

Student Number: _____

Teacher Name:

Waverley

2014

Mathematics General 2

Trial Examination

TASK 4 45%

Instructions

- Time 150 minutes plus 5 minutes reading
- Write using black or blue pen only.
- Approved calculators are permitted.
- All necessary working must be shown.
- Marks may be deducted for careless or poorly arranged work.

Section I

 Answer all questions on the multiple choice answer sheet attached.

Section II

- Answer all questions 26 to 30 on the exam paper in the spaces provided.
- A formulae sheet and extra writing space is attached at the rear of the paper.

(Section I

Multiple choice 25 Marks

Attempt Questions 1-25 Allow 35 minutes for this section

Section II

75 Marks

Attempt Questions 26-30

Allow about 1hour 55 minutes for this section

All questions are of equal value.

Section I	
Q1-25	/25
Section II	
Q26	/15
Q27	/15
Q28	/15
Q29	/15
Q30	/15
TOTAL	/100

Section I

25 marks Attempt Questions 1 to 25 Allow about 35 minutes for this section

Use the multiple-choice answer sheet for Questions 1 to 25

- 1. Tess earns \$14.50 per hour normal rate. How much does she earn if she works for 38 hours at normal rate and 5 hours at time-and-a-half?
 - **(A)** \$587.25
 - **(B)** \$630.74
 - **(C)** \$659.75
 - **(D)** \$935.25
- 2. Caitlin is one of the five house captains who are having their group photo taken. They are going to be seated randomly in a single row. What is the probability that, for the photograph, Caitlin will be seated on either end?
 - $(\mathbf{A})\frac{4}{25}$
- **(B)** $\frac{1}{25}$
- $(C)\frac{1}{20}$
- **(D)** $\frac{2}{5}$
- The first question of a survey states" Which colour car would you prefer?"
 This question will produce what type of data?
 - (A) Categorical

(B) Continuous

(C) Numerical

(**D**) Discrete

4.

Which equation best represents the graph shown above?

$$(\mathbf{A}) \ y = x^2$$

(B)
$$y = 2^x$$

(C)
$$y = \frac{2}{x}$$

(D)
$$y = x^3$$

		Calling patter	ns compared with last i	bill
	Loc	cal calls	down by	\$17.50
	ST	D calls	up by	\$10-30
	Cal	lls to mobiles	up by	\$0.75
	10.7	1 International	down by	\$5.40
			total of her bill for the	<u>-</u>
(A)	\$91.35	(B) \$113.45	(C) \$137.15	(D) \$159.25
		(B) 105	(C) 120	(D) 100
coe	fficient?		nost likely to have the	
	fficient?			
coe	fficient?		nost likely to have the	

10.									
		0 shares with a curren							
	shares?	Jessica has received a total dividend of \$1093.30. What is the dividend yield on these shares?							
	(A) 0.057%	(B) 0.27%	(C) 5.7%	(D) 27%					
11.	mean of 71%. S	She wants to increase law will calculate the ma	her mean to 75% after	d out of 100, giving her a er the trial. Which of the echieve in the next					
	(A) $x = \frac{71 + 75}{2}$	5							
	$\frac{71+x}{2} =$	75							
	(C) $\frac{71 \times 4 + x}{2}$	= 75							
	$\frac{71 \times 4 + x}{5}$	= 75							
12.	Which of the fo	ollowing expresses $\frac{6x}{3}$	$\frac{2y}{3} \div \frac{2y}{5}$ in its sim	uplest form?					
	$\begin{array}{c} \mathbf{(A)} \\ 5x^2 \end{array}$								
	$\mathbf{(B)} \frac{4x^2y^2}{5}$								
	$\frac{1}{5x^2}$								
	$\mathbf{(D)} \frac{5}{4x^2y^2}$								

13.		Holly measured her height to be 182cm, correct to the nearest centimetre. What is the percentage error in her measurement?							
	$(A) \pm 0.0027\%$	(B) $\pm 0.0055\%$	(C)	± 0.27%	(D) $\pm 0.55\%$				
14.	Raine is driving at a speed of 80 km/h. It takes Raine two seconds to react to a dangerous situation before applying the brakes. The stopping distance is given by the formula: Stopping distance: $d = \frac{5Vt}{18} + \frac{V^2}{170}$								
	How far will Raine to	ravel in her car after	apply	ing the brakes us	ing this formula?				
	(A) 60 m		(B)	82 m					
	(C) 164 m		(D)	246 m					
15.	Kate observed that the directly proportional Yesterday she had 10 if she had 45 friends?	to the number of fried to the number of friends and 40 mess	ends (n) she had logge					
	(A) 13	(B) 85	(C)	180	(D) 810				
16.	What is the best desc	ription between living	ıg staı	ndards and life ex	spectancy?				
	(A) Constant correla	ation	(B)	Negative correla	ation.				
	(C) Positive correla	tion.	(D)	Zero correlation	1.				
17.	The mean mark in the Half –Yearly Examination in Mathematics General 2 was 68 and the standard deviation was 9. A z-score of 2 for this test would represent a mark of:								
	(A) 50								
	(B) 66								
	(C) 70								
	(D) 86								

The following table shows the monthly repayments per \$100 000 borrowed with reducible interest and monthly payments.

Interest Rate	Term of Loan					
(% p.a.)	5 years	10 years	15 years	20 years	25 years	
6.50	1956.61	1135.48	871.11	745.57	675.21	
6.75	1968.35	1148.24	884.91	760.36	690.91	
7.00	1980.12	1161.08	898.83	775.30	706.78	
7.25	1991.94	1174.01	912.86	790.38	722.81	
7.50	2003.79	1187.02	927.01	805.59	738.99	
7.75	2015.70	1200.11	941.28	831.79	755.33	

Ms Yeoum bought a unit for \$450 000. She borrowed the amount at 6.75% p.a. interest. The loan was to be repaid monthly over 20 years.

Using the table above, the **total amount** Ms Yeoum pays is closest to:

(A) \$68 432	(B) \$69 772
(C) \$837 324	(D) \$821 189

19.

