

THE SCOTS COLLEGE Sydney

2005

TRIAL H.S.C. EXAMINATION

General Mathematics

General Instructions

- Reading time - 5 minutes
- Working time $-21 / 2$ hours
- Write using black or blue pen
- Board-approved calculators may be used
- Use the Multiple Choice Answer Sheet provided
- Use graph paper provided for Question 25 (b)
- A separate formula sheet is provided
- All necessary working should be shown in every question

Total marks - 100

Section I

- Total marks 22
- Attempt Questions 1-22
- Allow about 30 minutes for this section

Section II

- Total marks 78
- Attempt Questions23-28
- Allow about 2 hours for this section

Students are advised that this is a Trial Examination only and CANNOT IN ANY WAY GUARANTEE THE CONTENT OR THE FORMAT OF THE Higher School Certificate examination.

Section 1

Total Marks (22)
Attempt questions 1-22
Allow about 30 minutes for this section

Select the alternatives A, B, C or D that best answers the question and indicate your choice with a cross (X) in the appropriate space on the Section 1 answer sheet attached.

1. Express 0.001232 correct to 3 significant figures.
A) 0.001
B) $\quad 0.00123$
C) $\quad 0.001230$
D) $\quad 0.001232$
2. Solve the equation $\frac{3 x+2}{2}=7$
A) $x=\frac{16}{3}$
B) $x=4$
C) $x=\frac{10}{3}$
D) $x=2$
3. In 7 games of cricket a batsman has an average of 13 runs. In the next game he scores 21 runs. What is his new average?
A) 13
B) 14
C) 15
D) 17
4. Find the distance, in kilometres to the nearest 100 km , between two places on the same meridian with latitudes $8^{0} \mathrm{~N}$ and $12^{\circ} \mathrm{S}$.
A) $\quad 400 \mathrm{~km}$
B) 500 kmC
2200 km
D) 2000 km
5. The range of values for a measurement of 15.6 cm is:
A) $\quad 15-16 \mathrm{~cm}$
B) $\quad 14.6-16.6 \mathrm{~cm}$
C) $\quad 15.5-15.7 \mathrm{~cm}$
D) $\quad 15.55-15.65 \mathrm{~cm}$
6. Romeo works for 6 normal hours and 4 hours overtime at time and a half. He was paid a total of $\$ 180$. What is his normal hourly rate of pay?
A) $\$ 18$
B) $\$ 13$
C) $\$ 20$
D) $\$ 15$
7. The results for Juliet's assignments this term are: $52,44,49,47,47,53,55,51$. What is her median score?
A) 49
B) 47
C) 48
D) 50
8. If 4 is added to each score in a set, which one of the following statements will be true?
A) The mean and standard deviation will remain the same.
B) The mean will increase by 4 and the standard deviation will remain the same.
C) The mean will increase by 4 and the standard deviation will increase by $\sqrt{4}$.
D) The mean will increase by 4 and the standard deviation will increase by 4 .
9. This table shows monthly repayments for various amounts borrowed and different annual interest rates for a term of 20 years.

	Monthly			
repayment				
Amount borrowed	$5 \% \mathrm{pa}$	$6 \% \mathrm{pa}$	$7 \% \mathrm{pa}$	$8 \% \mathrm{pa}$
$\$ 10000$	$\$ 66.00$	$\$ 71.64$	$\$ 77.53$	$\$ 83.64$
$\$ 15000$	$\$ 98.99$	$\$ 107.46$	$\$ 116.29$	$\$ 125.47$
$\$ 20000$	$\$ 131.99$	$\$ 143.29$	$\$ 155.06$	$\$ 167.29$
$\$ 25000$	$\$ 164.99$	$\$ 179.11$	$\$ 193.82$	$\$ 209.11$

