

Student Number: \qquad

St Catherine's School

Waverley
Teacher Name: \qquad

2014

Mathematics General 2

Trial Examination

TASK 4 45\%

Instructions

- Time - 150 minutes plus 5 minutes reading
- Write using black or blue pen only.
- Approved calculators are permitted.
- All necessary working must be shown.
- Marks may be deducted for careless or poorly arranged work.

Section I

- Answer all questions on the multiple choice answer sheet attached.

Section II

- Answer all questions 26 to 30 on the exam paper in the spaces provided.
- A formulae sheet and extra writing space is attached at the rear of the paper.

Section I

Multiple choice 25 Marks
Attempt Questions 1-25
Allow 35 minutes for this section

Section II

75 Marks
Attempt Questions 26-30
Allow about 1hour 55 minutes for this section
All questions are of equal value.

Section I	
Q1-25	$/ 25$
Section II	$/ 15$
Q26	$/ 15$
Q27	$/ 15$
Q28	$/ 15$
Q29	$/ 15$
Q30	$/ 100$
TOTAL	

Section I

25 marks Attempt Questions 1 to 25
 Allow about 35 minutes for this section

Use the multiple-choice answer sheet for Questions 1 to 25

1. \quad Tess earns $\$ 14.50$ per hour normal rate. How much does she earn if she works for 38 hours at normal rate and 5 hours at time-and-a-half?
(A) $\$ 587.25$
(B) $\$ 630.74$
(C) $\$ 659.75$
(D) $\$ 935.25$
2. Caitlin is one of the five house captains who are having their group photo taken. They are going to be seated randomly in a single row. What is the probability that, for the photograph, Caitlin will be seated on either end?
(A) $\frac{4}{25}$
(B) $\frac{1}{25}$
(C) $\frac{1}{20}$
(D) $\frac{2}{5}$
3.

The first question of a survey states" Which colour car would you prefer?" This question will produce what type of data?

	(A) Categorical	(B) Continuous
4.	(C) Numerical	(D) Discrete
	Which equation best represents the graph shown above?	
	(A) $y=x^{2}$	(B) $y=2^{x}$
	(C) $y=\frac{2}{x}$	(D) $y=x^{3}$

5.	Front Vicw The diagram above shows the 3-dimensional representation of a solid figure on an isometric grid, and the 2-dimensional view of the front of the solid. Which of the following gives the correct views of both the top and the left of the solid?
	(C) (D) Top View Left View
6.	Eliza's car is travelling along the freeway at $95 \mathrm{~km} / \mathrm{h}$. What is the car's approximate speed in m / s ?
	(A) $1.6 \mathrm{~m} / \mathrm{s}$
	(B) $26.4 \mathrm{~m} / \mathrm{s}$
	(C) $16.8 \mathrm{~m} / \mathrm{s}$
	(D) $342 \mathrm{~m} / \mathrm{s}$

10.	Jessica has 6500 shares with a current market value of $\$ 2.95$ per share. Jessica has received a total dividend of $\$ 1093.30$. What is the dividend yield on these shares?
11.	Isabella has completed four assessment tasks, each marked out of 100 , giving her a mean of 71%. She wants to increase her mean to 75% after the trial. Which of the following below will calculate the mark (x) she needs to achieve in the next assessment task?
	(A) $x=\frac{71+75}{2}$
	(B) $\frac{71+x}{2}=75$
	(C) $\frac{71 \times 4+x}{2}=75$
	(D) $\frac{71 \times 4+x}{5}=75$
12.	Which of the following expresses $\frac{6 x^{2} y}{3} \div \frac{2 y}{5}$ in its simplest form?
	(A) $5 x^{2}$
	(B) $\frac{4 x^{2} y^{2}}{5}$
	(C) $\frac{1}{5 x^{2}}$
	(D) $\frac{5}{4 x^{2} y^{2}}$

13.	Holly measured her height to be 182 cm , correct to the nearest centimetre. What is the percentage error in her measurement?
	(A) $\pm 0.0027 \%$ (B) $\pm 0.0055 \%$ (C) $\pm 0.27 \%$ (D) $\pm 0.55 \%$
14.	Raine is driving at a speed of $80 \mathrm{~km} / \mathrm{h}$. It takes Raine two seconds to react to a dangerous situation before applying the brakes. The stopping distance is given by the formula: Stopping distance: $d=\frac{5 V t}{18}+\frac{V^{2}}{170}$ How far will Raine travel in her car after applying the brakes using this formula?
	(A) 60 m (B) 82 m
	(C) 164 m (D) 246 m
15.	Kate observed that the number of Facebook messages (M) she received where directly proportional to the number of friends (n) she had logged in on that day. Yesterday she had 10 friends and 40 messages. How many messages would she have if she had 45 friends?
	(A) 13 (B) 85 (C) 180 (D) 810
16.	What is the best description between living standards and life expectancy?
	(A) Constant correlation ${ }^{\text {(B) }}$ Negative correlation.
	(C) Positive correlation. ${ }^{\text {(D) Zero correlation. }}$
17.	The mean mark in the Half-Yearly Examination in Mathematics General 2 was 68 and the standard deviation was 9 . A z-score of 2 for this test would represent a mark of:
	(A) 50
	(B) 66
	(C) 70
	(D) 86