Ava and Zoe are competing in two different cycling races. The probability that Ava wins her race is 0.8 and the probability that Zoe wins her race is 0.7. The probability tree diagram shows this information.

What is the probability they win one race each.

(A)	0.14
--------------	------

(B) 0.24

(C) 0.38

(D) 0.62

23.	Miranda has 32 GB of data storage on a USB drive? How many data files of average size 6.4 MB can she store?						
	(A) 5	(B) 204.8	(C) 5000	(D) 5120			
24.	delivered at a rate	.8 litres of fluid ove e of 30 drops per m red drip rate, in dro		nous drip. The fluid is			
	(A) 0.15	(B) 3.6	(C) 15	(D) 90			
25.	Which of the foll		presses Y as the subject $A(S-3Y)$?	et of the formula			
	$Y = \frac{E - AS}{3A}$						
	$Y = \frac{E}{3A} + \frac{S}{3}$						
	$Y = \frac{AS - E}{3A}$						
	$Y = \frac{E - A - S}{-3}$						

End of Section I

75 marks Attempt Questions 26 to 30 Allow about 110 minutes for this section Answer each question in the appropriate writing booklet. Extra writing booklets are available. All necessary working should be shown in every question. Question 26 (15 marks) (a) Expand and simplify $x(x + 6) - 3(4 - x)$ (b) Expand and simplify $x(x + 6) - 3(4 - x)$ (i) Show that there is a 20- hour time difference between the two cities (ignore time zones) (ii) Izabella's friend in Sydney sent her a text message which happened to take 5 hours to reach her in Papeete. It was sent at 10 am Saturday, Sydney time. What was the time and day in Papeete when she received the text? (c) Amelia is a real estate agent. She earns \$400 per week plus commission on any sales that she makes. Her commission is calculated using the schedule below. Value of Sale Commission Last week Amelia sold a block of land in Mudgee for \$110 000. Calculate Amelia's commission for that week.	Sec	ction	II	
Extra writing booklets are available. All necessary working should be shown in every question. Question 26 (15 marks) (a) Expand and simplify $x(x + 6) - 3(4 - x)$ (b) Expand and simplify $x(x + 6) - 3(4 - x)$ (i) Expand and simplify $x(x + 6) - 3(4 - x)$ (i) Show that there is a 20- hour time difference between the two cities (ignore time zones) (ii) Izabella's friend in Sydney sent her a text message which happened to take 5 hours to reach her in Papeete. It was sent at 10 am Saturday, Sydney time. What was the time and day in Papeete when she received the text? (c) Amelia is a real estate agent. She earns \$400 per week plus commission on any sales that she makes. Her commission is calculated using the schedule below. Value of Sale Commission Less than \$60 000 \$98 \$3000 plus 2% of each dollar over \$50 000 \$980 \$3000 plus 1.5% of each dollar over \$50 000 \$980 \$120 000 \$1	Atte	mpt Q		
(i) Izabella is leaving Sydney to go on a trip to Papeete in Tahiti. Sydney is (34°S, 151°E) and Papeete is(17°S, 149°W) (i) Show that there is a 20- hour time difference between the two cities (ignore time zones) (ii) Izabella's friend in Sydney sent her a text message which happened to take 5 hours to reach her in Papeete. It was sent at 10 am Saturday, Sydney time. What was the time and day in Papeete when she received the text? (c) Amelia is a real estate agent. She earns \$400 per week plus commission on any sales that she makes. Her commission is calculated using the schedule below. Value of Sale Commission Sydney sent her a text message which happened to take 5 hours to reach her in Papeete. It was sent at 10 am Saturday, Sydney time. What was the time and day in Papeete when she received the text?	Extra	a writir	ng booklets are available.	
(a) Expand and simplify $x(x + 6) - 3(4 - x)$ Izabella is leaving Sydney to go on a trip to Papeete in Tahiti. Sydney is $(34^{\circ}S, 151^{\circ}E)$ and Papeete is $(17^{\circ}S, 149^{\circ}W)$ Show that there is a 20- hour time difference between the two cities (ignore time zones) Izabella's friend in Sydney sent her a text message which happened to take 5 hours to reach her in Papeete. It was sent at 10 am Saturday, Sydney time. What was the time and day in Papeete when she received the text? Commission Sydney Syd				
(i) Izabella is leaving Sydney to go on a trip to Papeete in Tahiti. Sydney is (34°S, 151°E) and Papeete is(17°S, 149°W) (i) Show that there is a 20- hour time difference between the two cities (ignore time zones) (ii) Izabella's friend in Sydney sent her a text message which happened to take 5 hours to reach her in Papeete. It was sent at 10 am Saturday, Sydney time. What was the time and day in Papeete when she received the text? (c) Amelia is a real estate agent. She earns \$400 per week plus commission on any sales that she makes. Her commission is calculated using the schedule below. Value of Sale	Que	stion 2	6 (15 marks)	
Sydney is (34°S, 151°E) and Papeete is(17°S, 149°W) (i) Show that there is a 20- hour time difference between the two cities (ignore time zones) (ii) Izabella's friend in Sydney sent her a text message which happened to take 5 hours to reach her in Papeete. It was sent at 10 am Saturday, Sydney time. What was the time and day in Papeete when she received the text? (c) Amelia is a real estate agent. She earns \$400 per week plus commission on any sales that she makes. Her commission is calculated using the schedule below. Value of Sale Commission	(a)		Expand and simplify $x(x+6) - 3(4-x)$	2
(i) Show that there is a 20- hour time difference between the two cities (ignore time zones) (ii) Izabella's friend in Sydney sent her a text message which happened to take 5 hours to reach her in Papeete. It was sent at 10 am Saturday, Sydney time. What was the time and day in Papeete when she received the text? (c) Amelia is a real estate agent. She earns \$400 per week plus commission on any sales that she makes. Her commission is calculated using the schedule below. Value of Sale Commission				
(ii) Izabella's friend in Sydney sent her a text message which happened to take 5 hours to reach her in Papeete. It was sent at 10 am Saturday, Sydney time. What was the time and day in Papeete when she received the text? (c) Amelia is a real estate agent. She earns \$400 per week plus commission on any sales that she makes. Her commission is calculated using the schedule below. Value of Sale Commission Less than \$60 000 5% \$60 001 - \$120 000 \$3000 plus 2% of each dollar over \$60 000 Over \$120 000 \$4200 plus 1.5% of each dollar over \$120 000 Last week Amelia sold a block of land in Mudgee for \$110 000.	(b)			
hours to reach her in Papeete. It was sent at 10 am Saturday, Sydney time. What was the time and day in Papeete when she received the text? Amelia is a real estate agent. She earns \$400 per week plus commission on any sales that she makes. Her commission is calculated using the schedule below. Value of Sale Commission Less than \$60 000 5% \$60 001 - \$120 000 \$3000 plus 2% of each dollar over \$60 000 Over \$120 000 \$4200 plus 1.5% of each dollar over \$120 000 Last week Amelia sold a block of land in Mudgee for \$110 000.		(i)	, -	2
Amelia is a real estate agent. She earns \$400 per week plus commission on any sales that she makes. Her commission is calculated using the schedule below. Value of Sale Commission Less than \$60 000 5% \$60 001 - \$120 000 \$3000 plus 2% of each dollar over \$60 000 Over \$120 000 \$4200 plus 1.5% of each dollar over \$120 000 Last week Amelia sold a block of land in Mudgee for \$110 000.		(ii)	hours to reach her in Papeete. It was sent at 10 am Saturday, Sydney time.	2
any sales that she makes. Her commission is calculated using the schedule below. Value of Sale	(c)			2
Less than \$60 000 5% \$60 001 - \$120 000 \$3000 plus 2% of each dollar over \$60 000 Over \$120 000 \$4200 plus 1.5% of each dollar over \$120 000 Last week Amelia sold a block of land in Mudgee for \$110 000.	(0)		any sales that she makes. Her commission is calculated using the schedule	_
\$60 001 – \$120 000 \$3000 plus 2% of each dollar over \$60 000 Over \$120 000 \$4200 plus 1.5% of each dollar over \$120 000 Last week Amelia sold a block of land in Mudgee for \$110 000.			and the second s	
Over \$120 000 \$4200 plus 1.5% of each dollar over \$120 000 Last week Amelia sold a block of land in Mudgee for \$110 000.				
(d) The daily maximum temperature for Sydney was recorded by Genevieve at	(d)		The daily maximum temperature for Sydney was recorded by Genevieve at	

