ABBOTSLEIGH

2009

YEAR 12
TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

General Mathematics

General Instructions

- Reading time -5 minutes.
- Working time - $21 / 2$ hours.
- Write using blue or black pen.
- Calculators may be used.
- A Formulae sheet is provided with this paper.

Total marks - 100

Section I

22 Marks

- Attempt Questions 1-22
- Allow about 30 minutes for this section.
- Give your answers on the multiple choice answer sheet.

Section II

78 Marks

- Attempt Questions 23-28
- Allow about 2 hours for this section.
- Use a separate writing booklet for each question.

Outcomes Assessed

Preliminary course

P1 develops a positive attitude to mathematics and appreciates its capacity to provide enjoyment and recreation
P2 applies mathematical knowledge and skills to solving problems within familiar contexts
P3 develops rules to represent patterns arising from numerical and other sources
P4 represents information in symbolic, graphical and tabular forms
P5 represents the relationships between changing quantities in algebraic and graphical form
P6 performs calculations in relation to two-dimensional and three-dimensional figures
P7 determines the degree of accuracy of measurements and calculations
P8 models financial situations using appropriate tools
P9 determines an appropriate form of organisation and representation of collected data
P10 performs simple calculations in relation to the likelihood of familiar events
P11 justifies his/her response to a given problem using appropriate mathematical terminology

HSC course

H1 appreciates the importance of mathematics and its usefulness in contributing to society
H2 integrates mathematical knowledge and skills from different content areas in exploring new situations
H3 develops and tests a general mathematical relationship from observed patterns
H4 analyses representations of data in order to make inferences, predictions and conclusions
H5 makes predictions about the behaviour of situations based on simple models
H6 analyses two-dimensional and three-dimensional models to solve practical and mathematical problems
H7 interprets the results of measurements and calculations and makes judgements about reasonableness
H8 makes informed decisions about financial situations
H9 develops and carries out statistical processes to answer questions which she/he and others have posed
H10 solves problems involving uncertainty using basic principles of probability
H11 uses mathematical argument and reasoning to evaluate conclusions drawn from other sources, communicating his/her position clearly to others

SECTION I

22 Marks

Attempt Question 1 - 22
Allow about 30 minutes for this section.

Use the multiple-choice answer sheet.
Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample: $2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$A \bigcirc$
B
C
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A

C \bigcirc
D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:

B

correct C \bigcirc
D \bigcirc

1 The Merino Sheep Company records the amount of rain in the rain gauge each morning at 8.00am. Which of the following best describes the type of data collected?
(A) Discrete
(B) Stratified
(C) Categorical
(D) Continuous

2 Expand and simplify $3(m-3)-2(4 m+7)$
(A) $-5 m-23$
(B) $4-3 m$
(C) $5-5 m$
(D) $-5 m-18$

3 The table of values below gives four points which lie on a straight line.

x	5	7	8	11
y	3	7	9	15

The equation of this straight line is
(A) $y=7-2 x$
(B) $y=5 x-3$
(C) $y=2 x-7$
(D) $y=5 x+2$

4 Considering error in measurement, calculate the largest possible area of a rectangle which measures 11.9 m by 7.4 m .
(A) $87.0975 \mathrm{~m}^{2}$
(B) $87.8385 \mathrm{~m}^{2}$
(C) $88.2825 \mathrm{~m}^{2}$
(D) $89.0275 \mathrm{~m}^{2}$

5 Joanna has a ten-pin bowling average of 152 with a standard deviation of 6 . Her lowest score has been 130 and her highest score 190. Between which two numbers will 68% of her scores lie?
(A) 130 and 190
(B) 130 and 152
(C) 146 and 158
(D) 140 and 164

6 Chloe invests $\$ 2500$ in an investment account which pays interest at 8% pa compounded every six months. How much interest has she earned after 6 years?
(A) $\$ 1467.19$
(B) $\quad \$ 3967.19$
(C) $\$ 1502.58$
(D) $\$ 4002.58$

7 The ratio of blue balls to green balls in a hat is 3:4.
The number of balls in the hat could be:
(A) 9
(B) 16
(C) 34
(D) 49

8 Sven throws 3 darts at a dartboard 15 times and records his scores in a stem and leaf plot. After a visit to the spa Sven repeats the experiment.

Before Spa				After Spa			
	9	1	20				
9	8	2	30	5			
8	7	1	40	7			
8	6	0	50	3	8		
6	4	1	60	1	2	6	7
		2	70	1	3	4	5
			80	1	1	2	

Which of the statements below is true?
(A) The mean has increased and the range has increased
(B) The range has risen but the mean has fallen
(C) Both the mean and the range have decreased
(D) The mean has increased and the range has decreased

9 Jane buys a new viola for $\$ 9500$. Each year, the viola depreciates by $\$ 600$. Calculate the salvage value of the viola after 3 years, correct to the nearest dollar.
(A) $\$ 7700$
(B) $\$ 7815$
(C) $\$ 11300$
(D) $\$ 5900$

