

2015

YEAR 12

TRIAL EXAMINATION

Mathematics General 2

General Instructions

- Reading time - 5 minutes
- Working time - 2.5 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A formula and data sheet is provided
- In Questions 26-30, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I

25 marks

- Attempt Questions 1-25
- Use Multiple Choice answer sheet provided
- Allow about 35 minutes for this section

Section II

75 marks

- Attempt Questions 26-30
- Answer the questions in the spaces provided
- Allow about 1 hour 55 minutes for this section

Section I

25 marks

Attempt Questions 1-25
Allow about $\mathbf{3 5}$ minutes for this section
Use the multiple-choice answer sheet for Questions 1-25

1 Which of the following is not equal to $12 a^{3} b^{2}$?
(A) $5 a^{3} b^{2}+7 a^{3} b^{2}$
(B) $3 a^{2} b \times 4 a b$
(C) $\frac{24 a^{5} b^{2}}{2 a^{2} b}$
(D) $24 a^{3} b^{2}-12 a^{3} b^{2}$

2 The length of a child's foot increases until they reach adulthood. What is the best description for the relationship between foot length and a child's age?
(A) Positive correlation
(B) Negative correlation
(C) Extrapolation
(D) Interpolation

3 The isosceles $\triangle A B C$ has two equal side lengths of 12 cm and a base length of 20 cm . What is the length of $A D$?

Not to scale
(A) $12 \times \cos 41$
(B) $12 \times \sin 41$
(C) $\frac{20 \times \sin 41}{\sin 49}$
(D) $20 \times \tan 41$

4 In a particular week, Zara works the number of hours shown in the table.

Hours worked			
Employee	Normal hours	Hours $\times 1.5$	Gross wage
Zara Harrison	29	8	$\$ 697$

According to the information in the table, what was the hourly rate of pay for Zara?
(A) $\$ 17.00$
(B) $\$ 18.84$
(C) $\$ 21.12$
(D) $\$ 24.03$

5 Jessica has 18 red discs and 2 blue discs in a bag. What is the probability that two discs randomly selected from the bag will be blue discs?
(A) $\frac{1}{190}$
(B) $\frac{1}{153}$
(C) $\frac{1}{10}$
(D) $\frac{1}{9}$

6 The water usage charge for non-residential property is $\$ 1.80 / \mathrm{kL}$ for the first 250 kL and $\$ 2.20 / \mathrm{kL}$ for any consumption over 250 kL .
What is the cost if the amount of water consumed is 480 kL ?
(A) $\$ 864$
(B) $\$ 956$
(C) $\$ 1056$
(D) $\$ 1506$

7 Which one of the following is a hyperbolic function?
(A) $y=\frac{2}{x}$
(B) $y=\left(\frac{1}{2}\right)^{x}$
(C) $y=2 x^{3}$
(D) $y=2^{x}$

8 The table below shows the monthly repayments per $\$ 1000$ on a home loan.

Term of loan	$\mathbf{6 . 0 0 \%}$	$\mathbf{6 . 2 5 \%}$	$\mathbf{6 . 5 0 \%}$	$\mathbf{6 . 7 5 \%}$	$\mathbf{7 . 0 0 \%}$	$\mathbf{7 . 2 5 \%}$
5	$\$ 19.33$	$\$ 19.45$	$\$ 19.57$	$\$ 19.68$	$\$ 19.80$	$\$ 19.93$
10	$\$ 11.10$	$\$ 11.23$	$\$ 11.35$	$\$ 11.48$	$\$ 11.62$	$\$ 11.86$
15	$\$ 8.44$	$\$ 8.57$	$\$ 8.71$	$\$ 8.85$	$\$ 8.99$	$\$ 9.13$
20	$\$ 17.16$	$\$ 7.31$	$\$ 7.46$	$\$ 7.60$	$\$ 7.84$	$\$ 7.99$

What is the monthly repayment for a loan of $\$ 84000$ at 6.75% p.a. interest over 10 years?
(A) $\$ 11.48$
(B) $\$ 96.43$
(C) $\$ 964.32$
(D) $\$ 11480.00$

9 The following triangle has sides $44 \mathrm{~cm}, 65 \mathrm{~cm}$ and 72 cm .

Not to scale

Angle C is the largest angle. Which of the following expressions is correct for angle C ?
(A) $\cos C=\frac{44^{2}+72^{2}-65^{2}}{2 \times 44 \times 72}$
(B) $\quad \cos C=\frac{65^{2}+44^{2}-72^{2}}{2 \times 65 \times 44}$
(C) $\cos C=\frac{65^{2}+72^{2}-44^{2}}{2 \times 65 \times 72}$
(D) $\cos C=\frac{65^{2}+44^{2}-72^{2}}{2 \times 65 \times 72}$

10 Harry's solution to the equation $3 y+5=5(y-1)$ is shown below.

$$
\begin{aligned}
3 y+5 & =5(y-1) & & \\
3 y+5 & =5 y-1 & & \ldots . . \text { Line1 } \\
-2 y+5 & =-1 & & \ldots . \text { Line2 } \\
-2 y & =4 & & \ldots . . \text { Line3 } \\
y & =-2 & & \ldots . . \text { Line4 }
\end{aligned}
$$

Where is the error in Harry's working?
(A) Line 1 and line 2
(B) Line 1 and line 3
(C) Line 2 and line 3
(D) Line 2 and line 4

11 Charlie borrows $\$ 60000$ for a luxury motor vehicle. Interest is calculated at a flat rate of 9.75% p.a. After one month he makes his first repayment of $\$ 1312.50$.
How much does he owe after one month?
(A) $\$ 58687.50$
(B) $\$ 59175.00$
(C) $\$ 58231.00$
(D) $\$ 59343.50$

12 Jessica received 1.8 L of fluid over 12 h . What is the flow rate in mL / h ?
(A) $6.6 \mathrm{~mL} / \mathrm{h}$
(B) $15 \mathrm{~mL} / \mathrm{h}$
(C) $21.6 \mathrm{~mL} / \mathrm{h}$
(D) $150 \mathrm{~mL} / \mathrm{h}$

13 There are five times as many cars registered in Australia as trucks. Let C stand for the number of cars and T for the number of trucks. Which equation correctly describes the relationship between the number of cars and the number of trucks?
(A) $C=5 T$
(B) $C=\frac{5}{T}$
(C) $T=5+C$
(D) $T=5 C$

14 Thomas earns \$39 640 in a year. His allowable deductions total \$3 240.

Taxable income	Tax payable
$0-\$ 18200$	Nil
$\$ 18201-\$ 37000$	Nil +19 cents for each \$1 over \$18 200
$\$ 37001-\$ 80000$	$\$ 3572+32.5$ cents for each \$1 over \$37000
$\$ 80001-\$ 180000$	$\$ 17550+37$ cents for each \$1 over \$80 000
$\$ 180001$ and over	$\$ 54550+45$ cents for each \$1 over \$180 000

Using the table above, which of the following expressions represents his tax payable?
(A) $\mathrm{Nil}+\$ 18200 \times 0.19$
(B) $\mathrm{Nil}+\$ 36400 \times 0.19$
(C) $\$ 3572+\$ 2640 \times 0.325$
(D) $\$ 3572+\$ 5880 \times 0.325$

15 The time T (in seconds) for a single swing of the pendulum in a clock is given by the formula: $T=\sqrt{\frac{L}{9.8}}$ where L is the length of the pendulum. It takes 3 seconds for a single swing of the pendulum. What is the length of the pendulum?
(A) $3 \times \sqrt{9.8}$
(B) 3×9.8^{2}
(C) 9×9.8
(D) 9×9.8^{2}

16 Calculate the surface area of this triangular prism?

(A) $450 \mathrm{~cm}^{2}$
(B) $510 \mathrm{~cm}^{2}$
(C) $540 \mathrm{~cm}^{2}$
(D) $570 \mathrm{~cm}^{2}$

17 Isaac invested $\$ 35000$ at a rate of 4.8% per annum compounded every 6 months. How much interest dis Isaac earn on his investment over 5 years?
(A) $\$ 35000(1.024)^{5}-\$ 35000$
(B) $\$ 35000(1.024)^{10}-\$ 35000$
(C) $\$ 35000(1.048)^{5}-\$ 35000$
(D) $\$ 35000(1.048)^{10}-\$ 35000$