	Observatory Hill the frequency dis			he information is	summarised in	
		Temperature C° (x)	(fx)	Cumulative Frequency (cf)		
		23	115	5		
		24	48	7		
		25	125	12		
		26	130	17		
		27	N	24		
		28	112	28		
		29	29	29		
		30	30	30		
		31	31	31		
(i)	Find the median	temperature for J	anuary			1
(ii)	Find the value of	`N in the table ab	ove			1
(e)		TAMWORTH 244 km	THE STANDARD OF THE STANDARD O	958 km 858 km 754 km 754 km 624 km 860uR 543 km 860uR 1865uR		

	Scarlett travels from Sydney to Brisbane via the Pacific highway and then returns home to Sydney via the New England Highway.	
(i)	What is the total distance of Scarlett's trip?	1
(ii)	Scarlett's car consumes petrol at a rate of 12 litres per 100 kilometres. Petrol costs \$1.40 per litre. Find the cost of the petrol Scarlett used for the entire trip.	2
(iii)	a) What is the distance between Coffs Harbour and Coolangatta?	1
	b) Scarlett travels at an average speed of 90km/hr for this section of the trip. How long would she estimate the drive between Coffs Harbour and Coolangatta should take? (Round to the nearest minute)	1
	End of Overtion 26	

stion 2	7 (15 marks)	
	Ashley recorded the average monthly maximum temperatures for Sydney and Melbourne and displayed them on the box and whisker plot below. Sydney Melbourne Melbourne 12 14 16 18 20 22 24 26 28 Temperature (°C)	
(1)	Write down the inter-quartile range of temperatures for Melbourne.	1
(ii)	What percentage of months in Sydney have an average maximum temperature greater than 25° C?	1
(iii)	Briefly describe the skewness of the average monthly temperatures for Melbourne.	1
	During a hot day, Laura buys an ice-cream cone. Cones are 12 cm high and have an internal diameter of 7 cm.	
(i)	Show that the volume of the cone is 154cm ³ , correct to the nearest cubic centimetre.	2
(ii)	A spherical scoop of ice-ream, with the same radius as the top of the cone is placed at the top of the cone. Show that the volume of this one scoop is $180cm^3$, correct to the nearest cubic centimetre.	2
(iii)	The shop offers 15 flavours of ice-cream. If Laura decides to have a double decker ice-cream (2 scoops). How many possible combinations will there be?	1
	(i) (ii) (ii)	(ii) Write down the inter-quartile range of temperatures for Melbourne. (iii) What percentage of months in Sydney have an average maximum temperature greater than 25° C? (iii) Briefly describe the skewness of the average monthly temperatures for Melbourne. During a hot day, Laura buys an ice-cream cone. Cones are 12 cm high and have an internal diameter of 7 cm. (ii) Show that the volume of the cone is 154cm³, correct to the nearest cubic centimetre. (iii) A spherical scoop of ice-ream, with the same radius as the top of the cone is placed at the top of the cone. Show that the volume of this one scoop is 180cm³, correct to the nearest cubic centimetre.

