Section I

Section I is multiple choice and each question is worth 1 mark. Select the alternative $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D that best answers the question.

1. In the triangle shown the side marked y is given by the expression:
(A) $\frac{27 \sin 46^{\circ}}{\sin 59^{\circ}}$
(B) $\frac{27 \sin 59^{\circ}}{\sin 46^{\circ}}$
(C) $27 \sin 46^{\circ}$
(D) $27 \sin 59^{\circ}$

2. A multinational company has decided to make an important announcement at midday, Greenwich Mean Time. What time will this be in New York $40^{\circ} \mathrm{N}$, $75^{\circ} \mathrm{W}$.
(A) midday
(B) 7.00 am
(C) 5.00 pm
(D) 7.30 pm
3. The position of two towns L and M are: $\mathrm{L}\left(12^{\circ} \mathrm{S}, 80^{\circ} \mathrm{W}\right)$ and $\mathrm{M}\left(26^{\circ} \mathrm{N}, 80^{\circ} \mathrm{W}\right)$. What is the angular difference in latitude between the two towns?
(A) 38°
(B) 14°
(C) 68°
(D) 54°
4. A car travels 380 km on 32 L of petrol. Its average petrol consumption is closest to:
(A) $0.08 \mathrm{~km} / \mathrm{L}$
(B) $8 \mathrm{~km} / \mathrm{L}$
(C) $8.4 \mathrm{~L} / 100 \mathrm{~km}$
(D) $11.8 \mathrm{~L} / 100 \mathrm{~km}$
5. A cleaning solution is mixed 1 part concentrate to 10 parts of water. To make up 20 litres of solution, we would need:
(A) 2000 mL of concentrate
(B) 1818 mL of concentrate
(C) 18 litres of water
(D) 22 litres of water
6. In the Australian population, 31% of people have Type A blood. If there are 3.1 million people in Sydney, the number with Type A blood is closest to:
(A) 100000
(B) 1 million
(C) 961000
(D) 96100
7. The weight of boys at Newington College were measured and recorded. The data would be:
(A) quantitative discrete
(B) quantitative continuous
(C) qualitative categorical
(D) categorical and quantitative
8. In the stem and leaf plot shown, the missing number could be:
(A) 2
(B) 1 or 2
(C) 2 or 3
(D) 1,2 or 3

5	0	3	7				
6	0	1	1	5	6		
7	0	1	\square	3	4	4	5
8	1	1	2	3			

9. The average number of people attending each of the last four lectures was 20. In order to raise this average to 30 , how many people must attend the next lecture?
(A) 110
(B) 25
(C) 50
(D) 70
10. The results of a test are displayed in a box and whisker plot.

Which of the following statements is false?
(A) 50% of the scores lie between 40 and 65
(B) 50% of the scores are above 55
(C) 25% of the scores are below 40
(D) 95% of the scores are below 65
11. A steel manufacturer makes a batch of steel rods to a length of 65 cm . The standard deviation of a large sample was found to be 0.6 cm . In a batch of 5000 rods, how many would you expect to have a length less than 64.4 cm ?
(A) 1600
(B) 1000
(C) 800
(D) 500
12. Before tax a person earns $\$ 485$ for working a week that included 36 hours at normal time and 2 hours overtime at time-and-a-half. The hourly wage rate was:
(A) $\$ 13.47$
(B) $\$ 12.76$
(C) $\$ 12.44$
(D) $\$ 12.13$
13. A diamond ring cost $\$ 2000$ in 1985. If its value increased by 2.7% p.a., its value 20 years later would be found by calculating:
(A) $\$(2000 \times 1.27 \times 20)$
(B) $\quad \$(0.027 \times 2000)^{20}$
(C) $\$(1.027)^{20} \times 2000$
(D) $\quad \$ 2000 \times(0.0127)^{20}$
14. Mitchell spent $\$ 220$ on clothes using his credit card. He is charged 23% p.a. with interest compounded daily. After 30 days, he will owe:
(A) $\$ 389$
(B) $\$ 227$
(C) $\$ 270.60$
(D) $\$ 224.20$
15. A flat tax rate is added to the marked price (M) of goods, to give the selling price (S), as shown in the graph.