18 Find the volume using Simpson's rule and the following set of data:
$h=15 \mathrm{~m}, A_{f}=22 \mathrm{~m}, A_{m}=25 \mathrm{~m}$ and $A_{l}=23 \mathrm{~m}$.
(A) $48 \mathrm{~m}^{3}$
(B) $350 \mathrm{~m}^{3}$
(C) $725 \mathrm{~m}^{3}$
(D) $2175 \mathrm{~m}^{3}$

19 Chloe is an ecologist who is concerned about the cane toad population in the local community. She collects 280 cane toads and tags them. A couple of months later she collects 80 cane toads and found 32 of them were tagged. What is her estimate of the cane toad population using the capture-recapture method?
(A) 112
(B) 312
(C) 360
(D) 700

20 Daniel studies English, Mathematics, Visual Arts and Multimedia. A summary of his first assessment task results is shown below

Course	Mean	Standard deviation	Result
English	66%	5	76%
Mathematics	58%	15	88%
Visual Arts	49%	14	77%
Multimedia	42%	12	78%

Which course did Daniel achieve his best performance?
(A) English
(B) Mathematics
(C) Visual Arts
(D) Multimedia

21 The number of residents at Emma Park is expected to increase using the formula $N=4500 t^{3}$, where N is the number of residents and t is the time in years.
What is the expected number of residents of Emma Park after three years?
(A) 13500
(B) 40500
(C) 121500
(D) 148500

22 The side view of a shed is shown below.

What is the length of the sloping roof, to the nearest mm ?
(A) 2530 mm
(B) 3688 mm
(C) 3030 mm
(D) 41 mm

23 Isabella achieved a mean of 54 and a standard deviation of 10 in her first assessment task in five subjects. In the second assessment she aims to improve by 5 marks in every subject. What would be the effect of this improvement on the mean and standard deviation?
(A) Mean and standard deviation will remain the same.
(B) Mean remains the same and the standard deviation will increase.
(C) Mean will increase and the standard deviation will remain the same.
(D) Mean and standard deviation will both increase.

24 A swimming event at $\operatorname{Dover}\left(51^{\circ} \mathrm{N}, 1^{\circ} \mathrm{E}\right)$ is being televised live in Sydney $\left(34^{\circ} \mathrm{S}, 151^{\circ} \mathrm{E}\right)$. The event starts at 1.30 pm Friday in Dover.
What is the time in Sydney at the start of the swimming event?
(A) 11.30 pm Friday
(B) 3.30 am Friday
(C) 11.30 pm Thursday
(D) 3.30 am Thursday

25 Louise is prescribed 900mg per day of a drug called Londane.
Londane is available in tablets which each contain 200 mg .
If she is to take the Londane twice a day, how many tablets should Louise take each time?
(A) $1 \frac{3}{4}$ tablets
(B) $2 \frac{1}{4}$ tablets
(C) $2 \frac{1}{2}$ tablets
(D) $2 \frac{3}{4}$ tablets

Section II

75 marks

Attempt Questions 26-30
Allow about 1 hour and 55 minutes for this section
Answer the questions in the spaces provided.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 26 (15 marks)
Marks
(a) A regular hexagonal spinner has four divisions as shown below.

The spinner is spun twice to form a two-digit number such as ' 23 '.
(i) How many different two-digit numbers are possible?

\qquad
(ii) What is the probability that the arrow lands on the number ' 2 ' on the first spin?
\qquad
\qquad
(iii) What is the probability that the number ' 14 ' is formed?
\qquad
\qquad
(iv) What is the probability that an even two-digit number is formed?
\qquad
\qquad
(b) Two ships leave Sydney harbour (A). Ship B sails in a direction of 048° for 101 kilometres and ship C sails due south for 85 kilometres.

Not to scale
(i) Find the size of angle $B A C$.
(ii) Calculate the distance between the two ships to the nearest kilometre.
\qquad
\qquad
\qquad
\qquad
(iii) What is the bearing, to the nearest degree, of ship B from ship C ?
\qquad
\qquad
\qquad
\qquad
(c) Jack scored 66% in the first assessment task for which the mean was 82% and the standard deviation was 8 . In the second assessment task the mean was 71% and standard deviation was 10 . Jack scored 61%.
Did Jack improve? Justify your answer.
\qquad
\qquad
\qquad
(d) The table below shows the arm spam of five students.

Name	Ava	Ben	Chris	Dan	Eve
Arm span (cm)	176	162	161	190	170

(i) Calculate the population mean.
\qquad

\qquad
\qquad
\qquad
(ii) A sample of two people is chosen at random.

1
How many samples are possible?
\qquad
\qquad
\qquad
\qquad
(e) Mitch owns a credit card that has no annual fees and charges a flat rate of 19.75% p.a. interest on all purchases. Find the interest charged on $\$ 1800$ for 15 days. Answer correct to the nearest cent.
\qquad
\qquad
\qquad
\qquad -uBy
(a) A surveyor sketched this diagram of a garden bed in a rectangular field. All measurements are in metres.

(i) Calculate the area of rectangle $A B C D$.
\qquad
(ii) Use Simpson's rule twice to estimate the unshaded area $P Q C D$.
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) The surveyor calculated the area of the shaded region $A B Q P$ to be $156 \mathrm{~m}^{2}$. What is the area of the garden bed?
\qquad
\qquad
(b) The cost per passenger of hiring a bus is inversely proportional to the number of passengers on the bus. If there are twenty passengers, the cost per passenger is $\$ 14$. What is the cost per passenger when there are fifteen passengers?
\qquad
\qquad
\qquad
(c) A machine creates metal disks with mean diameter of 4.50 cm and a standard deviation of 0.03 cm . The diameters of these metal disks are normally distributed.
(i) State the interval where 99.7% of the diameters of the metal disks will be?
(ii) A metal disk is produced at random with a diameter of 4.62 cm .
\qquad
\qquad

Why is the manager concerned?
\qquad

(d) The two-way table presents the effectiveness of a drug to reduce blood pressure.

	Decrease in blood pressure	No change in blood pressure	Total
Reaction	7	\mathbf{A}	12
No reaction	84	9	93
	91	14	\mathbf{B}

(i) How many people had no change in blood pressure but had a reaction? (A)
\qquad
\qquad
(ii) How many people were tested with the drug? (B)

\qquad
(iii) What percentage of people had a decrease in blood pressure with no reaction?
\qquad
\qquad
\qquad

(e) Jack is on the following mobile phone plan:

\$60 Saver Plan

Minimum monthly cost $\$ 60.00$.
$\$ 100$ of voice calls included each month. Voice calls:
Connection fee : $\$ 0.20$
Call cost : $\$ 1.10$ per minute

1 GB of data included each month. Data: $\$ 0.20$ per MB.
$\$ 40$ of SMS included each month.
SMS: \$0.18 each.

In August Jack used an average of 40 MB of data per day. How many MB of data did he use in excess of his included data for the month?
\qquad
\qquad
\qquad
\qquad

Question 27 continues on next page
(f) Miriam was investigating the effect of lack of sleep on drivers.

She collected data on reaction times and compared these to the hours of sleep of the participants.
The results are shown on the scatterplot below.

(i) Miriam calculates the least squares line of best fit to have an equation of : $S=-7.5 R+10.8$.

Draw the line on the graph above.
(ii) Estimate the reaction time of a person who had 6 hours sleep before the test.
\qquad
\qquad
\qquad
\qquad
\qquad
(a) A geologist collected rock samples from two different locations. The weight of the rocks (in grams) is shown in the stem-and-leaf plot.

Location A						Location B				
				5	1					
			1	0	2	7				
6	5	4	3	2	3	2	6		8	
	5	4	4	4	4	6	6		7	9
			6	2	5	4	6		8	9
				2	6		1			19
					7					

(i) The five-number summary for the rocks collected at location A is shown in the table below.

Rock samples	Location A	Location B
Minimum weight	15	
Lower quartile	32	
Median	40	
Upper quartile	47	
Maximum weight	62	

Using the data in the stem-and-leaf plot, write down the five-number summary for the weights of the rock samples from location B.
\qquad
\qquad
\qquad T
\qquad
\qquad
(ii) Compare and contrast the rock samples from the two locations.
\qquad

\qquad
\qquad
\qquad
(b) The table below shows the present value of a $\$ 1$ annuity.