(c)		Claudia and Alex both purchase office equipment with an initial value of \$150 000. Alex uses the declining balance method to calculate the depreciation of her office equipment while Claudia uses the straight line method. The graph below illustrates the depreciation of both Alex's and Claudia's office equipment.	
	(i)	After approximately how many years does Alex's and Claudia's equipment have the same salvage value?	1
	(ii)	What is the value of Alex's office equipment after three years?	1
	(iii)	Find the amount of depreciation per year and in dollars, of Claudia's equipment.	1
	(iv)	Using your answer in (iii) find the equation of the straight line of depreciation for Claudia's office equipment.	1
(d)	(3)	At the recent winter sales Alice bought a new coat with a sale price of \$118.95. The original marked price was \$195.	1
	(i)	Calculate the percentage discount on the coat.	1
	(iii)	Alice paid for the coat on her credit card. It has no interest free period. The interest rate on her credit card is 18.75% p.a. She pays the amount owing 17 days later. Calculate the total amount (including interest) she will pay for the new coat.	2

Questio	n 28 (15 marks)	
(a)	In a television game show, Amanda must choose one case out of the five cases on display. The cases contain the amounts \$15 000, \$10 000 \$50 and \$1. It is not known which amount is in which case. S15 000 \$10 000 \$1000 \$50 \$1	2
(b)	Kimberly and Eva were on two boats which sailed out of Cairns heading for popular dive sites on the Great Barrier Reef. The first sailed north-east for 55 kilometres. The second sailed on a bearing of 125° for 47 kilometres, as shown in the diagram below. Site 1 Diagram not to scale	
	Find the distance between the two dive sites. Give your answer correct to the nearest metre.	2
(c)	Adam needs \$25 000 to take Eve on a dream holiday to the Virgin Islands	2

		3 years from now. He has found an account which pays interest of 9.6% p.a., compounded monthly. What single amount of money will Adam need to invest now so that he will have enough money for the holiday?	
(d)		The lengths of Atlantic Salmon at the Thredbo fish farm are found to be normally distributed with a mean length of 520 mm and a standard deviation of 30 mm.	
	(i)	Find the expected percentage of fish with lengths between 490 mm and 550 mm.	1
		The fish farm rejects fish with a length which is more than two standard deviations below the mean length.	
	(ii)	What is the minimum length of salmon which the fish farm will accept?	1
	(iii)	What percentage of fish would you expect to be rejected by the fish farm?	1
	(111)	what percentage of hish would you expect to be rejected by the hish farm.	
(e)		Solve these equations simultaneously, showing all necessary working	2

		1	
		2 + 5 15	
		2w + 5p = 15	
		2w - p = 3	
(f)		A moderat of 40 inhog contains 25 laws and 10 among a surf 5 at week 1	
(f)		A packet of 40 jubes contains 25 lemon, 10 orange and 5 strawberry jubes.	
		Vania takes a packet into the movies at Bondi Junction and randomly chooses	
		jubes throughout the movie.	
		The tree diagram below represents the possibilities of her first two choices,	
		without replacement.	
		Lemon	
		Lemon Orange	
		Strawberry	
		Lomon	
		Lemon	
		Orange Orange	
		Strawberry	
		Lemon	
		Strawberry Crange	
		Strawberry	
	(•)		
	(i)	Complete the tree diagram by writing the correct probability on each branch.	2
	(ii)	Calculate the probability that Vania chooses two jubes with the same flavour.	2

Que	stion 2	9 (15 marks) Start a new writing booklet.	
(a)		Stephanie, <i>S</i> , is 1200 metres from her home, <i>H</i> , when she first sees an aeroplane. The angle of elevation from Stephanie to the plane at <i>P</i> is 64°. Five minutes later the plane is directly above Stephanie's home at <i>D</i> . The angle of elevation from Stephanie to <i>D</i> is 23°. NOT TO SCALE	
		H 1200 m	
		How far did the aeroplane travel from <i>P</i> to <i>D</i> , to the nearest metre?	3
(b)		The blood alcohol content BAC, B , of an adult male after drinking beer varies	
		inversely with his weight, W kg. If a 72kg man has a BAC, B value of 0.059 after drinking a beer.	
	(i)	Find the value of B , correct to three decimal places, of a 90 kg man who drinks the same amount as a 72 kg man.	2
	(ii)	What does this inverse equation imply?	1

(c)		Young's rule can be used to calculate a child's medicine dose.	
		Young's rule is: $C = \frac{nA}{n+12}$	
		Where C is the child's dose (in mL), n is the age of the child (in years) and A is the adult dose (in mL).	
		For a particular medicine, the adult dose is 24 mL	
	(i)	What is the dose for a 4 year old child?	1
		, and the second	
	(ii)	Find the age at which the dose is double that of the dose for a 4 year old.	3
(d)		Taxable Income Tax Payable on Taxable Income	
		\$0 - \$6000 Nil	
		\$6001 - \$30000	
		\$75001 - \$150000 \$17100 plus 40¢ for each \$1 over \$75000	
		Over \$150000 \$47100 plus 45¢ for each \$1 over \$150000	
	(i)	Kaitlin earns an annual salary of \$86 458 from her job with a law firm. Use the tax table above to calculate the tax payable on her taxable income if she has allowable deductions of \$2500.	2
	(ii)	Kaitlin must also pay the Medicare Levy of 1.5% of her taxable income.	1
		Calculate the amount that Kaitlin must pay.	1
	(iii)	Throughout the year, Kaitlin has \$833.97 tax per fortnight deducted from her	2
		salary. Will Kaitlin receive a tax refund or will she need to pay an additional	_
		amount in tax? What is the amount of her refund or tax bill?	
	1	Find of Organian 20	1

a)		The weights a in the table be		ights o	of ten	Year	12 stu	dents	were 1	measu	ired ar	nd recorde	d
		Student	A	В	C	D	E	F	G	Н	I	J	
		Weight (kg)	74	61	57	55	82	63	51	76	70	58	
		Height (cm)	172	165	174	160	180	164	154	171	155	163	
	(0)	Calculate corr				ıl plac	es						
	(i)	The correlatio	n coei	ficien	it, <i>r</i>								1
	(**)	771 1	1	1.1	• ,•	Cui	1	. 1 . 1					
	(ii)	The mean and	stand	ard de	eviatio	on of t	he we	ight d	ata				1
	(iii)	The mean and	stand	ard de	eviatio	on of t	he hei	ght da	ata				
	(==)							<i>8</i>					
	(iv)	Find the equat	tion of	the le	east-sc	quares	line o	of best	t fit				2
	(v)	Another stude											
		Use the equation	ion for	rm pai	rt (iv)	to est	imate	her he	eight.				1
	(vi)	Emma propos								ill we	igh.		2
		Do you agree	WIIII I	ier pro	posai	. Just	ny yo	ur ans	swer.				