The tax rate is:
(A) 45%
(B) 1.2%
(C) 60%
(D) 20%
16. If $y=5-2 x$, the value of x when $y=6$ is:
(A) 1
(B) -1
(C) 0.5
(D) -0.5
17. M varies directly as P. If $M=24$ when $P=10$, then when $P=25, M=$?
(A) 9.6
(B) 60
(C) 2.4
(D) 10.4
18. If $V=\frac{2 \pi r}{t}$ then:
(A) $r=\frac{t V \pi}{2}$
(B) $V t-2 \pi=r$
(C) $t=\frac{2 \pi V}{r}$
(D) $t=\frac{2 \pi r}{V}$
19. Expand and simplify the following $3 x^{2}\left(x^{2}-1\right)-4 x^{2}$
(A) $-4 x^{2}$
(B) $3 x^{4}+7 x^{2}$
(C) $3 x^{4}-7 x^{2}$
(D) $10 x^{2}$
20. In how many different ways can the letters of the word MATH be arranged in a line?
(A) 3
(B) 6
(C) 12
(D) 24
21. Angela is going to choose three names from eight out of a hat and arrange them in order from left to right. How many different arrangements can she make?
(A) 336
(B) 56
(C) 60
(D) 10
22. A raffle has 8 tickets numbered 1 to 8 and 8 prizes. The tickets are drawn one at a time without replacement. The probability that the tickets will be drawn in the order $1,2,3,4,5,6,7,8$ is:
(A) $\frac{1}{8!}$
(B) $8 \times \frac{1}{8}$
(C) $\frac{1}{8}$
(D) $\left(\frac{1}{8}\right)^{8}$

Section II

Section II is extended response, show all necessary working. The marks for each question in Section II are indicated at the start of the question.

Question 23
(a) Elise borrowed $\$ 18000$ to buy equipment she needed to start up a new fashion business. The finance company charged her 8% p.a. flat rate interest on the loan. Elise was required to repay the loan plus interest in equal monthly repayments over 3 years.
(i) Altogether how much interest does Elise have to pay on her 3 year loan?
(ii) Calculate the size of Elise's monthly repayments.
(b) A single income family has saved $\$ 24000$ towards the cost of a home unit which they are able to purchase for $\$ 110000$.
(i) How much will they have to borrow?
(ii) The interest rate on the loan is 7.30% p.a. and they are advised to take the loan over 25 years. How much will each monthly instalment be?
(iii) How much money will have been paid in instalments after one year?
(c) The main cash register at 'The Big E Burger Complex' cost $\$ 6200$. The company's accountant plans to calculate the straight line depreciation on the register at 6% p.a.
(i) Calculate the decrease in value of the cash register at the end of year 1.
(ii) What will be the salvage value of the cash register after 4 years?
(iii) The company policy is to scrap the cash register when its salvage value drops below $\$ 2150$. How many years will it take for the salvage value of the register to drop below $\$ 2150$?

Question 24 (13 marks) Start this question on a new page.

(a) This graph shows the salvage value of the stove and grill at 'The Rib Cage Cafe', using straight line depreciation.

(i) What was the original value of the stove \& grill?

1
(ii) By what amount did the owners of the Café decide to decrease the value of the stove \& grill each year?
(iii) When the salvage value reaches $\$ 1400$ the owner plans to buy a new stove \& grill. After how many years will the salvage value be $\$ 1400$?
(iv) What is the gradient of the line of depreciation?
(v) What is the equation of the straight line depreciation graph?

Question 24 continued

Marks
(b) The cost per student for an excursion is inversely proportional to the number of students taking the trip. When 16 people go on the excursion, the cost per student is $\$ 12$.
(i) Show that $C=\frac{192}{n}$ where $\$ C$ is the cost per student and n the number of students taking the excursion.
(ii) Copy and complete the table of values in your exam booklet for the equation $C=\frac{192}{n}$.

n	4	8	12	16
C				

(iii) On half a page in your exam booklet, draw the graph of $C=\frac{192}{n}$, where $n>0$.
(c) State the y-intercept of the straight line $\frac{x+y}{2}=5$.

Question 25 (13 marks) Start this question on a new page.

(a) Dirk and Marnie have just finished building an outdoor recreation patio. It consists of a right angle triangle and a curved section in the shape of half an ellipse.

(i) Calculate the value of x, correct to 1 decimal place.
(ii) Find the total area of the recreational patio. Answer correct to the nearest square metre.
(b) Three straight sides and a river, as shown, border a field.