Present value of \$1						
Period	1%	2%	4%	6%	8%	
1	0.9901	0.9804	0.9615	0.9434	0.9259	
2	1.9704	1.9416	1.8861	1.8334	1.7833	
3	2.9410	2.8839	2.7751	2.6730	2.5771	
4	3.9020	3.8077	3.6299	3.4651	3.3121	

(i) What would be the present value of a $\$ 3500$ per year annuity at 2% per annum for 4 years, with interest compounding yearly?
\qquad
\qquad

\qquad
(ii) What is the value of an annuity that would provide a present value of $\$ 17175$ after 3 years at 6% per annum compound interest? Answer to the nearest dollar.
\qquad
\qquad (-3
\qquad
\qquad
\qquad
(iii) An annuity of $\$ 2000$ is invested each six months at 8% per annum, compounded biannually for 2 years.
What is the present value of the annuity?
\qquad
\qquad
\qquad
\qquad
(c) Solve the following equations.
(i) $3(4 c-7)=3 c$
(ii) $\frac{1}{6} x+\frac{1}{3} x=12$
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Find the area of quadrilateral $P Q R S$. Answer correct to two decimal places.

\qquad
\qquad
\qquad
\qquad
(e) A plane trip from Beijing $(\mathrm{GMT}+8)$ to Madrid $(\mathrm{GMT}+1)$ takes 15 hours.

Dylan leaves Beijing at 7.15 am on the 1st April.
What is the date and time Dylan arrives in Madrid?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(f) What is the maximum value of the quadratic function $y=6 x-x^{2}$?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 29 (15 marks)
Marks
(a) The table below compares age (in years) and pulse rate (in beats per minute).

a	5	10	15	20	25	30
p	62.6	64.1	65.9	67.6	69.0	70.4

(i) Draw a scatterplot using this data.
p

(ii) Calculate the value of the correlation coefficient. Answer correct to three decimal places.
\qquad
\qquad
(iii) Find the equation of the least-squares line of best fit.
\qquad
\qquad
\qquad
(iv) Estimate the pulse rate when the age is 35 years.
\qquad
(b) Rossel Island is located at $\left(11^{\circ} \mathrm{S}, 153^{\circ} \mathrm{E}\right)$ and Brisbane at $\left(27^{\circ} \mathrm{S}, 153^{\circ} \mathrm{E}\right)$.
(i) What is the angular distance between Rossel Island and Brisbane?
\qquad
\qquad
\qquad
(ii) Find the distance between Rossel Island and Brisbane? Answer to the nearest kilometre.
\qquad
\qquad ?
\qquad
\qquad
(c) The life expectancy in a low socio-economic country is show below.

Current age	Female	Male
20	63.88	58.99
25	59.33	55.03
30	54.48	50.83
35	49.71	45.67
40	45.97	42.75

(i) What is life expectancy of a 25 -year-old female?
\qquad
\qquad
\qquad
(ii) What is the difference between the life expectancies of a 35 -year-old male and female?
\qquad
\qquad
\qquad $\cdots+\quad+\quad$
\qquad
(d) Jayden is a travelling salesperson and drives 800 km per week on average. His car is serviced every 10000 km , costing approximately $\$ 550$ each time. Jayden's car uses 10 L of petrol per 100 km and the cost of petrol is $\$ 1.50$ per litre. He is also required to pay registration for $\$ 360$, third party insurance for $\$ 540$ and comprehensive car insurance for $\$ 680$.
(i) What is annual cost to service the car?
\qquad
\qquad
\qquad
(ii) How much does Jayden pay for petrol in one year?
\qquad
\qquad
\qquad
(iii) Calculate the total running costs for one year.
\qquad
\qquad
\qquad
(e) Joshua is going on a 6-week holiday. He estimates taking 300 photos per day with each photo 1.5 MB . Joshua has a camera with a 16 GB memory card.
(i) How many photos can be stored on the memory card?
\qquad
\qquad
\qquad
(ii) How many memory cards will Joshua need on his holiday?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 30 (15 marks)

(a) Items with a different mass (m in kg) are attached to a spring. The length of the spring (L in cm) is measured for each item. The results are shown below.

\boldsymbol{m}	2	5	8	11	14	17
\boldsymbol{L}	41.2	55.0	68.8	82.6	96.4	110.2

(i) A linear model in the form $L=k m+32$ describes this situation.

What is the value of k ?
\qquad
\qquad

(ii) What is the length of the spring when no item is attached?
\qquad
\qquad
\qquad
(iii) Calculate the mass of an item that will make the spring 78 cm long?
\qquad
\qquad
\qquad
\qquad
(b) Emma has 8 different paintings, but has space to hang only 3 of them.
(i) Emma selects 3 of these paintings.

How many ways can she arrange them in a row?
\qquad
\qquad
(ii) How many different groups of 3 paintings can Emma select?
\qquad
\qquad
\qquad
(c) After the recent drought the rain gauge on a farm registered 65 mm of rain during a storm. A barn on the farm has a rectangular roof measuring 24 metres by 12 metres.
(i) How many kilolitres of water fell on barn roof during the storm?
(ii) The rain falling on the barn roof is collected in a cylindrical tank with a diameter of 5 metres. The tank was empty before the storm.
What depth of water was in the tank after the storm? Answer correct to two decimal places.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) The height of the tank is 2 metres. How many more litres can fall before the tank begins to overflow? Answer to the nearest litre.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad . 3 -
\qquad
(d) Given the formula $\frac{b}{a}=\frac{a}{c+8}$
(i) Make a the subject of the formula.
\qquad
\qquad
\qquad

(ii) If $b=4$ and $c=1$, what is the value of a ?
\qquad
\qquad
\qquad
(e) A bank has offered Charlotte a home loan of $\$ 368000$ with monthly repayments of $\$ 2592$ for 30 years.
(i) How much interest will she pay?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Charlotte has the option of paying an extra $\$ 240$ per month. This results in the loan being repaid in 23 years and 1 month.
How much interest will Charlotte save by paying the extra amount?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

End of paper

Section II Extra writing space
If you use this space, clearly indicate which question you are answering.
\qquad
\qquad
\qquad
\qquad
(
\square

2015

YEAR 12

TRIAL EXAMINATION

Mathematics General 2

General Instructions

- Reading time - 5 minutes
- Working time -2.5 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A formula and data sheet is provided
- In Questions 26-30, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I

25 marks

- Attempt Questions 1-25
- Use Multiple Choice answer sheet provided
- Allow about 35 minutes for this section

Section II

75 marks

- Attempt Questions 26-30
- Answer the questions in the spaces provided
- Allow about 1 hour 55 minutes for this section

Year 12 Mathematics General 2 Section I - Answer Sheet

Student Name/ Number \qquad
Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample: $2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$\mathrm{A} \bigcirc$
B

- $\mathrm{C} \bigcirc$
D \bigcirc
- If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B
$C \bigcirc$
$\mathrm{D} \bigcirc$
- If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

FRENSHAM Examination 2015

HSC Mathematics General 2 Yearly Examination

Worked solutions and marking guidelines

Section 1		
	Solution	Criteria
1	$\frac{24 a^{5} b^{2}}{2 a^{2} b}=12 a^{3} b \neq 12 a^{3} b^{2}$	1 Mark: C
2	Age increases and foot length increases. Positive correlation.	1 Mark: A
3	$\begin{aligned} \sin 41^{\circ} & =\frac{A D}{12} \\ A D & =12 \times \sin 41^{\circ} \end{aligned}$	1 Mark: B
4	$\begin{aligned} & \text { Hours worked }=29+8 \times 1.5=41 \\ & \begin{aligned} \text { Hourly rate } & =\$ 697 \div 41 \\ & =\$ 17.00 \end{aligned} \end{aligned}$	1 Mark: A
5	$\mathrm{P}(\mathrm{BB})=\frac{2}{20} \times \frac{1}{19}=\frac{1}{190}$	1 Mark: A
6	$\begin{aligned} \text { Cost } & =(\$ 1.80 \times 250)+[\$ 2.20 \times(480-250)] \\ & =\$ 956 \end{aligned}$	1 Mark: B
7	$y=\frac{2}{x}$ is a hyperbolic function.	1 Mark: A
8	$r=6.75 \%, n=10 \text { years }$ Intersection value is $\$ 11.48$ $\begin{aligned} \text { Monthly repayment } & =\$ 11.48 \times 84 \\ & =\$ 964.32 \end{aligned}$	1 Mark: C
9	Largest angle is opposite the largest side. $\cos C=\frac{65^{2}+44^{2}-72^{2}}{2 \times 65 \times 44}$	1 Mark: B
10	$\begin{array}{lrr} 3 y+5 & =5(y-1) & -2 y+5 \\ 3 y+5 & =-1 \ldots . . . \text { Line } 2 \\ 3 y-5 \ldots . . \text { Line1 } & -2 y & =-6 \ldots . . \text { Line } 3 \end{array}$ Line 1 and line 3 have errors in their working.	1 Mark: B