(b)		A packing carton is to be constructed as shown in the diagram below. All dimensions are in centimetres.	
		NOT TO SCALE	
	(i)	Show that the surface area (S) of the carton is $S = 36x - 2x^2$.	2
	(ii)	Explain why the formula is only valid for the values from $x = 0$ to $x = 9$.	1
		The diagram below shows the graph of the volume (V) of the carton for values of x from $x = 0$ to $x = 9$.	1
		The dimensions of the carton are chosen so that its volume is a maximum.	
	(iii)	Find the value of x for which the carton has a maximum volume	1
	(iv)	Find the surface area of the carton when it has maximum volume.	2
	•	Ed of o	

End of exam paper

St Catherine's School

Waverley

2014

Student Number: \	501	inti	0	02	,

Mathematics General 2

Trial Examination

TASK 4 45%

Instructions

- Time 150 minutes plus 5 minutes reading
- Write using black or blue pen only.
- Approved calculators are permitted.
- All necessary working must be shown.
- Marks may be deducted for careless or poorly arranged work.

(Section I

Answer all questions on the multiple choice answer sheet attached.

Section II

- Answer all questions 26 to 30 on the exam paper in the spaces provided.
- A formulae sheet and extra writing space is attached at the rear of the paper.

(Section I

Multiple choice 25 Marks

Attempt Questions 1-25 Allow 35 minutes for this section

Section II

75 Marks

Attempt Questions 26-30

Allow about 1hour 55 minutes for this section

All questions are of equal value.

Section I	
Q1-25	/25
Section II	
Q26	/15
Q27	/15
Q28	/15
Q29	/15
Q30	/15
TOTAL	/100

trial HSC 2014 Student Name or Number General 2

Mathematics General 2: Multiple Choice Answer Sheet Completely fill the response oval representing the most correct answer.

letely	fill the resp	onse ova	l represent	ting the m
1.	A 🔾	$B \bigcirc$	C 🕢	D 🔾
2.	A 🔿	В	С	D
3.	A 🕢	В	С	D 🔾
4.	A 🔾	В	С	D 🔾
5.	A 🔘	В	С	D 🐠
6.	A 🔾	В 🕖	С	D 🔾
7.	A 🔾	В	C 🙆	D 🔾
8.	A 🔾	В	C 🕜	D 🔾
9.	A 🐠	В	С	D 🔾
10.	A 🔿	В	C 💋	D 🔾
11.	A 🔿	В	С	D 🐠
12.	A 🙆	В	c 🔾	D 🔾
13.	A 🔾	В	C 📀	D 🔾
14.	A 🔾	В	С	D 🔾
15.	A 🔾	В	C 🐼	D 🔾
16.	A 🔿	В	C 🥔	D 🔾
17.	A 🔾	В	C 🔾	D 🗽
18.	A 🔘	В	C 🔾	D 🥏
19.	A 🔾	В	C 🕢	D 🔾
20.	A 🐠	В	c 🔾	D 🔾
21.	A 🔾	В	С	D O
22.	A 🔾	В	С	D 🔾
23.	A 🔾	В	С	D 🕜
24.	A 🔾	$B \bigcirc$	С	D 🕝

25. A O B O C **4** D O

(8) =
$$\frac{4}{6} \times 180$$

= 120 goals expected (C)
(G) Highest collection (A)
(D) $6500 \times $2.95 = $19,175 + 0101$
Dividend total = $$1093.30$
yield = $$1093.30$
\$19175
or = 5.70% (C)
(1) $71\times4+x=75$ (D)
(2) $6x^2y - 2y$
 3 5
 $6x^2y \times 5 = 30x^2$
 3 $2y$ 6
= $5x^2$ (A)

=±0.27%

(4)
$$d = \frac{5vt}{18} + \frac{v^2}{170}$$
 $d = \frac{5 \times 80 \times 2}{170} + \frac{80^2}{170}$
 $d = \frac{82 \cdot 09}{0} = \frac{8}{170}$

(5) $y = k \times direct variation$
 $m = \frac{4}{100} = \frac{40}{100}$
 $k = 4$
 $m = 4$

16). Higher the living standards the higher life expectancy therefore positive correlation

$$\overline{\Omega} \cdot \overline{\Omega} = 68 \quad S = 9 \quad Z = 2$$

$$Z = \frac{x - \overline{\lambda}}{S}$$

$$2 = \frac{x - 68}{9}$$

$$18 = 36 - 68$$

\$760.36 per month for every \$100,000 =\$760.36 × 4.5 × 12 × 20 =\$ 821188.80 is closest to: = \$ 821189 Probability trey win one race PCAUQ win, 20e 10ser) = 0.8 x0.3 = 0.24 P(AUG 108es, 20e wins) = 0.2 x0.7 = 0.14 Total probability = 0-24+0.14 = 0.38 $\frac{9}{5} = \sin 44^{\circ}$ ton 34°= 9 ton 34° = 65: 1 44° x + cn34° =