10 The following is a field book entry of an olive orchard in Mudgee. All measurements are given in metres.

| B | 30 |
| :---: | :---: |\(\left|\begin{array}{c}A

0

12

20

36

52\end{array}\right|\)| 35 | |
| :--- | :--- |
| | |
| C | |

The area of AEDC, correct to the nearest square metre is:
(A) 780
(B) 910
(C) 1190
(D) 1970

11 The solution of $\frac{x-2}{3}+4=\frac{x}{5}$ is:
(A) $\quad-25$
(B) $-4 \frac{1}{6}$
(C) -1
(D) 3

12 On Lucy's credit card daily interest is charged at 0.04% on outstanding balances.
Lucy buys two gifts at $\$ 54$ each on the $8^{\text {th }}$ August.
How much interest does Lucy pay if she pays off her credit card on $10^{\text {th }}$ September?
(A) $\$ 0.71$
(B) $\$ 1.43$
(C) $\$ 71.28$
(D) $\$ 142.56$

13 Three towns A, B and C are situated as shown in the diagram. C is due east of town A.

The bearing of C from B is
(A) 040°
(B) 130°
(C) 140°
(D) 310°

14

Not to scale

In the triangle above, which of the following ratios is the largest?
(A) $\sin x$
(B) $\sin y$
(C) $\tan x$
(D) $\tan y$

15 The lift at Centre Point Tower travels 298 metres in 42 seconds. Its average speed to the nearest kilometre per hour is:
(A) $2 \mathrm{~km} / \mathrm{h}$
(B) $7 \mathrm{~km} / \mathrm{h}$
(C) $26 \mathrm{~km} / \mathrm{h}$
(D) $118 \mathrm{~km} / \mathrm{h}$

16 In NSW postcodes consist of four digits, with the first number always a ' 2 '. The number of distinct possible postcodes in NSW is given by:
(A) $\quad 2^{4}$
(B) $2 \times 10 \times 9 \times 8$
(C) 10^{3}
(D) 10^{4}

17 A hospitality class was given a short topic test. The mean mark in the test was 71 and the standard deviation was 12. A z-score of -2 for this test would represent a mark of:
(A) 47
(B) 69
(C) 73
(D) 95

18 The area of the shaded region is approximately:

Not to scale

(A) $236 \mathrm{~m}^{2}$
(B) $53 \mathrm{~m}^{2}$
(C) $52 \mathrm{~m}^{2}$
(D) $70 \mathrm{~m}^{2}$

19 The speed of a ski lift (s) moving up an incline is inversely proportional to the weight (w) the lift carries.

A ski life carrying a total weight of 600 kg can move up the incline at a speed of $25 \mathrm{~km} / \mathrm{h}$. If the ski lift moves at $35 \mathrm{~km} / \mathrm{h}$, total weight it is carrying is approximately:
(A) 430 kg
(B) 590 kg
(C) 610 kg
(D) 840 kg

20 Which of the following is not true of the data represented in the box and whisker plot below:

(A) $\frac{1}{4}$ of the scores are between 5 and 20
(B) $\frac{1}{2}$ if the scores are between 20 and 25
(C) the lowest $\frac{1}{4}$ of the data is spread over a wide range
(D) most of the data is contained between the scores of 5 and 20

21 Look at the table of monthly loan repayments per $\$ 1000$ shown below.

	Interest Rate (pa)			
Term	9%	10%	11%	12%
10	$\$ 12.67$	$\$ 13.22$	$\$ 13.78$	$\$ 14.35$
15	$\$ 10.14$	$\$ 10.75$	$\$ 11.37$	$\$ 12.00$
20	$\$ 9.00$	$\$ 9.65$	$\$ 10.32$	$\$ 11.01$
25	$\$ 8.39$	$\$ 9.09$	$\$ 9.80$	$\$ 10.53$

Daniel has an \$80 000 mortgage at 10\%pa over 10 years. After interest rates rise to 12\% Daniel extends the term of his loan to 15 years.

What is the change in Daniel's monthly repayments?
(A) They increased by $\$ 1.13$ per month
(B) They decreased by $\$ 1.22$ per month
(C) They increased by $\$ 90.40$ per month
(D) They decreased by $\$ 97.60$ per month

22 A swimming pool was emptied and the depth of water recorded as it fell. The graph below shows the change in depth.

What is the equation of the depth of water over time?
(A) $d=2.5-0.25 t$
(B) $d=t+0.25$
(C) $d=2.5$
(D) $d=0.25 t+2.5$

SECTION II

78 Marks
Attempt questions 23-28.
Allow approximately 2 hours.

Question 23 (13 marks)

(a) A car is advertised for sale as follows:

Cash: \$25 070
Terms: $\quad \$ 5070$ deposit and $\$ 1033.33$ per calendar month for 2 years.
(i) What is the total amount paid for the car on these terms?
(ii) Calculate the annual simple interest rate charged by the car dealer when the car is purchased on these terms.
(b) The frequency distribution below shows the results of a student survey about the number of movies watched in the last week.

Number of Movies	Number of students
1	5
2	7
3	10
4	13
5	5

What is the relative frequency of watching four movies?
(c) Georgia bought a new machine costing $\$ 121000$ for her confectionary factory.
(i) What would be the value of the machine after 3 years if the depreciation is calculated using the declining balance method and the annual depreciation rate is 9% ?
(ii) Use the 'guess, check and refine' method to calculate how long it would take for the machine to halve in value using the declining balance method.