The total interest paid over the term of a loan of $\$ 15000$ at 6% pa is:
A) $\$ 1289.52$
B) $\quad \$ 5790.40$
C) $\$ 10790.40$
D) $\quad \$ 25790.40$
10. Simplify fully $10(x+3)-2(4 x-1)$
A) $6 x+29$
B) $2 x+32$
C) $2 x+28$
D) $6 x+32$
11. The inflation rate is 6% pa. What would you expect to pay in 3 years time for a house that now costs $\$ 250000$?
A) $\$ 15000$
B) $\$ 295000$
C) $\$ 297754$
D) $\$ 750000$
12. A normal distribution of scores has a mean of 56 and a standard deviation of 9. Within what range of scores will a z-score of between -3 and 3 occur?
A) 53 to 59
B) 47 to 65
C) $\quad 38$ to 74
D) 29 to 83
13. The volume of a sphere is $14100 \mathrm{~cm}^{3}$. What is the best estimate of the radius of this sphere:
A) 33 cm
B) 7 cm
C) 15 cm
D) $\quad 58 \mathrm{~cm}$
14. If $y=\frac{m+18}{3 m}$ and $m=7.4$, what is the value of y (correct to 2 decimal places)?
A) $\quad 1.14$
B) 8.21
C) 51.80
D) 62.65
15. A toaster manufacturer tests every $20^{\text {th }}$ toaster. What type of sampling is this?
A) Biased sampling
B) Random sampling
C) Stratified sampling
D) Systematic sampling
16. Which of the following statements is true about this box-and-whisker plot?

A) The median is 5 and the range is 6
B) The median is 5 and the range is 3
C) The mean is 5 and the range is 6
D) The mean is 5 and the range is 3
17.

A line of best fit is drawn, as shown above. What is the correct equation for this line?
A) $y=2 x+1$
B) $y=x+2$
C) $y=x+1$
D) $y=-2 x+1$
18. Find the standard deviation for the following numbers, correct to one decimal place.

$$
4,7,8,9,5,8,10
$$

A) $\quad 2.0$
B) $\quad 1.9$
C) 1.4
D) 3.9
19. Calculate the interest on $\$ 2000$, invested for 3 years at 3.75% per annum, compounding each year.
A) $\$ 2233.54$
B) $\quad \$ 225$
C) $\$ 233.54$
D) $\$ 75$
20. Each dimension of a rectangular mirror is increased by 6\%. The percentage increase in the area of the mirror is closest to:
A) 6%
B) 15%
C) 12%
D) 13%
21. A ship sails 9 nautical miles north, then 12 nautical miles east. What is the ship's bearing from its starting point?
A) $\quad 037^{0}$
B) $\quad 053{ }^{0}$
C) $\quad 217^{0}$
D) $\quad 233^{0}$
22. A coin is tossed and a die is thrown. What is the probability of tossing a head and a number less than 5 ?
A) $\frac{1}{4}$
B) $\frac{1}{6}$
C) $\frac{1}{12}$
D) $\frac{1}{3}$

End of Section 1

Section 2

Total marks (78)
Attempt all questions 23-28
Allow approximately 2 hours for this section
Start a new page for each question.

Question 23

Start a new writing booklet

(13 marks)

a) A chocolate mousse dessert is made and poured into cone-shaped glasses. The glasses are filled to the top and then cooled in the refrigerator until the chocolate mousse mix is set. The glasses, as shown in the diagram, have a diameter of 9 cm and a height of 12 cm .

i) Find the volume of chocolate mousse dessert required to fill the glass, correct to the nearest cm^{3}.
ii) If the same quantity of dessert, found in part i), is poured into a cylindrical dessert glass of diameter 6 cm , how high will the glass need to be in order that it be filled to the top? Answer to the nearest cm.
b) The formula for the volume of a sphere is given by

$$
V=\frac{4}{3} \pi r^{3} \quad \text { where } \quad V=\text { volume, } r=\text { radius. }
$$

i) Calculate the volume of a sphere where the radius is 3 cm , to 1 decimal place. 1
ii) Rearrange the equation to make r the subject.
iii) Calculate the radius of a sphere where the volume is $34 \mathrm{~cm}^{3}$. Write your answer correct to 1decimal place.
c) At the end of each season the cricket club gives awards for Best and Fairest Player, Most Improved Player and Best Team Player. If there are 16 players in contention for the awards, and each award must go to a different person, find the number of different ways they can be awarded.
d) i) Using Simpson's rule twice, estimate the area of the irregular shape PQRS given that $\mathrm{PQ}=28$. All measurements are in metres.