 $x = \frac{b \sin 44^{\circ}}{4 \cos 34^{\circ}}$

 $25) \quad E = A (S-3Y)$ E = AS - 3AY 3AY = AS - E

9 - 2A = P A8

Atte	-	Questions 26 to 30 out 110 minutes for this section	
Extr	a writi	ing booklets are available.	
1		ary working should be shown in every question. 26 (15 marks)	
	1		
(a)		Expand and simplify $x(x+6) - 3(4-x)$	2
		$\frac{1}{2} = (x^2 + 6x - 12 + 3x)^{\frac{1}{2}}$ $= x^2 + 9x - 12$	
(b)		Izabella is leaving Sydney to go on a trip to Papeete in Tahiti. Sydney is (34°S, 151°E) and Papeete is(17°S, 149°W)	
	(i)	Show that there is a 20- hour time difference between the two cities (ignore time zones)	2
		151°+ 149° = 300° (1)	
		1º is 4 minutes	
		151°+ 149° = 300° (1) 1° is 4 minutes 300° × 4 minutes 1200 min 760° = 20 hrs. (shown)	
	(ii)	Izabella's friend in Sydney sent her a text message which happened to take 5	2
	(11)	hours to reach her in Papeete. It was sent at 10 am Saturday, Sydney time.	_
		What was the time of day in Papeete when she received the text?	
	199	gu papeete = Sydney. 151°E	
		2pm Fri 10 am Sout.	
		+ 5 L/S text = 70m Fliday	
(c)		Amelia is a real estate agent. She earns \$400 per week plus commission on	2
		any sales the she makes. Her commission is calculated using the schedule	_
		below.	
		Value of Sale Commission	
		Less than \$60 000 5% \$60 001 - \$120 000 \$3000 plus 2% of each dollar over \$60 000	
		\$60 001 - \$120 000 \$3000 plus 2% of each dollar over \$60 000 Over \$120 000 \$4200 plus 1.5% of each dollar over \$120 000	
		Last week Amelia sold a block of land in Mudgee for \$110 000.	
		Calculate Amelia's commission for that week.	
		= 63 0000+ (110 000 60 000)	×
		- 5.3.00	
		= \$4000 commission	

(d)	Observatory Hil	num temperature il on every day in stribution table be	January. T		by Genevieve at is summarised in	
		Temperature	(fi)	Cumulative Frequency	Fleguency (f) 5015574	
		(x)	(fx)	(cf)	(+)	
		23 24	115 48	5 7	2	
		25	125	12	5	
		26	130	17	5	
		27	N	24	7	
		28	112	28	4	
		29	29	29	i	
	3.	30	30	30	1	
		31	31	31	1	
					31	
(i)	Find the median	temperature for J	January			1
	middle	of 31 is	5 164	LSCOLE	y recognize	
		(5 mc	xx if the	1 recogniae	middle
(ii)	Find the value of	f N in the table at	oove	of 31))	1
	27	×7=N N=	189			
(e)		611 km TENTENFIEL 513 km GLEN INNES 513 km ARMIDALE 401 km TAMWORTHO	ME COOL MACH CONTROL OF COMMENT O	958 km	••••••STOP•REVIVE•SURVIVE••••••	

Que	stion 2	27 (15 marks)	
(a)		Ashley recorded the average monthly maximum temperatures for Sydney and Melbourne and displayed them on the box and whisker plot below. Sydney Melbourne 12 14 16 18 20 22 24 26 28 Temperature (°C)	
	(i)	Write down the inter-quartile range of temperatures for Melbourne.	1
		IQR = 03 - Q, =23° - 16° IOR = 7°C	
	(ii)	What percentage of months in Sydney have an average maximum temperature greater than 25° C?	1
		greater than 25°c is 25%	
	(iii)	Briefly describe the skewness of the average monthly temperatures for Melbourne.	1
		pasitively skewed.	
(b)		During a hot day, Laura buys an ice-cream cone. Cones are 12 cm high and have an internal diameter of 7 cm.	
	(i)	Show that the volume of the cone is $154cm^3$, correct to the nearest cubic centimetre.	2
		$V = \frac{1}{3} \pi / ^2 h$ $V = 3.5$ $h = 12$ $V = \frac{1}{3} \pi (3.5)^2 \times 12 = 153.938.$ A spherical scoop of ice-ream, with the same radius as the top of the cone is	
	(ii)	placed at the top of the cone. Show that the volume of this one scoop is	2
		180cm ³ , correct to the nearest cubic centimetre. $(=3.5)$ $V = \frac{4}{3}\pi(^3 = \frac{4}{3}\pi(3.5)^3)$ $V = 179.59$ V = 180 cm	3
	(iii)	The shop offers 15 flavours of ice-cream. If Laura decides to have a double decker ice-cream (2 scoops). How many possible combinations will there be?	1
		15 flavours choose two 15C, = 105 combinations	

		1
	Scarlett travels from Sydney to Brisbane via the Pacific highway and then returns home to Sydney via the New England Highway.	
(i)	What is the total distance of Scarlett's trip?	1
	= 958 km + 979 km = 1937 \text{km}	
(ii)	Scarlett's car consumes petrol at a rate of 12 litres per 100 kilometres. Petrol costs \$1.40 per litre. Find the cost of the petrol Scarlett used for the entire trip.	2
	= 1937 - 100 km (3) = 1937 × 12 litres (3)	
	= 232.44 litres x\$1.40	0
	cast = \$325.42. (neare cent.)	
(iii)	a) What is the distance between Coffs Harbour and Coolangatta?	1
	D = 858km - 543km	
-	0 = 315km	
	b) Scarlett travels at an average speed of 90km/hr for this section of the trip. How long would she estimate the drive between Coffs Harbour and Coolangatta should take? (Round to the nearest minute)	1
	T= Distance Speed	
	= 315km 90km/hr.	
	T = 3.5 hrs	
#r	Time= 3LCS 30 mins.	