Question 23 continued
(d) The height of a Year 12 student was measured to be 172 cm correct to the nearest centimetre. What is the percentage error of this measurement correct to 2 decimal places?
(e) The information below refers to the supply and demand for hotel HOTEL ROOMS - SUPPLY AND DEMAND (RESORT TOWN)

(i) How many rooms were available in 2003?
(ii) How many rooms were unoccupied in 2000?
(iii) When did the greatest increase in occupancy rate occur? Justify your answer.

Question 24 (13 marks)

(a) Solve (i) $2 x^{2}+7=25 \quad 2$
(ii) $\frac{x-3}{2}-\frac{1-x}{3}=5$
(b) A gardening expert recommends 15 litres of water per week for each 1 metre height of gum tree. A garden hose fills a 10 litre bucket in 30 seconds.

Calculate the time that should be spent each week watering a 9 metre high gum tree with a hose.
(c) The Victoria Parks Corporation conducted a survey on the population of koalas in the Otway National Park. In January 2008, in a particular region of the park, Simone caught and tagged 56 koalas. In January this year, the same region of the park, Simon caught 42 koalas and discovered that 13 of them had been tagged in the previous year. Estimate the total population of koalas in the National Park.
(d) When people make a toast to celebrate an event they often 'clink' glasses. Each person in a group 'clinks' with everyone else.

A rule to establish the number of clinks could be:
$C=\frac{n(n-1)}{2}$ where ' C ' is the number of clinks and ' n ' is the number of people.
(i) Copy and complete the table below.

No of people ' n '	2	3	4	5	6	
No of clinks ' C '	1	3				28

(ii) How many people would be required to produce 500 clinks? Explain how you found your answer.

Question 25 (13 marks)

(a) The average temperature in June for the past 30 years in a city has been $18.4^{\circ} \mathrm{C}$. This year the new June temperature average was $22.1^{\circ} \mathrm{C}$.

What is the new 31 year average? (Answer correct to one decimal place)
(b) On his way to work Leonardo passes three lots of roadwork. At the first section of roadwork the traffic is regularly stopped for 20% of the time and at the second and third sections it is regularly stopped for 10% of the time.
(i) Copy and complete the probability tree diagram below to show the possible outcomes for Leonardo passing through the three sections of roadwork.

(ii) What is the probability that he travels to work without being stopped by roadwork?
(iii) What is the probability that he is stopped at least once for roadwork?
(iv) What is the probability that he is stopped exactly once for roadwork?
(c) Standard time for Sydney is based on the $150^{\circ} E$ meridian and time for New York is based on the $75^{\circ} \mathrm{W}$ meridian. At 4.00am on Monday in Sydney, Sef decides to call a friend in New York. What time and day is it in New York?
(d) Mr Peabody bought 500 Restac $\$ 2$ shares at $\$ 1.50$ each

Six months later the shares paid a dividend of 8% and the market price was $\$ 1.65$ per share.
(i) How much dividend did Mr Peabody receive?
(ii) Calculate the percentage yield of the shares.

Question 26 (13 marks)

(a) A football commentator makes the following statement about two football teams. "The Dogs are a much bigger team, man for man than the Tigers." The mass of each player in the two teams is measured and five figure summaries of both sets of results are shown below.

Statistical Measure	Dogs	Tigers
Lowest Score	65	60
Lower Quartile	67	70
Median	85	90
Upper Quartile	110	110
Highest Score	130	120

(i) From the information on the table, draw a box and whisker plot for each team, using the same scale, to compare the two sets of data.
(ii) Do either team's results appear to be skewed, and if so, what is the type of skew?
(iii) Does the data support the commentator's statement? Give reasons.
(b)

Drawn to scale 1: 1000

The shape drawn above is to be a paved area:
(i) Use your ruler to determine the values of h, d_{f}, d_{m} and d_{l} required to calculate the area using Simpson's Rule. Express each length correct to the nearest 5 mm
(ii) Use one application of Simpson's Rule to calculate the approximate area of this shape.
(iii) A constant depth of 10 cm of sand will be used as a base for the pavers. What volume of sand will be used?

Question 26 continued
(c) Helga has a combination lock with three dials. Each dial is numbered from 1 to 16.

- She remembers that the number for the first dial is less than 10
- She remembers that the number for the second dial is even
- She can't remember anything about the third dial

Based on what Helga can remember, how many different lock combinations are possible?

Question 27 (13 marks)

(a) During a trek in Nepal, Angelina recorded the angle of elevation from various points to the top of a mountain from a point B, the angle was 7°, from another point C, on the same level as B, the angle was 10°. The point C was 1.7 km closer to the base of the mountain than was B .

The diagram below represents this information. In the diagram AM is the mountain height.