11	$\begin{aligned} I & =\operatorname{Prn} \\ & =\$ 60000 \times \frac{0.0975}{12} \times 1 \\ & =\$ 487.50 \\ \text { Amount owed } & =\$ 60000+\$ 487.50-\$ 1312.50 \\ & =\$ 59175 \end{aligned}$	1 Mark: B
12	$\begin{aligned} \text { Flow rate } & =\frac{1.8 \times 1000 \mathrm{~mL}}{12} \\ & =150 \mathrm{~mL} / \mathrm{h} \end{aligned}$	1 Mark: D
13	1 truck there are 5 cars 2 trucks there are 10 cars $C=5 T$	1 Mark: A
14	Tax payable $=\$ 39640-\$ 3240=\$ 36400$ Taxable income between $\$ 18201$ and $\$ 37000$ ($2^{\text {nd }}$ line) $\begin{aligned} \text { Tax payable } & =\text { Nil }+(\$ 36400-\$ 18200) \times 0.19 \\ & =\mathrm{Nil}+\$ 18200 \times 0.19 \end{aligned}$	1 Mark: A
15	$\begin{aligned} 3 & =\sqrt{\frac{L}{9.8}} \\ 9 & =\frac{L}{9.8} \\ L & =9 \times 9.8 \end{aligned}$	1 Mark: C
16	$A=\frac{1}{2} b h=\frac{1}{2} \times 12 \times 5=30 \mathrm{~cm}^{2}$ Use Pythagoras theorem to find the length of the top face. $\begin{aligned} x^{2} & =12^{2}+5^{2} \\ x & =\sqrt{169}=13 \mathrm{~cm} \\ S A & =(2 \times 30)+(13 \times 15)+(12 \times 15)+(5 \times 15) \\ & =510 \mathrm{~cm}^{2} \end{aligned}$	1 Mark: B
17	$\begin{aligned} A & =P(1+r)^{n} \\ & =\$ 35000\left(1+\frac{0.048}{2}\right)^{5 \times 2} \\ & =\$ 35000(1.024)^{10} \\ I & =A-P \\ & =\$ 35000(1.024)^{10}-\$ 35000 \end{aligned}$	1 Mark: B
18	$\begin{aligned} V & =\frac{h}{3}\left(A_{f}+4 A_{m}+A_{l}\right) \\ & =\frac{15}{3} \times(22+4 \times 25+23)=725 \mathrm{~m}^{3} \end{aligned}$	1 Mark: C

19	$\begin{aligned} \frac{280}{p} & =\frac{32}{80} \\ 32 p & =22,400 \\ p & =700 \end{aligned}$ Cane toad population is approximately 700 .	1 Mark: D
20	English $z=\frac{x-\bar{x}}{s}=\frac{76-66}{5}=2$ Mathematics $z=\frac{x-\bar{x}}{s}=\frac{88-58}{15}=2$ Visual Arts $z=\frac{x-\bar{x}}{s}=\frac{77-49}{14}=2$ Multimedia $z=\frac{x-\bar{x}}{s}=\frac{78-42}{12}=3$ (Highest z-score)	1 Mark: D
21	$\begin{aligned} N & =4,500 t^{3} \\ & =4,500 \times 3^{3} \\ & =121,500 \end{aligned}$	1 Mark: C
22	Using Pythagoras theorem $\begin{aligned} & x^{2}=2400^{2}+800^{2} \\ & x=2529.822128 \ldots \approx 2530 \mathrm{~mm} \\ & \text { Roof length } \approx 250+250+2530 \\ & \approx 3030 \mathrm{~mm} \end{aligned}$	1 Mark: C
23	Mean will increase and the standard deviation will remain the same. (Mark will increase from 54 to 59 and the spread is unaffected)	1 Mark: C
24	Longitude difference $=151-1^{\prime \prime}=150^{\circ}$ Time difference $=150 \times 4=600 \mathrm{~min}$ or 10 h	1 Mark: A

25	$900 \mathrm{mg} /$ day prescribed each day, therefore, number of tablets per day $=\frac{900 \mathrm{mg}}{200 \mathrm{mg}}$ $=4.5$ which means 2.25 tablets each time (twice each day) or each dose $=\frac{900}{2}=450 \mathrm{mg}$ therefore , number of tablets each time $=\frac{450 \mathrm{mg}}{200 \mathrm{mg}}=2.25$	1 mark: B

Section II

75 marks

Attempt Questions 26-30

Allow about 1 hour and 55 minutes for this section
Answer the questions in the spaces provided.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 26 (15 marks)
Marks
(a) A regular hexagonal spinner has four divisions as shown below.

$$
\begin{aligned}
& \text { Ont comes } \\
& 11,21,31,41 \\
& 12,22,32,42 \\
& 13,23,33,43 . \\
& 14,24,34,44
\end{aligned}
$$

The spinner is spun twice to form a two-digit number such as ' 23 '.
(i) How many different two-digit numbers are possible?
\qquad
\qquad
(ii) What is the probability that the arrow lands on the number ' 2 ' on the first spin?
\qquad
(iii) What is the probability that the number ' 14 ' is formed?
$P(14)=\frac{1}{6} \times \frac{1}{2}=\frac{1}{12}$
\qquad
(iv) What is the probability that an even two-digit number is formed?

(b) Two ships leave Sydney harbour (A). Ship B sails in a direction of 048° for 101 kilometres and ship C sails due south for 85 kilometres.

Not to scale
(i) Find the size of angle $B A C$.
\qquad
(ii) Calculate the distance between the two ships to the nearest kilometre.
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$B C^{2}=85^{2}+101^{2}-2 \times 85 \times 101 \times \cos 132$
$B C=170.04403$
$B C=170 \mathrm{~km}$
(I) substitutes
correctly
(1) correct answer.
(iii) What is the bearing, to the nearest degree, of ship B from ship C ?

(c) Jack scored 66% in the first assessment task for which the mean was 82% and the standard deviation was 8 . In the second assessment task the mean was 71% and standard deviation was 10 . Jack scored 61%.
Did Jack improve? Justify your answer.

\therefore Tack has improved as 2 -scop etas in creased or standard deviation is closertothe mean
(1) for justification.
(d) The table below shows the arm spam of five students.

Name	Ava	Ben	Chris	Dan	Eve
Arm span (cm)	176	162	161	190	170

(i) Calculate the population mean.
\qquad
\qquad
(ii) A sample of two people is chosen at random.

How many samples are possible?

$$
5 C_{2}=10
$$

$$
\therefore 10 \text { possible samples }
$$

(e) Mitch owns a credit card that has no annual fees and charges a flat rate of 19.75% p.a. interest on all purchases. Find the interest charged on $\$ 1800$ for 15 days. Answer correct to the nearest cent.

$$
\begin{aligned}
& I=1800 \quad I=P \times r \times n \\
& \begin{array}{l}
r=0.1975 / 365 \\
n=15 \text { days }
\end{array}=1800 \times \frac{0.1975}{365} \times 15 \quad \text { (1) converts to } \text { a daily rate } \\
& =14.60958 \\
& =\$ 14.61
\end{aligned}
$$

Question 27 (15 marks)

Marks

(a) A surveyor sketched this diagram of a garden bed in a rectangular field.

All measurements are in metres.

(i) Calculate the area of rectangle $A B C D$.

(ii) Use Simpson's rule twice to estimate the unshaded area $P Q C D$.
$\begin{aligned} A & =h / 3\left(d_{p}+4 d_{m}+d\right)+h / 3\left(d_{f}+4 d_{m}+d_{l}\right) \\ & =8 / 3(10+(4 \times 7)+6)+8 / 3(6+4 \times 7+10)\end{aligned}$
\qquad
$=235 \mathrm{~m}^{2} \quad$ (I) correct answer
\qquad
(iii) The surveyor calculated the area of the shaded region $A B Q P$ to be $156 \mathrm{~m}^{2}$. What is the area of the garden bed?

A	$=576-235-156$
	$=185 \mathrm{~m}^{2}$

(b) The cost per passenger of hiring a bus is inversely proportional to the number of passengers on the bus. If there are twenty passengers, the cost per passenger is $\$ 14$. What is the cost per passenger when there are fifteen passengers?