Use one application of Simpson's Rule to calculate the area. Give your to the nearest square metre.

Question 25 continued

(c) If the area of this sector is $8.5 \mathrm{~cm}^{2}$, find θ correct to the nearest minute.

(d) A load of sand delivered from a lorry falls in the shape of a cone as shown in the diagram below. The base of the cone is a circle with circumference 6.4 metres.

(i) Show that the radius of the base circle is 1.02 m (to 3 significant figures)
(ii) Calculate the volume of sand in the cone to 3 significant figures

Question 26 (13 marks) Start this question on a new page.
(a) The coach kept a record of the number of goals scored by each player during yesterday's water polo training session. The results are shown below.

$$
4,5,5,7,8,10,11,15,16
$$

(i) Sketch a box and whiskers plot to display this data.
(ii) What is the mode of this data?
(iii) Is the data symmetrical, positively skewed or negatively skewed? Give a reason for your answer.

Question 26 continued

Marks

(b) Seal Bay, a small beach side town, always has two celebrations on Australia Day, one in area X and one in area Y . To help plan their Australia Day work rosters, the local police are using this graph of last year's crowd numbers and times.

Last year's crowd numbers at Seal Bay Australia Day celebrations (hundreds of people)

(i) At 4.00 pm , how many people were in area X ?
(ii) At what time did both area X and area Y have the same crowd numbers?
(iii) One of the areas hosts a beach BBQ and the other a fireworks display in the park. Which area, area X or area Y , do you think hosts the fireworks display? Give a reason for your answer.

Question 26 continued

(c) This table shows the hours of employment of the working population of Golden Grove.

	Men	Women	Total
Shift work	780	210	990
Standard hours	420	540	960
Total	1200	750	1950

(i) What is the ratio of men working standard hours to women working shift work? Answer in simplest form.
(ii) What percentage of the women are shift workers?

Question 27 (13 marks) Start this question on a new page.

(a) This table shows Anna's marks in the Trial HSC in History and English.

	Anna's Mark	The group's mean	The group's standard deviation
History	70	58	12
English	80	65	10

By giving reasons, and showing full working using z-scores, explain clearly in which subject was Anna's marks the best, compared with the rest of the group.
(b) Joseph works as a quality control engineer in a factory which packs paper clips. In a quality control check Joseph counted the number of paper clips packed in a sample of boxes. He found the mean number of paper clips per box was 102 and the standard deviation was 3 .
(i) What percentage of boxes contained between 99 and 105 clips?
(ii) What percentage of boxes contained more than 105 clips?
(iii) When Joseph counted the contents of a box and recorded it as 116
he thought he had made a mistake. Do you think he made an error?
Explain you answer

Question 27 continued

Marks
(c) This graph shows 10 points on a scatter plot. The points have been divided into lower, middle and upper sections.

Kevin is going to construct a median regression line using these points. Kevin calculates the points A and B as shown in the diagram above.
(i) What are the coordinates of the corresponding point C in the middle section?
(ii) The equation of the median regression line is approximated by

$$
y=x+\frac{1}{2}
$$

Use the equation to predict the value of x when $y=4$.
(d) Mark had a combination lock on his suitcase which has 3 wheels each with 10 digits 0 to 9 .
(i) How many three digit numbers are possible?
(ii) If it took on average 4 seconds to get each possible 3 digit number, how long would it take to get all possible combinations? Give your answer in hours, minutes and seconds.

Question 28 (13 marks) Start this question on a new page.

Marks
2
(a) A lighthouse stands on top of a vertical cliff. The top of the lighthouse is 50 m above sea level. The angle of depression to the boat from the top of the lighthouse is 3°. Calculate the distance of the boat from the top of the lighthouse. (Answer to 1 decimal place).

(b) The following diagram shows the Lake Walk at the Mango Bush Recreation and Wildlife Park.

The park managers want to build an above water walkway from A to B, to give visitors a better look at the native fish and plant life. The area was surveyed to help in planning the walkway.
(i) Explain why $\angle A O B=130^{\circ}$
(ii) Find the length of the walkway AB to the nearest metre.

Question 28 continued

Marks
(c) Two aeroplanes are approaching an airport as shown. At the time shown in the diagram, the radar identifies one plane (A) at an angle of elevation of 25° and 7.6 km from the airport. Another plane (B) on the same approach path is 10 km away at an angle of 35° from horizontal. Plane A and Plane B are 2.8 km apart.

