
$$

(1) + (2) $z^{n}+z^{-n}=2 \cos n \theta$
(1) -(2) $z^{n}-z^{-n}=2 i \sin n \theta$

$$
\begin{align*}
\therefore\left(z+z^{-1}\right)^{3} & =z^{3}+3 z+3 z^{-1}+z^{-3} \\
& =\left(z^{3}+z^{-3}\right)+3\left(z+z^{-1}\right) \\
(2 \cos \theta)^{3} & =2 \cos 3 \theta+6 \cos \theta \\
8 \cos ^{3} \theta & =2 \cos 3 \theta+6 \cos \theta \\
\therefore 4 \cos ^{3} \theta & =\cos 3 \theta+3 \cos \theta \tag{3}
\end{align*}
$$

Similarly,

$$
\begin{aligned}
\left(z-z^{-1}\right)^{3} & =z^{3}-3 z+3 z^{-1}-z^{-3} \\
& =\left(z^{3}-z^{-3}\right)-3\left(z-z^{-1}\right)
\end{aligned}
$$

$$
\begin{align*}
& \therefore(2 i \sin \theta)^{3}=2 i \sin 3 \theta-6 i \sin \theta \\
& 8 i{ }^{3} \sin ^{3} \theta=2 i \sin 3 \theta-6 i \sin \theta \\
&-4 i \sin ^{3} \theta=i \sin 3 \theta-6 i \sin \theta \\
& \therefore-4 \sin ^{3} \theta=\sin 3 \theta-6 \sin \theta
\end{align*}
$$

(3) $-44\left(\cos ^{3} \theta+\sin ^{3} \theta\right)$

$$
=(\cos 3 \theta+\sin 3 \theta)+3(\cos \theta+\sin \theta)
$$

iii. From ii,

$$
\begin{aligned}
& \cos ^{3} \pi / 12+\sin 3 \pi / 12 \\
& =\frac{1}{4}[\cos \pi / 4-\sin \pi / 4+3(\cos \pi / 2+\sin \pi / 12)] \\
& =\frac{3}{4}[\cos \pi / 12+\sin \pi / 12] \\
& =\frac{3}{4} \cdot \sqrt{2}\left[\frac{1}{\sqrt{2}} \cos \pi / 12+\frac{1}{\sqrt{2}} \sin \pi / 12\right] \\
& =\frac{3 \sqrt{2}}{4}[\sin \pi / 4 \cos \pi / 12+\cos \pi / 4 \sin \pi / 12] \\
& =\frac{3 \sqrt{2}}{4}[\sin (\pi / 4+\pi / 12)] \\
& =\frac{3 \sqrt{2}}{4}[\sin \pi / 3] \\
& =\frac{3 \sqrt{2}}{4} \cdot \frac{\sqrt{3}}{2} \\
& =\frac{3 \sqrt{6}}{8}
\end{aligned}
$$

Question 6

$$
\text { a. i. } \begin{align*}
\alpha & =\cos \Pi_{3}+i \sin \Pi_{3} \\
& =\frac{1}{2}+\frac{\sqrt{3}}{2} i \tag{1}
\end{align*}
$$

Now, $\left.\alpha^{5}=\cos 5 \pi_{3}+i \sin 5 \pi\right)_{3}$

$$
\begin{align*}
& =\cos \pi / 3-i \sin \pi / 3 \\
& =\frac{1}{2}-\frac{\sqrt{3}}{2} i
\end{align*}
$$

$$
\begin{aligned}
\therefore P(z) & =z^{5}+z-1 \\
& =\alpha^{5}+\alpha-1 \\
& =\frac{1}{2}-\frac{\sqrt{3}}{2} i+\frac{1}{2}+\frac{\sqrt{3}}{2} i-1=0
\end{aligned}
$$

$\therefore \alpha$ is a root
$i i$. Roots in conjugate pairs:

$$
\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \text { and }\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)
$$

\therefore Quadratic is

$$
\begin{gathered}
z^{2}-(\text { sum of roots }) z+(\text { prod of roots })=0 \\
z^{2}-z+1 \\
z^{2}-z+1 \sqrt{z^{5}+0 z^{4}+0 z^{3}+0 z^{2}+z+1} \\
\frac{z^{3}-z^{4}+z^{3}}{z^{4}-z^{3}+0 z^{2}} \\
\frac{z^{4}-z^{3}+z^{2}}{-z^{2}+z+1} \\
\therefore z^{3}+z^{2}-1 \quad \frac{-z^{2}+z-1}{0}
\end{gathered}
$$