(c) A machine creates metal disks with mean diameter of 4.50 cm and a standard deviation of 0.03 cm . The diameters of these metal disks are normally distributed.
(i) State the interval where 99.7% of the diameters of the metal disks
will be? 3 Standard deviations

$$
\begin{array}{rr}
4.5+(3 \times 0.03)=4.59 & \\
4.5-(3 \times 0.03)=4.41 & \therefore \text { Interval is } \\
4.41 \text { to } 459 \mathrm{~cm}
\end{array}
$$

(ii) A metal disk is produced at random with a diameter of 4.62 cm .

Why is the manager concerned?
The manager is concerned because 4.62 is 4 standard deviations above the mean.
\therefore Extremely unlikely and indicates he machine is not
(d) The two-way table presents the effectiveness of a drug to reduce blood pressure

	Decrease in blood pressure	No change in blood pressure	Total
Reaction	7	A (5)	12
No reaction	84	9	93
	91	14	B 105

(i) How many people had no change in blood pressure but had a
reaction? (A)

$$
12-7=5
$$

(ii) How many people were tested with the drug? (B)

$$
91+14=105
$$

\qquad
(iii) What percentage of people had a decrease in blood pressure with no reaction?

(e) Jack is on the following mobile phone plan:

In August Jack used an average of 40 MB of data per day. How many MB of data did he use in excess of his included data for the month?

$$
1240-1024=216 \mathrm{mB} \text { excess. }
$$

(f) Miriam was investigating the effect of lack of sleep on drivers.

She collected data on reaction times and compared these to the hours of sleep of the participants.
The results are shown on the scatterplot below.

To draw the graph use the equation for any 2 point.
(i) Miriam calculates the least squares line of best fit to have an equation of : $S=-7.5 R+10.8$.

Draw the line on the graph above.

See above.
(ii) Estimate the reaction time of a person who had 6 hours sleep before the test.

$$
\begin{aligned}
S & =-7.5 R+10.8 \\
6 & =-7.5 R+10.8 \\
-4.8 & =-7.5 R \\
\frac{-4.8}{-75} & =R \\
0.64 & =R
\end{aligned}
$$

If reading off graph 0.6 (to the nearest
$\left.10^{\text {Th }} \mathrm{sec}\right)$ 10 TH SCC)

Question 28 (15 marks)
(a) A geologist collected rock samples from two different locations. The weight of the rocks (in grams) is shown in the stem-and-leaf plot.

\[

\]

(i) The five-number summary for the rocks collected at location A is shown in the table below.

Rock samples	Location A	Location B
Minimum weight	15	27
Lower quartile	32	46
Median	40	57
Upper quartile	47	61
Maximum weight	62	$7-3$

Using the data in the stem-and-leaf plot, write down the five-number summary for the weights of the rock samples from location B.

(2.) all corned.
\qquad
\qquad
\qquad
\qquad
(ii) Compare and contrast the rock samples from the two locations.

$$
\begin{aligned}
& \text { Range } A=47 \quad R_{\text {angle }}^{B}=46 \text { A lagger range. } \\
& I Q R_{A}=15 \quad I Q R_{B}=15 \text { sesame. } \\
& \text { median } A=40 \quad \text { median } B=57 \text { median } A \text { smaller. } \\
& \because \text { Lower weights in A. } \\
& \therefore A=\text { normal distribution } \left\lvert\, B=\begin{array}{r}
\text { negatinaly } \\
\text { showed. }
\end{array}\right. \\
& \text { (1) Shows some inderstinding } \\
& \text { (2) Correct answer }
\end{aligned}
$$

(b) The table below shows the present value of a $\$ 1$ annuity.

Present value of \$1						
Period	1%	2%	4%	6%	8%	
1	0.9901	0.9804	0.9615	0.9434	0.9259	
2	1.9704	1.9416	1.8861	1.8334	1.7833	
3	2.9410	2.8839	2.7751	2.6730	2.5771	
4	3.9020	3.8077	3.6299	3.4651	3.3121	

(i) What would be the present value of a $\$ 3500$ per year annuity a 2%
per annum for 4 years, with interest compounding yearly?

\qquad
$=\$ 13,326.95$
(ii) What is the value of an annuity that would provide a present value of $\$ 17175$ after 3 years at 6% per annum compound interest? Answer to the nearest dollar.
Intersection value $=2.6730$

$\therefore \quad \$ 17175$	$=x \times 26730$
$\frac{17175}{2.6730}$	$=x$
$\$ 6425 / y r$	$=x$

(iii) An annuity of $\$ 2000$ is invested each six months at 8% per annum, compounded biannually for 2 years. $\times 2$ What is the present value of the annuity?

$$
\text { Intersechon is } 3.6299 .(4 \% \text { and } 4 y \mathrm{rs} \text {) }
$$

\qquad
\qquad
(c) Solve the following equations.
(i) $3(4 c-7)=3 c$

$$
\begin{aligned}
12 c-21 & =3 c \\
9 c & =21 \\
c & =\frac{21}{9}=2 \frac{1}{3}
\end{aligned}
$$

(ii) $\frac{1}{6} x+\frac{1}{3} x=12$
$\frac{1}{63 x}+\frac{2}{6} x=12$
$3 / 6 x=12$
\qquad
\qquad
\qquad
(d) Find the area of quadrilateral $P Q R S$. Answer correct to two decimal places.

Not to scale

Area $\triangle P Q R=\frac{1}{2} 14 \times 8=56$
$\begin{aligned} \text { Area } \triangle P R S & =\frac{1}{2} 14 \times 15 \times \sin 59 \\ & =90.002566 .\end{aligned}$

$$
\begin{equation*}
=90.002566 . \tag{1}
\end{equation*}
$$

Area parS $=56+90=\frac{146.00}{\text { to }}$ (1)
(e) A plane trip from Beijing (GMT +8) to Madrid (GMT +1) takes 15 hours. Dylan leaves Beijing at 7.15 am on the 1st April.
What is the date and time Dylan arrives in Madrid?
Time difference $=8-1=7$ hours.
Lis April Madnd - timediff + jouncytione

$$
7.15 \mathrm{am}-7 \mathrm{~h}+15 \mathrm{hr}=3.15 \mathrm{pm}{ }^{155} \text { April } .
$$

(f) What is the maximum value of the quadratic function $y=6 x-x^{2}$?

\qquad
\qquad

Question 29 (15 marks)
(a) The table below compares age (in years) and pulse rate (in beats per minute).

a	5	10	15	20	25	30
p	62.6	64.1	65.9	67.6	69.0	70.4

(i) Draw a scatterplot using this data.

(ii) Calculate the value of the correlation coefficient. Answer correct to three decimal places.

$$
(r) \quad 0.9989 \ldots=0.999 \quad(3 \mathrm{dep}) .
$$

(iii) Find the equation of the least-squares line of best fit.
$A:($ yintereapt $) A=61.06 \quad B:$ (gradient) $B=0.316 \ldots$

$$
\begin{aligned}
& y=0.316 x+61.06 \\
& \therefore \quad p=0.32 a+61.06
\end{aligned}
$$

(iv) Estimate the pulse rate when the age is 35 years.

$$
\text { (equation) } \quad \rho=0.32(35)+61.06
$$

(extrapolate on own
graph
(b) Russel Island is located at $\left.11^{\circ} \mathrm{S}, 153^{\circ} \mathrm{E}\right)$ and Brisbane at $\left(27^{\circ} \mathrm{S}\right.$. $153^{\circ} \mathrm{E}$).
(i) What is the angular distance between Rossel Island and Brisbane?

$$
\begin{aligned}
& =27-11 \\
& =16^{\circ}
\end{aligned}
$$

\qquad
(ii) Find the distance between Rossel Island and Brisbane? Answer to the nearest kilometre.

$$
\begin{aligned}
l & =\frac{16}{360} \times 2 \times \pi \times 6400 \\
& =1787.2171 \ldots \\
& =1787 \mathrm{~km} \quad(\text { nearest } \mathrm{km})
\end{aligned}
$$

\qquad
\qquad
(c) The life expectancy in a low socio-economic country is show below.