(c)		Claudia and Alex both purchase office equipment with an initial value of \$150 000. Alex uses the declining balance method to calculate the depreciation of her office equipment while Claudia uses the straight line method. The graph below illustrates the depreciation of both Alex's and Claudia's office equipment.	
		150 Alexandra (In thousands of dollars) Alexandra (In thousands of dollars) Alexandra (In thousands of dollars) Time (years)	
	(i)	After approximately how many years does Alex's and Claudia's equipment have the same salvage value?	1
		4.5 years 2 mork for close crow	5
	(ii)	What is the value of Alex's office equipment after three years?	1
		\$60 000	
	(iii)	Find the total amount of depreciation of Claudia's equipment after three years, in dollars.	1
		\$ 150 000 in 6415 12 mark for \$ 75 000 in 3415 2 close on	JW
	(iv)	Using your answer in (iii) find the equation of the straight line of depreciation for Claudia's office equipment.	1
		\$25,000 per gear 5 = 150 000 - 25 000 n	
(d)		At the recent winter sales Alice bought a new coat with a sale price of \$118.95. The original marked price was \$195.	
	(i)	Calculate the percentage discount on the coat. 195 - 118.95 = $\frac{76.05}{195}$ = 0.39 = 399 Alice paid for the coat on her credit card. It has no interest free period. The	Q
	(iii)	Alice paid for the coat on her credit card. It has no interest free period. The interest rate on her credit card is 18.75% p.a. She pays the amount owing 17 days later. Calculate the total amount (including interest) she will pay for the new coat.	2
		I = PRT (2) = 118.95 × 18.75 0 × 17 days I = 1.04 365	
		I = 104 365 End of Question 27	

TOTAL = \$ 119.99

7

Questio	n 28 (15 marks)	
(a)	In a television game show, Amanda must choose one case out of the five cases on display. The cases contain the amounts \$15 000, \$10 000, \$1 000 \$50 and \$1. It is not known which amount is in which case.	
-	Calculate Amanda's financial expectation for the television game show.	2
	Financial = $1 \times 15000 + 1 \times 10000 + 5$ $1 \times 1000 + 5 \times 50 + 5 \times 1000 + 5 \times$	
(b)	Kimberly and Eva were on two boats which sailed out of Cairns heading for popular dive sites on the Great Barrier Reef. The first sailed north-east for 55 kilometres. The second sailed on a bearing of 125° for 47 kilometres, as shown in the diagram below.	
	Cairns 125° Cairns 125° Site 1 Diagram not to scale 125° Site 2	
	Find the distance between the two dive sites. Give your answer correct to the nearest metre.	- 2
	$\chi^{2} = 55^{2} 47^{2} - 2 \times 55 \times 47 \times 69$ $\chi^{2} = 4336.238.$ $\chi = 65^{8} 850124 \text{ km}$ $\chi = 65^{8} 50.12 \text{ m}$ $\chi = 65^{8} 50.12 \text{ m}$	SPO

(i) Find the expected percentage of fish with lengths between 490 mm and 550 mm. (i) Find the expected percentage of fish with lengths between 490 mm and 550 mm. (ii) Find the expected percentage of fish with lengths between 490 mm and 550 mm.	(c)	Adam needs \$25 000 to take Eve on a dream holiday to the Virgin Islands 3 years from now. He has found an account which pays interest of 9.6% p.a., compounded monthly. What single amount of money will Adam need to invest now so that he will have enough money for the holiday?	2
normally distributed with a mean length of 520 mm and a standard deviation of 30 mm. (i) Find the expected percentage of fish with lengths between 490 mm and 550 mm. = 34% + 34% = 68%		$= 25000 \\ (1+0.8\%)^{36} \\ = 3 \times 12 \\ = 36 \text{ m/hs}.$	÷ı
mm. = 34%/0 + 34%/0 = 68%/0 = 68%/0 The fish farm rejects fish with a length which is more than two standard deviations below the mean length. (ii) What is the minimum length of salmon which the fish farm will accept? = 520 - 30 - 30 = 460 mm (2 standard ord peniations) (iii) What percentage of fish would you expect to be rejected by the fish farm?	(d)	normally distributed with a mean length of 520 mm and a standard deviation	
The fish farm rejects fish with a length which is more than two standard deviations below the mean length. (ii) What is the minimum length of salmon which the fish farm will accept? = 520 - 30 - 30 = 460 mm (2 standard occions) (iii) What percentage of fish would you expect to be rejected by the fish farm?	(1
deviations below the mean length. (ii) What is the minimum length of salmon which the fish farm will accept? = 520 - 30 - 30 = 460 mm (2 standard peniations) (iii) What percentage of fish would you expect to be rejected by the fish farm?		-2 -1 JT +1 +2 460 490 520 550 580	
= 520-30-30 = 460 mm (2 standard oev:at:ons) (iii) What percentage of fish would you expect to be rejected by the fish farm?			
= 460 mm (2 standard peviations) (iii) What percentage of fish would you expect to be rejected by the fish farm?	(1		1
bottom half is 50%	(i		1
= 50% - 34% - 13.5% = 2.5% would be rejected		= 50% - 34% - 13.5%	

À .

(e)	Solve these equations simultaneously, showing all necessary working	2
	2w + 5p = 15 - 2 $2w - p = 3 - 2$ equation $0 - 2$	
	$0 \le p = 12$ $p = 2 \text{Subst into}$	2
	$2\omega - 2 = 3$ $2\omega = 5$ $\omega = \frac{5}{2} \text{or} 2.5$	
	$P = 2 \omega = \frac{5}{2}$	
(f)	A packet of 40 jubes contains 25 lemon, 10 orange and 5 strawberry jubes. Vania takes a packet into the movies at Bondi Junction and randomly chooses jubes throughout the movie.	
	The tree diagram below represents the possibilities of her first two choices, without replacement.	
	Lemon Standary Strawberry	
	Orange Strawberry 25/39 Lemon Strawberry 25/39 Lemon	
	Strawberry 4/39 Orange Strawberry	
(i)	Complete the tree diagram by writing the correct probability on each branch.	2
(ii)	Calculate the probability that Vania chooses two jubes with the same flavour.	2
	pusama flavour)	ach
	= P(LL) + P(OO) + P(SS)	X
	$= \frac{25 \times \frac{24}{40}}{\frac{39}{39}} + \frac{10}{40} \times \frac{9}{39} + \frac{5}{40} \times \frac{4}{39}$	and
9	ミニーナキ	1 7-5
	13 82 /3	