W HS mathematics Extern
Now, if $O Q$ is parallel, \therefore of the form

$$
\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=c
$$

Now, $O Q$ passes through $(0,0)$

$$
\therefore \quad 0+0=c \quad \therefore c=0
$$

$\therefore \frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=0-$ (1) 2
ii. From (1) $\frac{y y_{1}}{b^{2}}=\frac{-x x_{1}}{a^{2}}$

$$
\begin{equation*}
y=-\frac{b^{2} x_{1} x}{a^{2} y_{1}}-(2) \tag{3}
\end{equation*}
$$

and $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Subs (2) in (3)

$$
\begin{array}{r}
\frac{x^{2}}{a^{2}}+\frac{b^{2} x_{1}^{2} x^{2}}{a^{4} y_{1}^{2}}=1 \\
x^{2}\left[\frac{1}{a^{2}}+\frac{b^{2} x_{1}^{2}}{a^{4} y_{1}^{2}}\right]=1 \\
x^{2}\left[\frac{a^{2} y_{1}^{2}+b^{2} x_{1}^{2}}{a^{4} y_{1}^{2}}\right]=1
\end{array}
$$

Now, from (3) $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ and subs in $\left(x_{1}, y\right)$:

$$
b^{2} x_{1}^{2}+a^{2} y_{1}^{2}=a^{2} b^{2}
$$

Now subs in (4)

$$
\begin{array}{r}
x^{2}\left[\frac{a^{2} b^{2}}{a^{4} y_{1}^{2}}\right]=1 \\
x^{2}=\frac{a^{4} y_{1}^{2}}{a^{2} b^{2}}
\end{array}
$$

2009 whys Mathematics Extension 2 Trial Exam wlsolns Pg 8

Question 8:
a i. $y=x^{2}+k x$

$$
\begin{equation*}
y=\frac{1}{x} \tag{1}
\end{equation*}
$$

= (2)

$$
\begin{align*}
& \quad x^{2}+k x=\frac{1}{x} \tag{1}\\
& \therefore \quad x^{3}+k x^{2}=1 \\
& \therefore \quad x^{3}+k x^{2}-1=0
\end{align*}
$$

$\therefore \alpha, \beta, \gamma$ are roots of equation.
ii. subs $-x$ into $x^{3}+k x^{2}-1=0$

$$
\begin{gathered}
\therefore(-x)^{3}+k(-x)^{2}-1=0 \\
-x^{3}+k x^{2}-1=0 \\
\therefore x^{3}-k x^{2}+1=0
\end{gathered}
$$

iii. subs $\frac{1}{x}$ into $x^{3}+k x^{2}-1=0$

$$
\begin{gathered}
\therefore\left(\frac{1}{x}\right)^{3}+k\left(\frac{1}{x}\right)^{2}-1=0 \\
\frac{1}{x^{3}}+\frac{k}{x^{2}}-1=0 \\
1+k x-x^{3}=0 \\
\therefore x^{3}-k x-1=0
\end{gathered}
$$

iv. $P\left(\alpha, \frac{1}{\alpha}\right), Q\left(\beta, \frac{1}{\beta}\right), R\left(\gamma, \frac{1}{\gamma}\right)$
$\operatorname{grad} P Q: \frac{1}{\alpha-\frac{1}{\beta}} \frac{\beta-\beta}{\alpha-\beta} \times \frac{1}{\alpha-\beta}$

$$
=\frac{-1}{\alpha \beta}
$$

Similarly, other gradients

$$
\begin{aligned}
& \frac{-1}{\alpha \gamma} \text { and } \frac{-1}{\beta \gamma} \\
\therefore & \frac{-1}{\alpha \beta}-\frac{1}{\alpha \gamma}-\frac{1}{\beta \gamma} \\
= & \frac{-(\beta-\alpha}{\alpha \beta \gamma} \\
= & \frac{-(-k)}{\alpha \beta \gamma} \\
= & \frac{k}{\beta} \\
\text { Product } & =\frac{-1}{\alpha \beta} \cdot \frac{-1}{\alpha \gamma} \cdot \frac{-1}{\beta \gamma} \\
= & \frac{-1}{\alpha^{2} \beta^{2} \gamma^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{(\alpha \beta \gamma)^{2}} \\
& \quad=\frac{-1}{1} \\
& =-1 \\
& \therefore \text { sum }=k \text {, product }=-1
\end{aligned}
$$

b. i.
$T \cos \theta$

Vertically: $\Sigma=0$

$$
\begin{align*}
\therefore & T \cos \theta-m g=0 \\
& \therefore T \cos \theta=m g \tag{1}
\end{align*}
$$