(i) Find the size of $\angle B M C$
(ii) Calculate the length of $C M$ to 2 decimal places
(iii) Find the height of the mountain
(b) The distance between Capetown $\left(34^{\circ} \mathrm{S}, 17^{\circ} \mathrm{E}\right)$ and Sydney $\left(34^{\circ} \mathrm{S}, 151^{\circ} \mathrm{E}\right)$ is 12500 km .
(i) Show that the radius of the parallel of latitude on which both Sydney and Capetown both lie is 5300 km (correct to 2 significant figures)
(ii) Hence calculate the shortest distance around the globe between Sydney and Santiago ($34^{\circ} S, 71^{\circ} \mathrm{W}$). Answer in kilometres correct to 3 significant figures.

Question 27 continued
(c) Norah would like to determine if there is a correlation between the mean January temperature and the number of callouts to domestic disputes by the Police in January. The data below was collected.

Mean January Temperature.	Number of Domestic Callouts.
29	18
30	20
31	22
32	22
33	23
35	25
36	26
37	26
38	28
39	30

This data is graphed on page 19. Use it to help answer this question.
(i) Describe the correlation between the temperature and the number of callouts.
(ii) Estimate the correlation coefficient for the data
(iii) On the graph on page 19 draw in the median regression line for the data.

Question 28 (13 marks)

(a) The graph shows the tax payable for taxable incomes up to $\$ 60000$ in a proposed tax system.

Calculate the tax rate as a percentage for incomes of \$30 000 and above.
(b) Hassan borrowed $\$ 75000$ to buy a home unit which he is going to use as a rental investment. This table shows some of the figures involved in the repayment of his loan.

	Home Loan Table			
	Amount $=$	\$75000	This table assumes the same number of days in each month. Interest $=$ rate $/ 12 \times$ principal	
	Annual interest rate	10\%		
	Monthly repayment $R=$	\$900		
N	Principal (P)	Interest (I)	$P+1$	$P+I-R$
I	\$75000.00	\$625.00	\$75625.00	\$74725.00
2	\$74725.00	\$622.71	\$75347.71	\$74 447.71
3	\$74 447.71	\$620.40	\$75068.11	\$74 168.11
4	\$74 168.11	A	B	C
185	\$1219.77	\$10.16	\$1229.93	\$329.93
186	\$329.93			

(i) What fraction of Hassan's first repayment of $\$ 900$ will be interest?
(ii) After Hassan's $186^{\text {th }}$ repayment, the loan will be repaid. Calculate the value of his last repayment.
(iii) Calculate the total amount of interest Hassan will pay on this loan.

Question 28 continued
(c) Robert Rowlands commutes 30 km by train from home A into the city B, on a bearing of $040^{\circ} \mathrm{T}$. He then changes trains and travels due south for 16 km to reach work C .
(i) Copy the diagram below and mark in all the given information.

(ii) Calculate the length of the shortest distance between home and work to the nearest kilometre.
(iii) Find the angle BAC to the nearest degree
(iv) On what bearing would he have to travel to take the direct route from A to C ?

BLANK PAGE
\qquad

GRAPH FOR QUESTION 27 (c) DETATCH AND HAND IN WITH YOUR ANSWERS

DETACH THIS PAGE AND HAND IT IN WITH YOUR ANSWER PAGE FOR QUESTION 27(c)(iii).

EXTRA QUESTIONS

1.
2. When a parachutist jumps from a plane, the distance he has fallen in metres (D) varies directly with the square of the time (t) he has been falling, in seconds. After 3 seconds the parachutist has fallen 44.1 metres.
(i) Write a formula for D in terms of t and find the constant of variation.
(ii) Find the distance the parachutist has fallen after 4.5 seconds, correct to the nearest metre.
(iii) How long will it take the parachutist to fall 500 metres?

General Mathematics

Section I
(1) Rain collected 8:00 am each morning

Doha collected
(D) Continuous
(2)

$$
\begin{align*}
3 & (m-3)-2(4 m+7) \\
& =3 m-9-8 m-14 \\
& =-5 m-23 \tag{A}
\end{align*}
$$

(3)

$$
\begin{array}{rlrl}
A: y & =7-2 x & B: y & =5 x-3
\end{array} \begin{array}{rlrl}
& =2 x-7 \\
& =7-2(5) & & =5(5)-3 \\
& =7-10 & & =2(5)-7 \\
& =-3 x & & =10-7 \tag{c}\\
& & =22 x &
\end{array}
$$

(4)

$$
\begin{align*}
b= & \omega=71.4 \mathrm{~m} \\
h & \approx 11.95 \mathrm{~m} \\
A & =h \times \omega \\
& =11.95 \times 7.45 \\
& =89.0275 \mathrm{~m}^{2} \tag{D}
\end{align*}
$$

(5)
-)
average $=152$
standard deviation $=6$
lowest score $=130$
highest score $=190$

$$
\begin{aligned}
68 \% \text { a scares } & =\text { mean } \pm 1 \text { standard deviation } \\
& =152 \pm 6
\end{aligned}
$$

ie 146 and 158
(c)
(6) $\$ 2500$ invented
8% pa compounded 6 maxhly $=\frac{86}{2}=4 \%=0.04$
6 years $=6 \times 2=12$ lots of 6 month

$$
\begin{align*}
A & =P(1+r)^{n} \\
& =2500(1+0.04)^{\prime 2} \\
& =\$ 4002.580546 \\
& \approx \$ 4002.58
\end{aligned} \quad \begin{aligned} \tag{C}
\end{align*} \quad \text { Interest }=\$ 4002.58-\$ 2500
$$