(c)	_	Young's rule can be used to calculate a child's medicine dose.
		T -
		Young's rule is: $C = \frac{nA}{n+12}$
		Where C is the child's dose (in mL), n is the age of the child (in years) and A is the adult dose (in mL).
		For a particular medicine, the adult dose is 24 mL
	(i)	What is the dose for a 4 year old child?
		C= 4×24 N=4 A=24nL
		4+12
		:. C = 6 mC
	(ii)	Find the age at which the dose is double that of the dose for a 4 year old.
		Double a 441 old dose C=12ml
		12= n x 24 1) 7144=12 ~
		n+12
		$\frac{12(n+12)}{12n+144} = 24n$
d)		1
u)		Taxable Income Tax Payable on Taxable Income
		\$0 - \$6000 Nil
		\$30001 - \$75000
		Over \$150000 \$47100 plus 45¢ for each \$1 over \$150000
	(i)	Kaitlin earns an annual salary of \$86 458 from her job with a law firm.
		Use the tax table above to calculate the tax payable on her taxable income if she has allowable deductions of \$2500.
		86 458 - 25 00 = \$839582 +axable in
		Tax = 17100 + 0.4x (83958 - 75000)
		Tax = \$ 20 683.20 13
	(ii)	Kaitlin must also pay the Medicare Levy of 1.5% of her taxable income.
	(**)	Calculate the amount that Kaitlin must pay.
		taxable in come = 83958 x 1.5%
		medicare levy = 0.015 x 82958
		medicare levy = 0.015 x 83958 = \$ 1259.37
	(iii)	Throughout the year, Kaitlin has \$833.97 tax per fortnight deducted from her 2
		salary. Will Kaitlin receive a tax refund or will she need to pay an additional
		amount in tax? What is the amount of her refund or tax bill?
		Total tax payable = 20, 683.20 +
		1 257.37
		421 942.57 2
		Tax paid = 4 833.97 x26
		Tax paid = 4833.97 x 26 = 21683. 22 1/2)
		End of Question 20

kaitin needs to pay an additional amount of tax = 21942.57 - 21683.22 = \$259.35

Questio	n 29 (15 marks) Start a new writing booklet.	
(a)	Stephanie, S , is 1200 metres from her home, H , when she first sees an aeroplane. The angle of elevation from Stephanie to the plane at P is 64°. Five minutes later the plane is directly above Stephanie's home at D . The angle of elevation from Stephanie to D is 23°. NOT TO SCALE	
	1200 III	
	How far did the aeroplane travel from P to D , to the nearest metre? In $\triangle O + S$	3°(alt 2's)
	How far did the aeroplane travel from P to D , to the nearest metre? In $\triangle OHS$ $= 1200$ $OS = 1200$ $COS 23^{\circ}$ $OS = 1303.632$ The property of the nearest metre? $COS 23^{\circ}$ $OP = 951.56$ $OP = 951.56$	Trechest m
(b)	The blood alcohol content BAC, B , of an adult male after drinking beer varies inversely with his weight, W kg. If a 72kg man has a BAC, B value of 0.059 after drinking a beer.	
(i)	Find the value of B , correct to three decimal places, of a 90 kg man who drinks the same amount as a 72 kg man. $B = \frac{K}{W}$ $O \cdot OS9 = \frac{K}{72}$ SO $B = \frac{4 \cdot 248}{90}$	2
	72 k= 4.248 1 B= 0.047	D .
(ii)	What does this inverse equation imply?	1
	this implies that an increase in your weight will decrease BAC.	

Que	estion 3	30 (15 marks)	
(a)		The weights and heights of ten Year 12 students were measured and recorded in the table below.	
		Student A B C D E F G H I J Weight (kg) 74 61 57 55 82 63 51 76 70 58 Height (cm) 172 165 174 160 180 164 154 171 155 163	
	(2)	Calculate correct to two decimal places	
	(i)	The correlation coefficient, r	1
	(ii)	The mean and standard deviation of the weight data	1
		$\bar{\chi} = 64.7 6n = 9.72 (2dp)$	
	(iii)	The mean and standard deviation of the height data	1
		$\bar{y} = 165.8 = 7.97 (2010)$	
	(iv)	Find the equation of the least-squares line of best fit	2
		$M = 0.63 \times 7.97$ M = 0.52 1 9.72	
		$b = 165.8 - 0.52 \times 64.7$ $b = 132.16$ ($\frac{1}{2}$) y = mx + b y = 0.52x + 132.16 b = 132.16 b = 132.16	of in
	(v)	Another student has a weight of 80kg. Use the equation form part (iv) to estimate her height. $H = 0.52 \text{ W} + 132.\text{ W} = 80$	1
-	(vi)	$H = 0.52 \times 80 + 132.16$ $H = 1.73.76$ Emma proposes that the taller you are, the more you will weigh.	cm 2
	(**)	Do you agree with her proposal? Justify your answer.	-
		the correlation is positive and moderate (= 0.63 > 0 Yes there is a moderate positive correlation between	

(b)		A packing carton is to be constructed as shown in the diagram below. All dimensions are in centimetres.		
		NOT TO SCALE		
	(i)	Show that the surface area (S) of the carton is $S = 36x - 2x^2$.	2	1
		$SA = (x \times x) \times 2 + x(9 - x) \times 4$		1
		$\sqrt{\frac{1}{2}} = (2x^{3} + (4(9x - x^{2})))$		
	,	$=2x^2+36x-4x^2$		
		$SA = 36x - 2x^2 \frac{1}{2} (shawn)$		
	(ii)	Explain why the formula is only valid for the values from $x = 0$ to $x = 9$.	1	
		x must be you as it is a side		
		9-x>0 also must be positive ix>9 x i.es between oor	6	
		: x>9 x 1.es between oor	101	
		The diagram below shows the graph of the volume (V) of the carton for values of x from $x = 0$ to $x = 9$. The dimensions of the carton are chosen so that its volume is a maximum.	1	
		2 4 8 8 10 x		
	(iii)	Find the value of x for which the carton has a maximum volume	1	
		- x=6 is when volume is a maximum.		
	(iv)	Find the surface area of the carton when it has maximum volume.	2	-
		when $x=6$		
		$SA = 36x - 2x^2$ = $36 \times 6 - 2 \times 6^2$		

End of exam paper

SA = 144 cm²