\rightarrow| Current age | Female | Male |
| :---: | :---: | :---: |
| 20 | 63.88 | 58.99 |
| 25 | 59.33 | 55.03 |
| 30 | 54.48 | 50.83 |
| 35 | 49.71 | 45.67 |
| 40 | 45.97 | 42.75 |

(i) What is life expectancy of a 25 -year-old female?
\qquad
ignored $\left\{\begin{array}{l}\text { error answers, that added } 25+59.33\end{array}\right.$
(ii) What is the difference between the life expectancies of a 35 -year-old male and female?

$$
\begin{aligned}
& =49.71-45.67 \\
& =4.04 \text { years }
\end{aligned}
$$

\qquad
\qquad
\qquad
(d) Jayden is a travelling salesperson and drives 800 km per week on average. His car is serviced every 10000 km , costing approximately $\$ 550$ each time. Jayden's car uses 10 L of petrol per 100 km and the cost of petrol is $\$ 1.50$ per litre. He is also required to pay registration for $\$ 360$, third party insurance for $\$ 540$ and comprehensive car insurance for $\$ 680$.
(i) What is annual cost to service the car?

$$
\text { serves }=\frac{41600 \mathrm{~km}}{10000 \mathrm{~km}}=4 \cdot 16: 4.4 \times 5 \mathrm{~km}
$$

(ii) How much does Jayden pay for petrol in one year?

$$
\begin{aligned}
\text { Cost } & =\frac{41600}{100}=416 \\
\text { total L } & =416 \times 10 L \\
& =4160 \\
\text { total cost } & =4160 \times 1.50=86240
\end{aligned}
$$

(iii) Calculate the total running costs for one year.

$$
\begin{aligned}
\text { Total cost } & =2200+6240+360+540+680 \\
& =\$ 10020
\end{aligned}
$$

(e) Joshua is going on a 6 -week holiday. He estimates taking 300 photos per day with each photo 1.5 MB . Joshua has a camera with a 16 GB memory card.
(i) How many photos can be stored on the memory card?

$$
\begin{aligned}
& 16 \times 1 \mathrm{~GB} \\
= & 16 \times 1024 \mathrm{MB} \\
= & 109 \mathrm{MB} \\
= & 1092.66 \ldots
\end{aligned}
$$

$$
=16384 \quad \therefore 10922 \text { evhole photos }
$$

(ii) How many memory cards will Joshua need on his holiday?

$$
\begin{aligned}
\text { total photos } & =300 \times 7 \times 6 \\
& =12600 \text { photos } \\
\text { cards needed } & =\frac{12600}{10922.6} \\
& =1.153 \ldots
\end{aligned}
$$

$\therefore 2$ cards needed

Question 30 (15 marks)
(a) Items with a different mass (m in kg) are attached to a spring. The length of the spring (L in cm) is measured for each item. The results are shown below.

\boldsymbol{m}	2	5	8	11	14	17
\boldsymbol{L}	41.2	55.0	68.8	82.6	96.4	110.2

(i) A linear model in the form $L=k m+32$ describes this situation. What is the value of k ?

$$
\begin{aligned}
41.2 & =2 k+32 \\
2 k & =9.2 \\
k & =4.6
\end{aligned}
$$

(ii) What is the length of the spring when no item is attached?

$$
\begin{aligned}
& L \text { when } m=0 \\
& L=4.6 m+432 \\
& L=32 \quad \therefore \quad 32 \mathrm{~cm}
\end{aligned}
$$

(iii) Calculate the mass of an item that will make the spring 78 cm long?

(b) Emma has 8 different paintings, but has space to hang only 3 of them.
(i) Emma selects 3 of these paintings.

How many ways can she arrange them in a row? (only used 3) 1

$$
3 \times 2 \times 1=6 \text { a arongments. }
$$

(ii) How many different groups of 3 paintings can Emma select? (from the 1)

(c) After the recent drought the rain gauge on a farm registered 65 mm of rain during a storm. A barn on the farm has a rectangular roof measuring 24
 metres by 12 metres.
(i) How many kilolitres of water fell on barn roof during the storm?

$$
\begin{array}{rlr}
V & =A \mathrm{~h} & 65 \mathrm{~mm}=0.065 \mathrm{~m} . \\
& =(24 \times 12) \times 0.065 & \\
& =18.72 \mathrm{~m}^{3} & 1 \mathrm{~m}^{3}=1000 \mathrm{~L}=1 \mathrm{KL} \\
& =18.72 \mathrm{KL}
\end{array}
$$

$\therefore 18.72 \mathrm{KL}$ fell on the roof
(ii) The rain falling on the barn roof is collected in a cylindrical tank with a diameter of 5 metres. The tank was empty before the storm.
What depth of water was in the tank after the storm? Answer correct to two decimal places.

$$
\begin{aligned}
& V= \pi r^{2} h \\
& 18.72=\pi \times 2.5^{2} \times h \\
& h=\frac{18.72}{\pi \times 2.5^{2}} \\
&=0.95340 \ldots \\
& h=0.95 \mathrm{~m} \\
&(2 d . p)
\end{aligned}
$$

(iii) The height of the tank is 2 metres. How many more litres can fall before the tank begins to overflow? Answer to the nearest litre.
\qquad

$$
=1.046598 \ldots
$$

$$
V=\pi r^{2} h
$$

$$
\left.\begin{array}{rl}
V & =18 \times 2.5^{2} \times 2 \\
& =39.269 \mathrm{~m}^{3}
\end{array}\right] 1 / 2
$$

$$
=\pi \times 2.5^{2} \times 1.0465 \cdots
$$

$$
=20.549 \ldots m^{3}
$$

$$
=20.549 \ldots \times 1000
$$

$=20550$ litres (nearest litre)
\qquad
(d) Given the formula $\frac{b}{a}=\frac{a}{c+8}$
(i) Make a the subject of the formula.

* ignored
(ii) If $b=4$ and $c=1$, what is the value of a ?

a	$= \pm \sqrt{b(c+8)}$
	$= \pm \sqrt{4(1+8)}$
	$= \pm \sqrt{36}= \pm 6 \quad$ (wrong bald answer)
no mane	

(e) A bank has offered Charlotte a home loan of $\$ 368000$ with monthly repayments of $\$ 2592$ for 30 years.
(i) How much interest will she pay?

$$
\begin{aligned}
\text { total paid } & =30 \times 12 \times 2592 \\
& =\$ 933120 \\
\therefore \text { interest } & =933120-368000 \\
& =\$ 565120 \text { (paid un interest) }
\end{aligned}
$$

(ii) Charlotte has the option of paying an extra $\$ 240$ per month. This results in the loan being repaid in 23 years and 1 month.
How much interest will Charlotte save by paying the extra amount?

$$
\begin{aligned}
& \text { totalpaid }=((23 \times 12)+1) \times(240+2592) \\
&=277 \times(2832) \\
&=\$ 784464 \\
& \text { allinence, repaid }=933120-784464 \\
&=\$ 148656 \\
& \text { Saving } \$ 148656 \text { in interest }
\end{aligned}
$$

End of paper

Section II Extra writing space
If you use this space, clearly indicate which question you are answering.
(e)

\therefore saving dellerave

$$
933120-784+64
$$

$$
\$ 148660
$$

New.
Limn 3368000

$$
\begin{aligned}
\text { Ttatil.rpay } & =277 \times(240+2592) \\
& =784464
\end{aligned}
$$

total saved

$$
\begin{aligned}
& 933120-784464 \\
& =148656
\end{aligned}
$$

Section II		
	Solution	Criteria
$26(a)$ (i)	$\begin{aligned} & \text { Arrangements }=4 \times 4=16 \\ & \{11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44\} \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} 26(\mathrm{a}) \\ \text { (ii) } \end{gathered}$	Hexagon is divided into 6 equilateral triangles. $\mathrm{P}(2)=\frac{1}{6}$	1 Mark: Correct answer.
$\begin{gathered} 26(a) \\ \text { (iii) } \end{gathered}$	$\mathrm{P}(14)=\frac{1}{6} \times \frac{1}{2}=\frac{1}{12}$	1 Mark: Correct answer.
$\begin{gathered} 26(\mathrm{a}) \\ (\mathrm{iv}) \end{gathered}$	Even number must end in a 2 or a 4. $\mathrm{P}(\text { Even })=\frac{4}{6}=\frac{2}{3}$	1 Mark: Correct answer.
$26(b)$ (i)	$\begin{aligned} \angle B A C & =180^{\circ}-48^{\circ}(C \text { is due south of } A) \\ & =132^{\circ} \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} 26(\mathrm{~b}) \\ (\mathrm{ii}) \end{gathered}$	$\begin{aligned} a^{2} & =b^{2}+c^{2}-2 b c \cos A \\ B C^{2} & =85^{2}+101^{2}-2 \times 85 \times 101 \times \cos 132^{\circ} \\ B C & =170.0440311 \ldots \\ & \approx 170 \mathrm{~km} \end{aligned}$ The distance between the ships is 170 km .	2 Marks: Correct answer. 1 Mark: Substitutes one correct value into the cosine rule.
$\begin{gathered} 26(\mathrm{~b}) \\ (\mathrm{iii}) \end{gathered}$	$\begin{aligned} \frac{\sin C}{101} & =\frac{\sin 132^{\circ}}{170.0440311 \ldots} \\ \sin C & =\frac{101 \times \sin 132^{\circ}}{170.0440311 \ldots} \\ C & =26.19331292 \ldots \\ & \approx 26^{\circ} \end{aligned}$ Bearing is 026° or $\mathrm{N} 26^{\circ} \mathrm{E}$	2 Mark: Correct answer in bearing or compass form. 1 Mark: a correct substitution \& or correct answer not given as a bearing or compass direction
26(c)	Use z-scores to compare results First assessment task: $z=\frac{x-\bar{x}}{s}=\frac{66-82}{8}=-2$ Second assessment task: $z=\frac{x-\bar{x}}{s}=\frac{61-71}{10}=-1$ Jack has improved as his z-score has increased.	2 Marks: Correct answer. 1 Mark: Finds the z-score or shows some understanding.
$\begin{gathered} 26(\mathrm{~d}) \\ \text { (i) } \end{gathered}$	$\mu=\frac{176+162+161+190+170}{5}=171.8$ Population mean is 171.8	1 Mark: Correct answer.
$26(\mathrm{~d})$ (ii)	${ }^{5} C_{2}=10$ There are 10 possible samples.	1 Mark: Correct answer.