ii) Find the cost of fertilising the entire field at $\$ 12.50$ per square metre.
e) Solve the equation $3(x+4)-2(x-3)=0$

Question 24 Start a new writing booklet (13 marks)

a) The results of a compass radial survey are shown in the diagram below.
(NOT TO SCALE)

i) Find $\angle A O B$. 1
ii) Find the length of the boundary AB , to1decimal place.
iii) Find the area of $\triangle A O B$, to the nearest m^{2}.
b) A wall, 2 m by 1.4 m as shown below, is to be tiled with 5 cm square mosaic tiles.

i) How many 5 cm square mosaic tiles will be required to completely tile the wall?
ii) It is suggested that if we choose mosaic tiles which are double the size of the originals, that is 10 cm square tiles instead of 5 cm square tiles, that it will require only half as many tiles to completely tile the wall.

Do you agree with this suggestion? Justify your answer.
c) A car was test driven at various speeds and the petrol consumption was recorded. The results are shown in the following graph.

i) What was the petrol consumption recorded at $30 \mathrm{~km} / \mathrm{h}$?
ii) During the test, the car was driven at $50 \mathrm{~km} / \mathrm{h}$ for 50 km . How much petrol did it consume?
d) The height of students at a particular ballet school is known to follow a normal distribution with a mean of 152.5 cm and a standard deviation of 4.3 cm . Find the interval, correct to 1 decimal place, in which you would expect to find:
i) 68% of the population
ii) $\quad 99.7 \%$ of the population.

Question 25 Start a new writing booklet

a) $\quad S$ varies inversely to T.
i) Write an equation relating S, T and k, where k is the constant of variation. 1
ii) If $S=20$ when $T=2.5$, find the value of k. 1
iii) If $S=10$, find the value of T. 1
iv) If $T=1.6$, find S. 1
b) On the graph paper provided, draw the three - median regression line for the data below. (Show all working).

Length of paper route (km)	10	11	12	13	14	15	16	17	18
Payment (\$)	10	12	14	10	20	21	18	20	22

c) A golfers scores were recorded.

His last ten rounds with his old clubs were:

$$
83,90,86,85,92,87,79,89,84,83
$$

His first ten rounds with his new clubs were:

$$
84,76,80,85,79,82,84,80,81,82
$$

i) Find the mean and standard deviation for both the old clubs and the new clubs, to 1 decimal place.
ii) In golf, the lower the score the better the player performed in that round. Did his game improve with his new clubs? Justify your answer.
iii) With which set of clubs was his game more consistent? Give a reason for your answer.

Question 26

a) A group of six people consists of Clare, Stuart, Sue, Leon, Peter and Anna.
i) How many ways can they be arranged in a line?
ii) From this group of six, three people are chosen to help in selling chocolates.

How many different groups of three can be chosen?
iii) What is the probability that Sue, Leon and Peter are chosen as the three people to help sell the chocolates?
b) Eight digit phone numbers are issued for the Sydney Metropolitan area. If the first digit must be 9 , and the digits can be repeated, how many different numbers can be issued? 1
c) Townsville in Queensland is located at $19^{\circ} \mathrm{S}, 147^{\circ} \mathrm{E}$ and Port Moresby in New Guinea is located at $9^{\circ} \mathrm{S}, 147^{\circ} \mathrm{E}$.
i) How far is it from Townsville to Port Moresby? Give your answer to the nearest nautical mile.
ii) If a yacht sailed from Townsville at 10am on $4^{\text {th }}$ December, when would it arrive in Port Moresby (to the nearest hour) if it averaged 10.5 knots on the journey? 3
d) Anna wishes to calculate the future value of an ordinary annuity where $\$ 150$ is paid at the end of each month for 4 years into an account paying 12% p.a. compounded monthly. This is her solution:

$$
\begin{aligned}
r & =\frac{12 \%}{12}=1 \% \quad n=4 \text { years } \quad M=\$ 150 \\
A & =M\left\{\frac{(1+r)^{n}-1}{r}\right\} \\
& =150\left\{\frac{(1+1)^{4}-1}{1}\right\} \\
& =150 \times 15 \\
& =\$ 2250
\end{aligned}
$$

i) Identify the two mistakes that Anna made.
ii) Find the correct answer to this annuity problem, showing all working.

Question 27

a) A computer purchased for $\$ 10450$ is depreciated over 6 years at 15% per annum using the straight- line method.
i) Find the salvage value of the computer.
ii) Find the book value of the computer after 2 years.
b) In a Geography test, Andrew was given a z - score of 1.8 and Robert was given a z-score of -2.5.
i) Who did better in the test? Justify your answer.
ii) If the mean mark was 65 and the standard deviation was 12, calculate Andrew and Robert's marks (to the nearest whole percentage).
c) The Lion Credit Union published the following table for flat rate loans.

Years to repay loan	Monthly repayments (per \$1000)
1	$\$ 91.25$
2	$\$ 49.58$
3	$\$ 35.69$
4	$\$ 28.75$
5	$\$ 24.58$

Nathaniel borrowed \$20 000 over 5 years.
i) How much does he repay per month?
ii) What is the total amount to repay the loan?
iii) What is the interest charged? 1
iv) Calculate the flat interest rate per annum? 2

Question 28 Start a new writing booklet (13 marks)

a) Phil has a credit card which has no interest-free period and charges an annual rate of 12.75\%.
i) Find the amount of interest charged on a purchase of $\$ 152.36$ if the full debt is repaid 21 days later.
ii) What percentage, correct to two decimal places, of the total price paid (cost plus interest) is the interest?
b) Determine the single amount to be invested at 4.2% per annum compounded monthly in order to provide for a series of monthly payments of $\$ 615$ for 20 years.
c) On an obstacle course for new Army recruits two obstacles prove to be particularly challenging. The probability of a recruit successfully negotiating the first of these is $\frac{1}{5}$ and the probability of success at the second is $\frac{3}{8}$. By drawing a tree diagram and labelling the arms, what is the probability that a recruit will successfully pass both obstacles?
d) The results of a series of tests were recorded.

$$
77,72,80,77,91,62,72,82,79,58,75,67,69,66,95,81
$$

a) What is the interquartile range for the data?
b) Draw a box-and-whisker plot for the data
c) Describe the skewness of the data.

Solutions Yearl2 Generad Trial

Section

1.	B	8.	B	15	D
2.	B	9.	C	16	A
3.	B	10	B	17	A
4.	C	11.	C	18	A
5.	0	12.	D	19	C
6.	D	13	C	20	C
7	D	14.	A	21.	B
				22.	D.

Q23.
a) 1

$$
\begin{align*}
V & =\frac{1}{3} \pi^{-2} h \\
& =\frac{1}{3} \times \pi \times(4.5)^{2} \times 12 \tag{1}\\
& =254.469 \ldots \\
& =254 \mathrm{~cm}^{3} \text { (tonecrent } \mathrm{cm}^{3} \text {) } \tag{1}
\end{align*}
$$

$$
\text { 11) } \begin{align*}
V & =\pi r^{2} h \\
254 & =\pi \times 3^{2} \times h \\
h & =\frac{254}{\left(\pi \times 3^{2}\right)} \tag{1}\\
h & =8.98 \\
h & =9 \mathrm{~cm}(\text { tinearest } \mathrm{cm}) \tag{1}
\end{align*}
$$

b) $V=\frac{4}{3} \pi r^{3}$
1)