Section I
(7)-(7) blue: green

3:4
0 i 7 balls, and multiples there 0

$$
\begin{equation*}
\cdots \quad 7,14,21,28,35,42,49, \ldots \tag{D}
\end{equation*}
$$

(8) Before : $201,209,302,308,309,401,407,408,500,506,503,601,604,606,702$

After: $305,40 \%, 503,508,601,602,606,607,701,703,704,705,801,801,802$
Before: mean $=\frac{6572}{515}=438.13 \quad$ range $=702-201=501$
After: mean $=\frac{9366}{5}=623.7 \dot{3} \quad$ range $=802-305=497$
Mean has increased and the range has decreased
(9) $\$ 9500$

Depreciates by $\$ 600$ each year, For 3 years.

$$
\begin{align*}
S & =V_{0}-D_{n} \\
& =\$ 9500-\$ 600 \times 3 \\
& =9500-1800 \\
& =\$ 7700 \tag{N}
\end{align*}
$$

(10)
-)
A.

Area of $A \in D C$

$$
\begin{align*}
& \text { Trapezium: Area }=\frac{(a+5)}{2} \times h \\
& =\left(\frac{16+52}{2}\right) \times 35 \\
& =34 \times 35 \\
& =1190 \mathrm{~m}^{2} \tag{c}
\end{align*}
$$

(i)
($x 15$ to cancel out all fractions)

$$
\begin{align*}
5\left(\frac{x-2}{7}\right)+15(4) & =x^{3}\left(\frac{x}{5}\right) \\
5(x-2)+15 x 4 & =3 x \\
5 x-10+60 & =3 x \\
2 x & =-50 \\
x & =-25 \tag{A}
\end{align*}
$$

Section I
(12) 0.04% daily inherest rate

August $8^{2}: 2 \times \$ 54=\$ 108$ for 2gits
Sept 10^{2} : Pays oh card
$\therefore 33$ days.

$$
\begin{align*}
\text { Amoun }=\frac{0.04}{100} \times \$ 108 \times 33 & =\$ 1.4256 \\
& \approx \$ 1.43 \tag{B}
\end{align*}
$$

(3)

Bearing an C crom B

$$
\begin{align*}
& =180^{\circ}-50^{\circ} \\
& =130^{\circ} \tag{B}
\end{align*}
$$

(14)

$$
\begin{align*}
& \sin x^{\circ}=\frac{\text { ppp }}{\text { hyp }}=\frac{8}{10}=0.8 \\
& \sin y^{\circ}=\frac{\text { pp }}{h y p}=\frac{6}{10}=0.6 \\
& \left.\tan x^{\circ}=\frac{\text { ppp }}{\text { posj}}=\frac{8}{6}=1.3\right) \\
& \tan y^{\circ}=\frac{0 p p}{0 d j}=\frac{6}{8}=0.75 \tag{c}
\end{align*}
$$

(15)

$$
\begin{equation*}
\frac{\text { Speed }=\frac{298 \mathrm{~m}}{42 \mathrm{secs}} \times \frac{60 \times 60}{1000}=25.54285714}{(\approx 7.01 \mathrm{~m} / \mathrm{s})} \tag{c}
\end{equation*}
$$

(16)

Number of distinct posicodes

$$
\begin{align*}
& =1 \times 10 \times 10 \times 10 \\
& =10^{3} \tag{c}
\end{align*}
$$

(77)
mean $=71$

$$
z=\frac{x-\vec{x}}{s}
$$

Standand deviation $=12 \quad-2=\frac{x-71}{12}$
z-score of -2

$$
-24=x-71
$$

$$
\begin{equation*}
x=47 \tag{A}
\end{equation*}
$$

(18)

$$
\begin{aligned}
\text { Shaded Area } & =69.81317008-17.45329252 \\
& =52.35987756 \approx 52 \mathrm{~m}^{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& A_{L}^{\text {Lage }}=\frac{1}{360^{\circ}} \times \pi r^{2} \\
& A_{5}=\frac{3}{3.60^{\circ}} \times \pi r^{2} \\
& =\frac{880^{\circ}}{360^{\circ}} \times \mathrm{T}^{2} \times 10^{2} \\
& =\frac{80^{\circ}}{360^{\circ}} \times \pi \times 5^{2} \\
& =69.81317008 \\
& =17.45329252
\end{aligned}
$$

Section I
(19) speed $\alpha \frac{1}{\text { weight }}$
le $s \times \frac{1}{5} \Rightarrow s=\frac{k}{\omega}$
$25=\frac{k}{600} \quad \Rightarrow s=25$ and $\omega=600$

$$
k=25 \times 600
$$

$$
=15000
$$

$$
\therefore s=\frac{15000}{\omega}
$$

Given $s=35 \mathrm{~km} / \mathrm{h}$

$$
\begin{align*}
35 & =\frac{15000}{w} \\
w & =\frac{15000}{35} \\
& =428.5714286 \\
& \approx 430 \mathrm{~kg} \tag{A}
\end{align*}
$$