26(e)	$\begin{aligned} I & =\operatorname{Prn} \\ & =\$ 1800 \times \frac{0.1975}{365} \times 15 \\ & =\$ 14.60958 \ldots \approx \$ 14.61 \end{aligned}$ Interest charged is $\$ 14.61$	2 Marks: Correct answer. 1 Mark: Converts to a daily rate or shows some understanding.
$\begin{gathered} 27(\mathrm{a}) \\ \text { (i) } \end{gathered}$	$\begin{aligned} A & =l b \\ & =32 \times 18=576 \mathrm{~m}^{2} \end{aligned}$ Area of rectangle $A B C D$ is $576 \mathrm{~m}^{2}$	1 Mark: Correct answer.
$\begin{gathered} 27(\mathrm{a}) \\ \text { (ii) } \end{gathered}$	$\begin{aligned} A & =\frac{h}{3}\left(d_{f}+4 d_{m}+d_{l}\right)+\frac{h}{3}\left(d_{f}+4 d_{m}+d_{l}\right) \\ & =\frac{8}{3}(10+4 \times 7+6)+\frac{8}{3}(6+4 \times 7+10) \\ & =234.6666 \ldots \mathrm{~cm}^{2} \approx 235 \mathrm{~m}^{2} \end{aligned}$ Area of $P Q C D$ is approximately $235 \mathrm{~m}^{2}$	2 Marks: Correct answer. 1 Mark: Makes some progress using Simpson's rule.
$\begin{gathered} 27(\mathrm{a}) \\ \text { (iii) } \end{gathered}$	$\begin{aligned} A & =576-235-156 \\ & =185 \mathrm{~m}^{2} \end{aligned}$ Area of the garden bed is approximately $185 \mathrm{~m}^{2}$	1 Mark: Correct answer.
27(b)	$\begin{aligned} c & =\frac{k}{n} & c & =\frac{280}{n} \\ 14 & =\frac{k}{20} & & =\frac{280}{15} \\ k & =280 & & =\$ 18.6666 \ldots \approx \$ 18.67 \end{aligned}$ Cost per passenger is $\$ 18.67$	2 Marks: Correct answer. 1 Mark: Finds the value of k or shows some understanding
$\begin{gathered} 27(\mathrm{c}) \\ \text { (i) } \end{gathered}$	Almost certainly - 99.7% of the scores. 3 standard deviations above and below the mean. $4.50-3 \times 0.03=4.41 \mathrm{~cm}$ $4.50+3 \times 0.03=4.59 \mathrm{~cm}$ Interval range is from 4.41 cm to 4.59 cm	1 Mark: Correct answer.
$\begin{gathered} 27(\mathrm{c}) \\ \text { (ii) } \end{gathered}$	The manager is concerned because 4.62 cm is 4 standard deviations above the mean. This is extremely unlikely to occur and indicates the machine is not working correctly.	1 Mark: Correct answer.
27(d) (i)	$12-7=5 \text { or } 14-9=5$ 5 people had no change in blood pressure but had a reaction.	1 Mark: Correct answer.
$27(\mathrm{~d})$ (ii)	$91+14=105 \text { or } 12+93=105$ 105 people were tested with the drug?	1 Mark: Correct answer.
$\begin{gathered} 27(\mathrm{~d}) \\ (\mathrm{iii}) \end{gathered}$	$\begin{aligned} \text { Percentage } & =\frac{84}{105} \times 100 \\ & =80 \% \end{aligned}$	2 Marks: Correct answer. 1 Mark: Used either 84 or 105

$\begin{gathered} 28(\mathrm{a}) \\ \text { (ii) } \end{gathered}$	Location A weights show a normal distribution whereas location B the weights are negatively skewed. Location A the weights are generally lower, there is a smaller median (40 compared to 57) however the interquartile range from both locations is the same $(\mathrm{IQR}=15)$.	2 Marks: Correct answer. 1 Mark: Shows some understanding.
$\begin{gathered} 28(\mathrm{~b}) \\ \text { (i) } \end{gathered}$	Intersection value is 3.8077 (2% and 4 years) $\begin{aligned} P V & =3.8077 \times 3500 \\ & =\$ 13,326.95 \end{aligned}$ Present value is $\$ 13326.95$	1 Mark: Correct answer.
$\begin{gathered} 28(\mathrm{~b}) \\ \text { (ii) } \end{gathered}$	Intersection value is 2.6730 (6% and 3 years) $\begin{aligned} \$ 17175 & =x \times 2.6730 \\ x & =\frac{\$ 17175}{2.6730} \\ & =\$ 6425.364759 \ldots \approx \$ 6425 \end{aligned}$ Value of the annuity is $\$ 6425$ per year.	1 Mark: Correct answer.
$\begin{gathered} 28(\mathrm{~b}) \\ (\mathrm{iii}) \end{gathered}$	Intersection value is 3.6299 (4% and 4 years) $\begin{aligned} P V & =3.6299 \times 2000 \\ & =\$ 7259.80 \end{aligned}$ Present value is $\$ 7259.80$	1 Mark: Correct answer.

$\begin{gathered} 28(\mathrm{c}) \\ \text { (ii) } \end{gathered}$	$\begin{array}{rlrl} 3(4 c-7) & =3 c & 3(4 c-7) & =3 c \\ 4 c-7 & =c & 12 c-21 & =3 c \\ 3 c-7 & =0 & 9 c-21 & =0 \\ 3 c & =7 & 9 c & =21 \\ c & =\frac{7}{3}=2 \frac{1}{3} & c & =\frac{21}{9}=2 \frac{1}{3} \end{array}$	1 Mark: Correct answer.
$\begin{gathered} 28(\mathrm{c}) \\ \text { (iii) } \end{gathered}$	$\begin{array}{rlrl} 6 \times\left(\frac{1}{6} x+\frac{1}{3} x\right) & =12 \times 6 & \text { or } \frac{1}{6} x+\frac{1}{3} x & =12 \\ x+2 x & =72 & \frac{3}{6} x & =12 \\ 3 x & =72 & 3 x & =72 \\ x & =24 & x & =24 \end{array}$	2 Marks: Correct answer. 1 Mark: a correct step in solution
28(d)	$\begin{aligned} \text { Area } \triangle P Q R & =\frac{1}{2} \times 14 \times 8 \\ & =56 \mathrm{~cm}^{2} \\ \text { Area } \triangle P R S & =\frac{1}{2} \times 14 \times 15 \times \sin 59^{\circ} \\ & =90.00256657 \ldots \mathrm{~cm}^{2} \\ \text { Area } P Q R S & =56+90.00 \\ & =146.00 \mathrm{~cm}^{2} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Finds the area of one triangle.
28(e)	Time difference $=8-1=7 \mathrm{~h}$ Madrid is west of Beijing. Subtract the time difference. Madrid's time is $7.15 \mathrm{am}-7 \mathrm{~h}+15 \mathrm{~h}=3.15 \mathrm{pm} 1^{\text {st }}$ April	1 Mark: Correct answer.
28(f)	Draw the graph of $y=6 x-x^{2}$ Maximum value of the quadratic function $y=6 x-x^{2}$ is 9	2 Marks: Correct answer. 1 Mark: Draws a graph or table of values or makes some progress towards the solution.