$$
\begin{align*}
v & =\frac{4}{3} \times \pi \times 3^{3} \tag{1}\\
& \left.=113.1 \mathrm{~cm}^{3}(t) \mid \mathrm{dp}\right)
\end{align*}
$$

ii)

$$
\begin{aligned}
v & =\frac{4}{3} \pi r^{3} \\
3 v & =4 \pi r^{3} \\
r^{3} & =\frac{3 v}{4 \pi} \\
r & =\sqrt[3]{\left(\frac{3 v}{4 \pi}\right)}
\end{aligned}
$$

e)

$$
\begin{gather*}
3(x+4)-2(x-3)=0 \\
3 x+12-2 x+6=0 \tag{1}\\
x=-18 \tag{1}
\end{gather*}
$$

Q24.
a) ${ }^{330}$
1)

$$
\begin{array}{r}
30+72 \\
=102^{\circ} \tag{I}
\end{array}
$$

1) $\frac{x}{95 / 102 / 100}$

By Cosen Rule

$$
x^{2}=95^{2}+100^{2}-2 \times 95 \times 100 x
$$

$$
\begin{align*}
& x^{2}=22975.322 \ldots \tag{1}\\
& x=\sqrt{22975.322 \ldots} \\
& x=151.576 \\
& x=151.6 \mathrm{~m}(\mathrm{k} 1 \mathrm{dp}) \tag{1}
\end{align*}
$$

II) Area $=\frac{1}{2}$ absinc

$$
\begin{align*}
& =\frac{1}{2} \times 95 \times 100 \times \operatorname{ain} 102 \\
& =4646 \mathrm{~m}^{2}\left(\text { nearest } \mathrm{m}^{2}\right) \tag{1}
\end{align*}
$$

b) $1200 \mathrm{~cm} \quad \therefore 40$ tiles $\times 28$ tiles

140 cm \square

$$
\begin{equation*}
=1120 \text { tiles } \tag{2}
\end{equation*}
$$

ii) no. of 10 cm tiles 20 tiles vo 14

$$
=280 \text { tiles }
$$

I disagree with the suggestion. you would require only 280 tiles instead of 1120 tiles, which is $\frac{1}{4}$ of anginal tiles needed.
Quantily required is related to the cured of the tile, not the length.
c) 1) $12 \mathrm{~L} / 100 \mathrm{~km}$
ii) $8 \mathrm{~L} / \mathrm{iockin} \therefore \mathrm{F}^{2} 50 \mathrm{~km}$ at mould wo 4 L
d)

1) 148.2 to 156.8
ii) 139.6 to 165.4

825
a) 1) $S \propto \frac{1}{T}$

$$
\begin{equation*}
S=\frac{k}{T} \tag{1}
\end{equation*}
$$

iI)

$$
\begin{align*}
& 20=\frac{R}{2.5} \\
& R=20 \times 2.5 \\
& R=50 \tag{D}
\end{align*}
$$

Equation $S=\frac{50}{T}$
iii)

$$
\begin{align*}
& 1 O=\frac{50}{T} \\
& T=\frac{50}{10} \\
& T=5 \tag{0}
\end{align*}
$$

(v) $S=\frac{50}{1.6}$

$$
\begin{equation*}
S=31 \cdot 25 \tag{1}
\end{equation*}
$$

b) See graph paper
C) Old Clubs: $\bar{x}=85.8 \quad \sigma_{n}=3.7$
1)

New Clubs: $\bar{x}=81.3 \quad \sigma_{n}=2.6^{\text {(1) }}$
11) Yes as his mean decreased from
(1)
85.8 to 81.3 a his standard
ii) dentation is smaller which implies his game became more consestat (ie scoresare more dustered)

Q26
a) 1) $6 \times 5 \times 4 \times 3 \times 2 \times 1=720$ ways
ii) Number godered α outions $=$

$$
=120
$$

$\begin{aligned} \text { woys of organizing } 3 & =3 \times 2 x 1 \\ & =6\end{aligned}$

$$
=6
$$

$$
\begin{align*}
\therefore \text { No. comberations } & =\frac{120}{6} \\
& =20 \text { wouly } \tag{0}
\end{align*}
$$

iii) $p(S, L, P)=\frac{1}{20}$.
b) $1 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$
$=10,000,000$ numbers
c)