(20)

D: Mosh of the data is contaned between the scarep of 5 and 20 - since only 25%, not"most"
(211) $\$ 80000 \quad\left(\div 1000=80^{\prime \prime}\right.$ units" for hable)

$$
\text { 1oyears Repayment }=\$ 13.22 \times 80=\$ 1057.60
$$

$\$ 80000$
12% pa

$$
15 \text { years Repayment }=\$ 12.00 \times 80=\$ 960
$$

$$
\begin{equation*}
\therefore \$ 1057.60-\$ 960=\$ 97.60 \text { decrease per monQ } \tag{D}
\end{equation*}
$$

(22) slope $=\frac{\text { rise }}{r-40}=\frac{-1}{4}=-0.25$
yinhercept $=2.5$
Eqn:

$$
\begin{align*}
& d=-0.25 t+2.5 \\
& d=2.5-0.25 t \tag{A}
\end{align*}
$$

(1) D
(4) 1
(7) 1
(i0) C
(13) B
(16) C
(19) A
(22) A
(2) A
(5) C
(8) D
(II) A
(14) C
(12) A
(20) 1
(3) C
(6) c
(c) 8
(12) B
(15) C
(18) C
(21) 1

Page 2

Section II
(23)(a)Cash: $\$ 25070$

Terms: $\$ 5070$ deposit $+\$ 1033.33$ per calendar month for 2 years
(i) Terms: $\$ 5070+\$ 1033.33 \times 12 \times 2$

$$
=\$ 5070+\$ 24799.92
$$

$$
=\$ 29869.92,
$$

(ii)
()
(b) Relative frequency of watching Sour movies $=\frac{13}{140} \times 1=32.5^{\circ}$
(c) $\$ 121000$ cost for confectionary machine
(i) Declining balance method of depreciation

Depreciation rate of $9 \% \quad(=0.0 a)$
3 years.

$$
\begin{aligned}
s & =V_{0}(1-r)^{n} \\
& =121000(1-0.09)^{3} \\
& =91182.091 \\
& =\$ 91182.09
\end{aligned}
$$

(ii) Guess, check, refine to get hat the value

$$
\begin{gathered}
60500=121000(1-0.09)^{n} \\
0.5=0.91^{n} \\
n=7: \quad 0.91^{7}=0.516761019 \\
n=8: \quad 0.91^{\circ}=0.470252527
\end{gathered}
$$

$$
\begin{aligned}
& \text { SI. } \Rightarrow \text { Interest }=\$ 29869.92-\$ 25070 \\
& =\$ 4799.92 \\
& I=P R T \\
& 4799.92=20000 \times R \times 2 \\
& P=\$ 25070-\$ 5070 \\
& \therefore R=\frac{4799.92}{20000 \times 2} \\
& =\$ 20000 \\
& =0.119998 \quad(\times 100 \%) \\
& =11.9998 \% \\
& \text { R } \quad 12 \% \text { pea. }
\end{aligned}
$$

Section II
Page 6
ed
Using logs

$$
\begin{aligned}
\log 0.5 & =\log 0.91^{1} \\
& =n \log 0.91 \\
& =\frac{\log 0.5}{\log 0.91} \\
& =7.349614956 .
\end{aligned}
$$

ie $6 / w 7$ and 8 years.
\therefore will take 8 years
(d) current to nearest cm

172 cm ie $171.5 \leq x<172.5$
\% error of this measurement.

$$
\begin{aligned}
\text { error } & =0.5 \mathrm{~cm} \\
\frac{0.5}{172} \times \frac{100}{1} \mathrm{G} & =0.290697674 \\
& \approx 0.29 \% .(2 \text { dec ply })
\end{aligned}
$$

(e) Hotel Rooms.
(i) Rooms available if $2003 \quad 3.6 \times 1000$

$$
=3600 \text { 000 ns }
$$

(ii) Rove ns, unoccupied in 2000

No \& rooms 1.800×1000

$$
=1800
$$

Occupancy rate 78%.
\therefore Unocupied $=226$

$$
\frac{22}{100} \times 1800=396=
$$

(iii) Creates increase in occupancy rate rate $=$ slope of line graph. ie \% caupanus/hie greatest slope in 2004-2005,
(24) (a) i)

$$
\begin{aligned}
2 x^{2}+7 & =25 \\
2 x^{2} & =18 \\
x^{2} & =9 \\
x & = \pm \sqrt{9} \\
x & = \pm 3
\end{aligned}
$$

(ii)

$$
\frac{x-3}{2}-\frac{1-x}{3}=5
$$

($\times 6$ for all terms)

$$
\begin{aligned}
\frac{3(x-3)}{x}-\frac{6(1-x)}{3} & =6(5) \\
3(x-3)-2(1-x) & =30 \\
3 x-9-2+2 x & =30 \\
5 x-11 & =30 \\
5 x & =41 \\
x & =8.2
\end{aligned}
$$

\square
(b) 15 L/weet for each in in height

$$
\begin{aligned}
\therefore \text { am high wee } & =9 \times 15 . \\
& =135 \text { limes in a week }
\end{aligned}
$$