B
(i) What is the angle of depression of the radar disc from Plane B?
(ii) What is the angle of depression of Plane A from Plane B?

Answer to the nearest degree.
(HINT: Find the angle marked θ in the diagram first)
(d) A triangular farm allotment was surveyed and the measurements were found to be as shown on the diagram (not to scale).

(i) Find the size of $\angle A B C$.
(ii) Find the area of the allotment, to the nearest hectare.

End of Paper.

YEAR 12 GENERAL
 TRIAL SOLUTIONS 2005

SECTION I

1. B
2. A
3. A
4. C
5. B
6. C
7. B
8. D
9. D
10. D
11. C
12. D
13. B
14. A
15. C
16. C
17. D
18. D
19. D
20. C
21. D

SECTION II

QUESTION 23

a) (i) $I=\operatorname{Prn}$
(1)
$\begin{aligned} & \therefore \quad I=\$ 18000 \times 0.08 \times 3 \\ & I=\$ 4320\end{aligned}$
(ii) Total Repaid: $\$ 18000+\$ 4320$
$=\$ 22320$
Monthly Repayment $=\$ 22320 \div 36$

$$
\begin{equation*}
=\$ 620 \tag{1}
\end{equation*}
$$

b) i) Amount Borrowed $=\$ 110000-\$ 24000$
ii) $\mathrm{n}=300(25 \times 12)$

$$
\begin{equation*}
=\$ 86000 \tag{1}
\end{equation*}
$$

(iii) After 1 year: $\$ 624.39 \times 12$

$$
=\$ 7492.68
$$

$I=0.608 \dot{3}(7.3 \div 12)$
$\mathrm{PV}=86000$
$\mathrm{PMT}=0$
$\mathrm{FV}=0$
\therefore We find $\mathrm{PMT}=\$ 624.39$
c) i) $6 \% \times \$ 6200$

$$
\begin{equation*}
=\$ 372 \tag{1}
\end{equation*}
$$

ii) $S=V o-D n$
$=\$ 6200-\$ 372 \times 4$
$=\$ 4712$
iii) $S=V o-D n$
$\$ 2150=\$ 6200-\$ 372 n$
(1)
$\$ 372 n=\$ 4050$
$n=\$ 4050 \div \$ 372 \quad \therefore$ It will take about 11 years

QUESTION 24

a) i) $\$ 4200$
(1)
iv) Gradient $=-400$
(2) 1 mark for
$-400 x$ $-400 x$
ii) $\$ 400$
(1)
v) $S=-400 n+4200$
(2) 1 mark for
OR $y=-400 x$
iii) 7 years
(1)

$$
y=-400 x+4200
$$

b) i) $C=\frac{k}{n}$

$$
\begin{aligned}
& 12=\frac{k}{16} \\
& k=192 \quad \text { (1) }
\end{aligned} \quad \therefore C=\frac{192}{n}
$$

QUESTION 24 cont.

b) ii) (1)

n	4	8	12	16
C	48	24	16	12

iii)

c) $\frac{x+y}{2}=5$
$x+y=10$
(1)
$\therefore y$-int $=(0,10)$
(1) Accept $y=10$ OR $y-\mathrm{int}=10$
$y=-x+10$

QUESTION 25

a) i) $16^{2}=x^{2}+10^{2}$
(1)
ii) $A=\frac{1}{2} \times 10 \times 12.5+\frac{1}{2} \times \pi \times 9 \times 5$

$$
\begin{align*}
& x=\sqrt{16^{2}-10^{2}} \tag{1}\\
& x=12.5 \mathrm{~m}
\end{align*}
$$

(1)

$$
\begin{align*}
& A=133.1858 . \\
& A=133 \mathrm{~m}^{2} \tag{1}
\end{align*}
$$

b) $A=\frac{h}{3}\left(d_{1}+4 d_{2}+d_{3}\right)$
c) $A=\frac{\theta}{360} \times \pi r^{2}$

$$
\begin{align*}
& A=\frac{130}{3}(90+4 \times 100+30) \tag{1}\\
& A=22533 \frac{1}{3} \\
& A=22533 \mathrm{~m}^{2} \\
& 8.5=\frac{\theta}{360} \times \pi \times 5^{2} \tag{1}\\
& \frac{\theta}{360}=\frac{8.5}{\pi \times 5^{2}} \\
& \theta=360\left(\frac{8.5}{\pi \times 5^{2}}\right) \tag{1}\\
& \theta=38.96113007 \\
& \theta=38^{\circ} 58^{\prime}
\end{align*}
$$