1) Angle diffenence $=10^{\circ}$
as $1^{\circ}=60$ n mubes

$$
\begin{align*}
10^{\circ} & =60 \times 10 \\
& =600 \mathrm{n} \text { miles } \tag{1}
\end{align*}
$$

ii) 10.5 knot iknot $=\ln m / \mathrm{h}$

$$
\begin{align*}
& S=\frac{D}{T} \\
& 10.5=\frac{600}{T} \\
& T=\frac{600}{10.5} \tag{1}\\
& =57.14 \text { hours } \\
& =2.3809 \ldots \\
& =2 \text { doys } 9 \text { hrs } 8 \text { mens (1) } \\
& \text { = 20ays } 9 \text { hrs (toncoreot } \\
& \text { hr) }
\end{align*}
$$

\therefore arrwes $10 \mathrm{am} 4^{\text {th }} \mathrm{Dec}+2 d 9 \mathrm{~h}$

$$
\begin{equation*}
=7 \mathrm{am} 6^{\text {th }} \operatorname{Dec} \tag{1}
\end{equation*}
$$

29sec

$$
\begin{align*}
1.8 & =\frac{r s-65}{12} \\
r s & =(108 \times 12)+65 \\
& =86.6 \tag{1}\\
& =87 \%
\end{align*}
$$

Robert's mork: $-2.5=\frac{r s-65}{12}$

$$
\begin{align*}
f 8 & =(-2.5 \times 12)+65 \\
& =35 \% \tag{1}
\end{align*}
$$

c)

$$
\text { i) } \begin{array}{rl}
\$ & 24.58 \times 20 \\
& =\$ 491.60 \tag{1}
\end{array}
$$

ii)

$$
\begin{align*}
\text { Total } & =\$ 491.60 \times 12 \times 5 \\
& =\$ 29496 \tag{1}
\end{align*}
$$

iii)

$$
\begin{align*}
& \text { Inteent }=\frac{29496-}{20000} \tag{1}\\
& \$ 9496
\end{align*}
$$

iv)

$$
\begin{align*}
\text { flat interest } & =\frac{9496}{20000} \times \frac{100}{5} \\
& =9.496 \% \tag{2}
\end{align*}
$$

028
a) 1$)$

$$
\begin{align*}
I & =152.36 \times \frac{12.75}{100} \times \frac{21}{365} \\
& =1.117 \\
& =\$ 1.12 \tag{1}
\end{align*}
$$

v)

$$
\begin{align*}
\text { Total poud } & =152.36+1.12 \\
& =\$ 153.48 \\
\% & =\frac{1.12}{153.48} \times 100 \tag{1}\\
& =0.73 \%
\end{align*}
$$

b) $4.2 \% \mathrm{pa}=0.35 \% \mathrm{pm}=0.0035$ minly mayment $=\$ 615$
$20 y r s=240 \mathrm{mths}$

$$
\begin{aligned}
N & =m\left[\frac{(1+r)^{n}-1}{r(1+r)^{n}}\right] \\
& =615\left[\frac{(1+0.0035)^{240}-1}{0.0035(1+0.0035)^{240}}\right] \\
& =615 \times 162.187 \ldots .(1) \\
& =99745.2465 \\
& =\$ 99745(\text { rearent }
\end{aligned}
$$

c)

$$
\begin{align*}
\text { a) } 1 Q_{1} & =68 \quad Q_{2}=76 \quad Q_{3}=80.5 \\
\therefore I R & =80.5-68 \\
& =12.5 \tag{1}
\end{align*}
$$

III) The data is regatruely ckewed.
\qquad

Payment

2005 Trial Examination General Mathematics
$-\frac{1}{2}$ no labels on
axes