10 litre bucket $\Rightarrow \frac{135}{1.0}=13.5$ bucketfuls of $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \text { Fine } \Rightarrow 13.5 \text { buckets } \times 30 \text { seconds } \\
&=405 \text { seconds } \quad(6.75 \text { minutes }=6 \mathrm{~min} 45 \mathrm{~s})
\end{aligned}
$$

(c) 56 koalas Lagged Jan 2008

13 tagged koalas out of 42 at a later date

$$
\begin{aligned}
\frac{56}{x}= & \frac{13}{42} \\
13 x & =42 \times 56 \\
x & =180.9230769
\end{aligned}
$$

$x \approx 181$ koalas in total population
(d) $C=\frac{n(n-1)}{2}$ where $C=n^{0}$ of clinks
$n=n^{\circ}$ o people

Section II

1) (24) (d) (Continued)
(i)

$$
\begin{aligned}
& n=4: \quad C=\frac{4(4-1)}{2}=\frac{4(3)}{2}=6 \\
& n=5: \quad C=\frac{5(5-1)}{2}=\frac{5(4)}{2}=10 \\
& n=6: \quad C=\frac{6(6-1)}{2}=\frac{6(5)}{2}=15 \\
& C=28: 28=\frac{n(n-1)}{2} \\
& 56=n(n-1) \quad \therefore n=8 \text { and } n-1=7
\end{aligned}
$$

N° of people " n "	2	3	4	5	6	(8)	
N° of clinks " C "	1	3	(6)	(10)	15	28	1

(ii) N° of people to produce a minimum of 500 clinks

$$
\begin{aligned}
& 500=\frac{n(n-1)}{2} \\
& 1000=n(n-1)
\end{aligned}
$$

Guess and check

$$
\sqrt{1000}=31.6227766
$$

\therefore answers close to $3!$ or 32

$$
\begin{array}{ll}
32 \times 31=992 & \rightarrow 496 \text { clinks } \\
3.3 \times 32=1056 & \rightarrow 528 \text { clicks }
\end{array}
$$

\therefore Need a minimum of 33 people to ger 500 clinks (you get 28 extra)
Quadratic Formula

$$
\begin{aligned}
& n(n-1)=1000 \\
& n^{2}-n-1000=0 \\
& n=\frac{-6 \pm \sqrt{1^{2}-4 a c}}{2 a} \\
&=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(1000)}}{2(1)} \\
&=\frac{1 \pm \sqrt{4001}}{2} \\
&=32.1267292 \text { or }-31.12-67292 \\
& \text { then }
\end{aligned}
$$

Section II
]) (25) (0)
New average? $\Rightarrow 22.1^{\circ} \mathrm{C}$ for for 30 years
Ne next year

$$
\begin{aligned}
31 \text { year Average }=\frac{(30 \times 18.4)+(1 \times 22.1)}{31} & =\frac{574.1}{31} \\
& =18.51935484 \\
& =18.5^{\circ} \mathrm{C}(1 \text { decpl. })
\end{aligned}
$$

(b) (i)

(ii) Probability not sopped (NS, NS, NS)

$$
\begin{aligned}
& =0.8 \times 0.9 \times 0.9 \\
& =0.648
\end{aligned}
$$

(iii) Probability stopped at leash once

$$
\begin{aligned}
& =1-\text { Probability not stopped } \\
& =1-0.648 \\
& =0.852
\end{aligned}
$$

(iv) Probability shopped exactly once

$$
\begin{aligned}
& =3 \text { results }(*) \\
& =(0.2 \times 0.9 \times 0.9)+(0.5 \times 0.1 \times 0.9)+(0.8 \times 0.9 \times 0.1) \\
& =0.162+0.072+0.072 \\
& =0.306
\end{aligned}
$$

(c)
 Sydney $i 50^{\circ} E \quad$ Difference in longitude $=225^{\circ}$ New York $75^{\circ} \mathrm{\omega}$. ihme diff $=\frac{225}{15-5}=15 \mathrm{hm}$

Sydney: 4:00 am mon NY: 1:00 pm Sunday

Section II
(25) (d) 500 Reshac $\$ 2$ shares bought at $\$ 1.50$ each Dividend on 8% and market price was $\$ 1.65$ per share
(i) Dividend $=500 \times \frac{8}{100} \times \$ 200=\$ 80$
(ii)

$$
\begin{aligned}
\text { Percentage yield } & =\frac{\text { amount of dividend }}{\text { market price }} \times 1006 \\
& =\frac{80}{500 \times 1.65} \times 100 \% \\
& =\frac{80}{8.5} \times \frac{100}{1} \% \\
& =9.6969 \% \\
& \approx 9.7 \%
\end{aligned}
$$

(26)(a)(1) Box-and-whiclier plot

(ii) Dogs results are skewed : tail out ho right
\therefore positively skewed
(iii)"Dogs are a much bigger ream, man for man, than the Tigers" not true

Dogs IQR 67~110 (50\% f team) median 85
Tigers IQR 70-110 (50\% of ream) median 90