Horizontally: $\Sigma=m+\omega^{2}$

$$
\therefore T \sin \theta=m r w^{2}
$$

(3) $\div 0$

$$
\begin{aligned}
\tan \theta & =\frac{\not x r \omega^{2}}{r a g} \\
\therefore \tan \theta & =\frac{r \omega^{2}}{9}
\end{aligned}
$$

But $\tan \theta=\frac{r}{h}$

$$
\begin{aligned}
\therefore \frac{t w^{2}}{g} & =\frac{F}{h} \\
w^{2} & =\frac{g}{h} \\
\therefore w & =\sqrt{\frac{g}{h}}
\end{aligned}
$$

i. Period $=\frac{2 \pi}{\omega}$

$$
\begin{aligned}
& =2 \pi \div \sqrt{\frac{9}{h}} \\
& =2 \pi \sqrt{\frac{h}{9}}
\end{aligned}
$$

iii. ω = angular velocity

$$
\begin{aligned}
\therefore 2 \operatorname{rev} \mid \mathrm{sec} & =2 \times 2 \pi \\
& =4 \pi
\end{aligned}
$$

and \mid rev $/ \mathrm{sec}=2 \pi$
from :. $w^{2}=\frac{9}{h}$

$$
\therefore n=\frac{9}{w^{2}}
$$

2009 whs Mathematics Extension 2 Trial Eram worked \$oins Pg $9 /$
\therefore lowered by $\frac{39}{16 \pi^{2}} \mathrm{~cm}$
c.i. $(\cos \theta+i \sin \theta)^{3}=\cos 3 \theta+i \sin 3 \theta$
or $(\cos \theta+i \sin \theta)^{3}$

$$
=\cos ^{3} \theta+3 \cos ^{2} \theta \cdot i \sin \theta
$$

$$
+3 \cos \theta \cdot i^{2} \sin ^{2} \theta+i^{3} \sin ^{3} \theta
$$

$$
=\cos ^{3} \theta+3 i \cos ^{2} \theta \sin \theta
$$

$$
-3 \cos \theta \sin ^{2} \theta-i \sin ^{3} \theta-(2)
$$

As $0=($ and equating real imag.

$$
\begin{aligned}
\cos 3 \theta & =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \\
& =\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =\cos ^{3} \theta+3 \cos 3 \theta-3 \cos \theta \\
& =4 \cos ^{3} \theta-3 \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
\sin 3 \theta & =3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta \\
& =3\left(1-\sin ^{2} \theta\right) \sin \theta-\sin ^{3} \theta \\
& =3 \sin \theta-3 \sin ^{3} \theta-\sin ^{3} \theta \\
& =3 \sin \theta-4 \sin ^{3} \theta
\end{aligned}
$$

ii. $\tan 3 \theta=\frac{\sin 3 \theta}{\cos 3 \theta}$

$$
\begin{aligned}
& =\frac{3 \sin \theta-4 \sin ^{3} \theta}{4 \cos ^{3} \theta-3 \cos \theta} \\
& =\frac{\sin \theta\left(3-4 \sin ^{2} \theta\right)}{\cos \theta\left(4 \cos ^{2} \theta-3\right)}
\end{aligned}
$$

Divide top boltom by $\cos ^{2} \theta$

$$
=\tan \theta\left[\frac{\frac{3}{\cos ^{2} \theta-4 \tan ^{2} \theta}}{4-\frac{3}{\cos ^{2} \theta}}\right]
$$

$$
\begin{aligned}
& \omega=4 \pi, \quad h=\frac{9}{16 \pi^{2}} \\
& \omega=2 \pi, \quad h=\frac{9}{4 \pi^{2}} \\
& \therefore \text { Difference }=\frac{9}{16 \pi^{2}}-\frac{9}{4 \pi^{2}} \\
& =\frac{9}{16 \pi^{2}}-\frac{49}{16 \pi^{2}} \\
& =\frac{-39}{16 \pi^{2}} \\
& \begin{array}{l}
=\tan \theta\left[\frac{3 \sec ^{2} \theta-4 \tan ^{2} \theta}{4-3 \sec ^{2} \theta}\right] \\
=\tan \theta\left[\frac{3\left(1+\tan ^{2} \theta\right)-4 \tan ^{2} \theta}{4-3\left(1+\tan ^{2} \theta\right)}\right]
\end{array} \\
& =\tan \theta\left[\frac{3-\tan ^{2} \theta}{1-3 \tan ^{2} \theta}\right] \\
& =t\left[\frac{3-t^{2}}{1-3 t^{2}}\right] \\
& =\frac{t\left(3-t^{2}\right)}{1-3 t^{2}}
\end{aligned}
$$