QUESTION 25 cont.

d) i) $C=2 \pi r$

$$
\begin{align*}
& 6.4=2 \times \pi \times r \tag{1}\\
& r=\frac{6.4}{2 \pi} \tag{1}\\
& r=1.018591636 \\
& r=1.02 \mathrm{~m}
\end{align*}
$$

ii) $V=\frac{1}{3} \pi r^{2} h$

$$
V=\frac{1}{3} \times \pi \times 1.02^{2} \times 1.6
$$

$V=1.74 \mathrm{~m}^{3}$

QUESTION 26

Boxplot for Data

a) i)

ii) Mode $=5$
(1)
iii) Positively skewed as the median
(2) is closer to lower quartile than upper quartile.
b) i) 300 people
(1)
ii) 2.00 pm
(1)
iii) Area Y as it drew a large crowd at 8.00 pm in the evening for a major event. (2) 1 mark if Area Y only
c) i) $420: 210$
(1)
(1)
ii) $\frac{210}{750} \times 100$

$$
\begin{equation*}
=28 \% \tag{1}
\end{equation*}
$$

$=2: 1$

QUESTION 27

a) $z=\frac{x-\bar{x}}{s}$

$$
\text { History } \begin{array}{llrl}
z & =\frac{70-58}{12} & \text { English } & z=\frac{80-65}{10} \\
z & =\frac{12}{12} & & z=\frac{15}{10} \\
z & =1 & \text { (1) } & z=1.5 \tag{1}
\end{array}
$$

\therefore Anna's result in English is better as her z-score is higher. (1)
b) i) 68%
(1)
ii) 16%
(1)
iii) Yes he made an error. The value 116 is more than 3 standard deviations above the mean. The chance of this score occurring is only 0.15%. It is therefore an outlier.
\{(2) Give full marks only if they realise it is outside three S.D.\}
c) i) $\mathrm{C}(5,6.5)$
ii) $y=x+\frac{1}{2}$
1 mark for correct x -value

$$
\begin{equation*}
4=x+\frac{1}{2} \tag{2}
\end{equation*}
$$

1 mark for correct y-value

$$
\begin{equation*}
x=3 \frac{1}{2} \tag{1}
\end{equation*}
$$

d) i) $10 \times 10 \times 10$
(1)
(1 mark for $10 \times 9 \times 8$)
ii) $1000 \times 4=4000$ seconds
$4000 \div 60 \div 60$
$=1$ hour 6 min 40 sec

QUESTION 28

a) $\sin 3^{\circ}=\frac{150}{d}$
(1)
b) i) $\angle \mathrm{AOB}=215^{\circ}-85^{\circ}$
$\mathrm{d}=\frac{150}{\sin 3^{\circ}}$
$\mathrm{d}=2866.1 \mathrm{~m}$ OR 2.9 km
(1)

$$
\begin{equation*}
\angle \mathrm{AOB}=130^{\circ} \tag{1}
\end{equation*}
$$

ii) $\mathrm{AB}^{2}=110^{2}+82^{2}-2 \times 110 \times 82 \times \cos 130^{\circ}$
$\mathrm{AB}=174.4129825$
$\mathrm{AB}=174 \mathrm{~m}$
c) i) Angle of Depression $=35^{\circ}$
(1)
d) i) $\cos \theta=\frac{695^{2}+476^{2}-735^{2}}{2 \times 695 \times 476}$

$$
\begin{equation*}
\theta=75^{\circ} \tag{1}
\end{equation*}
$$

ii) $\frac{\sin \theta}{7.6}=\frac{\sin 10}{2.8}$
(1)
ii) $\mathrm{A}=\frac{1}{2} \times 695 \times 476 \times \sin 75^{\circ}$
$\sin \theta=\frac{7.6 \times \sin 10}{2.8}$

$$
\begin{equation*}
\mathrm{A}=159773.7909 \mathrm{~m}^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\div 10000 \tag{1}
\end{equation*}
$$

$\therefore 15.977$ hectares
\therefore Angle of Depression $=28^{\circ}+35^{\circ}$
$=16$ hectares
(1)

$$
=63^{\circ}
$$