$\begin{gathered} 29(\mathrm{a}) \\ \text { (i) } \end{gathered}$		1 Mark: Correct answer. - do not draw line best ρt un asled.
29(a) (ii)	$\begin{aligned} r & =0.9989200228 \ldots \\ & \approx 0.9989 \Longrightarrow 0.999 \quad(3 \text { Q.p. }) \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} 29(\mathrm{a}) \\ \text { (iii) } \end{gathered}$	$\begin{aligned} & A=61.06 \quad \text { ouly } \frac{2 \text { mathods apech }}{B}=0.3165714286 \ldots \approx 0.32 \rightarrow m=r \times \frac{\sigma y}{\sigma x} \\ & y=B x+A \\ &=0.32 x+61.06 \quad \text { lessiest } b=\bar{x} y^{\prime} s-m \times \bar{x} \cdot x^{\prime} s \\ & p=0.32 a+61.06 \rightarrow \text { Reg } 1: A=m \\ & 2: B=b \end{aligned}$	2 Marks: Correct answer. 1 Mark: Finds A or B.
29(a) (iv)	$\begin{aligned} p & =0.32 x+61.06 \\ & =0.32 \times 35+61.06 \\ & =72.26 \end{aligned}$ (o) eurience of entrapolation on graph. Pulse rate is 72.26 beats per minute.	1 Mark: Correct answer.
$29 \text { (b) }$ (i)	$\begin{aligned} \text { Angular distance } & =27-11 \\ & =16^{\circ} \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} 29(b) \\ \text { (ii) } \end{gathered}$	$\begin{aligned} l & =\frac{16}{360} \times 2 \times \pi \times 6400 \\ & =1787.217154 \ldots \\ & \approx 1787 \mathrm{~km} \end{aligned}$ Distance between Rossel Island and Brisbane is 1787 km .	1 Mark: Correct answer.
$\begin{gathered} \text { 29(c) } \\ \text { (i) } \end{gathered}$	Life expectancy of a 25 -year-old female is 59.33 years.	1 Mark: Correct answer.
$\begin{gathered} 29(\mathrm{c}) \\ \text { (ii) } \end{gathered}$	$\begin{aligned} \text { Difference } & =49.71-45.67 \\ & =4.04 \end{aligned}$ Difference in life expectancy is 4.04 years.	1 Mark: Correct answer.

$\begin{gathered} 29(\mathrm{~d}) \\ \text { (i) } \end{gathered}$	Distance travelled in one year $=800 \times 52=41600 \mathrm{~km}$ $\begin{aligned} & \text { Number of services }=\frac{41600}{10000}=4.16 \approx 4 \\ & \begin{aligned} \text { Service cost } & =4 \times \$ 550 \\ & =\$ 2200 \end{aligned} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Finds the number of services in one year.
$\begin{gathered} \text { 29(d) } \\ \text { (ii) } \end{gathered}$	$\begin{aligned} \text { Cost of petrol } & =\frac{41600}{100} \times 10 \times \$ 1.50 \\ & =\$ 6240 \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} \text { 29(d) } \\ \text { (iii) } \end{gathered}$	$\begin{aligned} \text { Total costs } & =\$ 2200+\$ 6240+\$ 360+\$ 540+\$ 680 \\ & =\$ 10020 \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} \text { 29(e) } \\ \text { (i) } \end{gathered}$	$\begin{aligned} \text { Memory card } & =\frac{16 \times 1024 \mathrm{MB}}{1.5} \text { or } 10922 \text { whole } \\ & =10,922.6666 \ldots \approx 10,923 \text { photos } \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} \text { 29(e) } \\ \text { (ii) } \end{gathered}$	$\begin{aligned} \text { Holiday } & =6 \times 7 \times 300 \\ & =12,600 \text { photos } \end{aligned}$ Number of memory cards $=\frac{12,600}{10,922.66 \ldots}=1.1535644 \ldots \approx 2$ Two memory cards are needed for Joshua's holiday.	1 Mark: Correct answer.
$\begin{gathered} 30(\mathrm{a}) \\ \text { (i) } \end{gathered}$	To find the value of k substitute a value from the table. $\begin{aligned} L & =k m+32 \\ 41.2 & =2 k+32 \\ 2 k & =9.2 \\ k & =4.6 \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} 30(\mathrm{a}) \\ \text { (ii) } \end{gathered}$	When no item is attached then $m=0$ $\begin{aligned} L & =4.6 m+32 \\ & =4.6 \times 0+32=32 \end{aligned}$ The length of the spring is 32 cm .	1 Mark: Correct answer.
$\begin{gathered} 30(\mathrm{a}) \\ \text { (iii) } \end{gathered}$	To find m when $L=78$ $\begin{aligned} L & =4.6 m+32 \\ 78 & =4.6 m+32 \\ 4.6 m & =46 \\ m & =10 \mathrm{~kg} \end{aligned}$	1 Mark: Correct answer.
$30(\mathrm{~b})$ (i)	$\begin{aligned} \text { Number of arrangements } & =3 \times 2 \times 1 \\ & =6 \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} 30(\mathrm{~b}) \\ \text { (ii) } \end{gathered}$	Unordered selection $\begin{aligned} \text { Number of selections } & =\frac{8 \times 7 \times 6}{3 \times 2 \times 1} \text { or }{ }^{8} C_{3}=56 \\ & =56 \end{aligned}$	1 Mark: Correct answer.

$\begin{gathered} 30(\mathrm{c}) \\ \text { (i) } \end{gathered}$	$\begin{aligned} V & =A h \\ & =(24 \times 12) \times 0.065 \\ & =18.72 \mathrm{~m}^{3} \text { or } 18.72 \mathrm{~kL}\left(1 \mathrm{~m}^{3}=1 \mathrm{~kL}\right) \end{aligned}$ The barn roof collected 18.72 kL of water during the storm.	1 Mark: Correct answer.
$\begin{gathered} 30(\mathrm{c}) \\ \text { (ii) } \end{gathered}$	$\begin{aligned} V & =\pi r^{2} h \\ 18.72 & =\pi \times 2.5^{2} \times h \\ h & =\frac{18.72}{\pi \times 2.5^{2}} \\ & =0.9534017711 \ldots \mathrm{~m} \\ & \approx 0.95 \mathrm{~m} \text { or } 95 \mathrm{~cm} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Substitutes at least one correct value into the volume formula.
$\begin{gathered} 30(\mathrm{c}) \\ \text { (iii) } \end{gathered}$	$\begin{aligned} & \text { Height remaining }=2-0.9534017711 \ldots \\ & \quad=1.046598229 \ldots \mathrm{~m} \\ & V \end{aligned} \begin{aligned} & =\pi r^{2} h \\ & =\pi \times 2.5^{2} \times 1.0465982299 \ldots \\ & =20.54990817 \ldots \mathrm{~m}^{3} \\ & \approx 20,550 \mathrm{~L} \quad\left(1 \mathrm{~m}^{3}=1000 \mathrm{~L}\right) \end{aligned}$ The tank can hold another 20,550 litres.	2 Marks: Correct answer. 1 Mark: Calculates the height remaining or shows some understanding of the problem.
$\begin{gathered} 30(\mathrm{~d}) \\ \text { (i) } \end{gathered}$	$\begin{aligned} \frac{b}{a} & =\frac{a}{c+8} \\ a^{2} & =b(c+8) \\ a & = \pm \sqrt{b(c+8)} \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} 30(\mathrm{~d}) \\ \text { (ii) } \end{gathered}$	$\begin{aligned} a & = \pm \sqrt{b(c+8)} \\ & = \pm \sqrt{4 \times(1+8)} \\ & = \pm 6 \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} 30(\mathrm{e}) \\ \text { (i) } \end{gathered}$	$\begin{aligned} & \text { Total paid }=\$ 2592 \times 30 \times 12 \\ &=\$ 933120 \\ & \text { Interest }=\$ 933120-\$ 368000 \\ &=\$ 565120 \\ & \text { Interest paid is } \$ 565120 \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} 30(\mathrm{e}) \\ \text { (ii) } \end{gathered}$	Charlotte pays $\$ 2832$ per month for 277 months. $\begin{aligned} \text { Total paid } & =\$ 2832 \times 277 \\ & =\$ 784464 \end{aligned}$ $\begin{aligned} \text { Interest saving } & =\$ 933120-\$ 784464 \\ & =\$ 148656 \end{aligned}$ Interest saved is $\$ 148656$	2 Marks: Correct answer. 1 Mark: Calculates the total paid or shows some understanding.