- mone of the Tigers are heavier than the Dogs (For the middle 50%)
- median of Dogs is lower than the middle of Tigers' so comparing these players "Dog" is not heavier than "Tiger"

(continued)

Section II
i) (20) (b) (ii) simpson's rule

B

$$
\begin{aligned}
A & =\frac{h}{3}\left(d_{2}+4 d_{m}+d_{2}\right) \\
& =\frac{15}{3}(25+4(30)+60) \\
& =1025 \mathrm{~mm}^{2} \text { on diagram } \\
\therefore A & =1025 m^{2} \text { Cor paved area }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { Volume } & =A_{x} \text { dep } \\
& =1025 \mathrm{~m}^{2} \times \frac{10}{100} \\
& =102 \cdot 5 \mathrm{~m}^{3}
\end{aligned}
$$

D^{-}
(c)

9 8 16 $9 \times 8 \times 16$ $=1152$ ways.

Dials can be numbered 1 to 16 - $1^{\text {th }}$ dial less than 10 ie a ways

- 2 nd dial even ie 8 ways
- $3^{\text {nd }}$ dial any value ie 16 ways

0) (27)

(i) angle BMC

(ii) length of cm to 2 dec. places

$$
m=1.7
$$

$$
\begin{aligned}
\frac{m}{\sin M} & =\frac{6}{\sin B} \\
\frac{1.7}{\sin 3^{\circ}} & =\frac{6}{\sin 7^{\circ}} \\
b & =\frac{1.7}{\sin 3^{\circ}} \times \sin 7^{\circ} \\
& =3.0158614663 \\
& =3.96 \mathrm{~km} /(2 \text { dec } p \mathrm{~s} .)
\end{aligned}
$$

(conhnued)

Section II
) (27) (a) (iii) height of the mountain

$$
\begin{aligned}
\sin \theta & =\frac{\rho p p}{M g p} \\
\sin 10^{\circ} & =\frac{h}{3.958 \cdots} \\
h & =3.958614663 \times \sin 10^{\circ} \\
& =0.687406222 \mathrm{~km} \\
& =687.406222 \mathrm{M} \\
& \approx 687 \mathrm{~m} \quad \text { (neared } \mathrm{m})
\end{aligned}
$$

(b) $D \times t^{2} \quad D=$ distance in metres
$t=$ time in seconds
(i) $D=k t^{2}$

Subsh. $E=3, D=44.1$

$$
44-1=k(3)^{2}
$$

$$
k=\frac{4 \cdot 4 \cdot 1}{4}
$$

$$
k=4.9
$$

$$
\therefore D=4.9 t^{2}
$$

(ii) distance Fallen offer 4.5 seconds

$$
\begin{aligned}
D & =4.9 t^{2} \\
& =4.9 \times(4.5)^{2} \\
& =99.225 \mathrm{~m} \\
& =99 \mathrm{M} \text { (10 nearest metre) }
\end{aligned}
$$

(iii) time to fall 500 m .
(Continued)

$$
\begin{aligned}
& D=4.9 t^{2} \\
& 500=4.9 t^{2} \\
& t^{2}=\frac{800}{4.9} \\
& =102-0408163 \\
& t= \pm \sqrt{102 \cdot 0408163} \quad \text { but consider only twi value } \\
& =10.10152545 \\
& \hat{2} \frac{10 \cdot 1 \text { seconds }}{l}(1-01 \text { dec. pl.) }
\end{aligned}
$$

Section II
(1) (27) (c) (i) correlation: strong positive linear

0
(ii) Correlation coefficient ≈ 0.8 (approx)
(iii) median regression line
lower summary pt. $(30,20)$
upper summary pt $(38,28)$
middle summary ph $^{\text {p }}(34,24)$
Section. II
Page 14

(ii) Shortest length between home and work.

$$
\begin{aligned}
b^{2} & =a^{2}+c^{2}-2 a c \cos B \\
& =16^{2}+30^{2}-2(16)(30) \cos 40^{\circ} \\
& =420.5973346 \\
b & =\sqrt{420.5973346} \\
& =20.50546983 \\
& \approx 21 \mathrm{~km}(50 \text { neared } \mathrm{km})
\end{aligned}
$$

(iii) Sine Rule to Gid $\angle B A C$

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{b}{\sin B} \\
\frac{16}{\sin \alpha} & =\frac{20.50846983}{\sin 40^{\circ}} \\
& =31.90551517 \\
\sin \alpha & =\frac{16}{31.90551517} \\
& =0.501480697 \\
\alpha & =\sin ^{11}(0.501480697) \\
& =30.0980106^{\circ} \\
& =30^{\circ}(\text { (t onearest degree) }
\end{aligned}
$$

(iv) Bearing

$$
\begin{aligned}
& 40^{\circ}+30^{\circ}=70^{\circ} \\
& \therefore \text { bearing } 070^{\circ} \mathrm{T}
\end{aligned}
$$

(iii) Total amount or interest

$$
\begin{aligned}
\text { AML paid } & =\$ 900 \times 185+\$ 332.68=\$ 166832.68 \\
\therefore \text { Interest } & =\$ 166832.68-\$ 75000 \\
& =\$ 91832.68
\end{aligned}
$$

Page 7