23.	Miranda has 32 GB of data storage on a USB drive? How many data files of average size 6.4 MB can she store?			
	(A) 5	(B) 204.8	(C) 5000	(D) 5120
24.	Ariane is given 1.8 litres of fluid over 10 hours by intravenous drip. The fluid is delivered at a rate of 30 drops per mL . What is the required drip rate, in drops per minute?			
	(A) 0.15	(B) 3.6	(C) 15	(D) 90
25.	Which of the following correctly expresses Y as the subject of the formula$E=A(S-3 Y) ?$			
	(A)$Y=\frac{E-A S}{3 A}$			
	(B)$\gamma=\frac{E}{3 A}+\frac{S}{3}$			
	(C)$Y=\frac{A S-E}{3 A}$			
	(D)$Y=\frac{E-A-S}{-3}$			

Section II

75 marks
 Attempt Questions 26 to 30
 Allow about 110 minutes for this section

Answer each question in the appropriate writing booklet.
Extra writing booklets are available.
All necessary working should be shown in every question.

Question 26 (15 marks)

		Observatory Hill on every day in January. The information is summarised in the frequency distribution table below.	
	(i)	Find the median temperature for January	1
	(ii)	Find the value of \boldsymbol{N} in the table above	1
(e)		There's more than one road north!	

		Scarlett travels from Sydney to Brisbane via the Pacific highway and then returns home to Sydney via the New England Highway.	
(i)	What is the total distance of Scarlett's trip?	$\mathbf{1}$	
	(ii)	Scarlett's car consumes petrol at a rate of 12 litres per 100 kilometres. Petrol costs \$1.40 per litre. Find the cost of the petrol Scarlett used for the entire trip.	$\mathbf{2}$
(iii)	a) What is the distance between Coffs Harbour and Coolangatta?		
		b)	Scarlett travels at an average speed of 90km/hr for this section of the trip. How long would she estimate the drive between Coffs Harbour and Coolangatta should take? (Round to the nearest minute)
$\mathbf{1}$			

Question 27 (15 marks)			
(a)		Ashley recorded the average monthly maximum temperatures for Sydney and Melbourne and displayed them on the box and whisker plot below.	
	(i)	Write down the inter-quartile range of temperatures for Melbourne.	1
	(ii)	What percentage of months in Sydney have an average maximum temperature greater than $25^{\circ} \mathrm{C}$?	1
	(iii)	Briefly describe the skewness of the average monthly temperatures for Melbourne.	1
(b)		During a hot day, Laura buys an ice-cream cone. Cones are 12 cm high and have an internal diameter of 7 cm .	
	(i)	Show that the volume of the cone is $154 \mathrm{~cm}^{3}$, correct to the nearest cubic centimetre.	2
	(ii)	A spherical scoop of ice-ream, with the same radius as the top of the cone is placed at the top of the cone. Show that the volume of this one scoop is $180 \mathrm{~cm}^{3}$, correct to the nearest cubic centimetre.	2
	(iii)	The shop offers 15 flavours of ice-cream. If Laura decides to have a double decker ice-cream (2 scoops). How many possible combinations will there be?	1

(c)		Claudia and Alex both purchase office equipment with an initial value of $\$ 150000$. Alex uses the declining balance method to calculate the depreciation of her office equipment while Claudia uses the straight line method. The graph below illustrates the depreciation of both Alex's and Claudia's office equipment.	
	(i)	After approximately how many years does Alex's and Claudia's equipment have the same salvage value?	1
	(ii)	What is the value of Alex's office equipment after three years?	1
	(iii)	Find the amount of depreciation per year and in dollars, of Claudia's equipment.	1
	(iv)	Using your answer in (iii) find the equation of the straight line of depreciation for Claudia's office equipment.	1
(d)		At the recent winter sales Alice bought a new coat with a sale price of $\$ 118.95$. The original marked price was $\$ 195$.	
	(i)	Calculate the percentage discount on the coat.	1
	(iii)	Alice paid for the coat on her credit card. It has no interest free period. The interest rate on her credit card is 18.75% p.a. She pays the amount owing 17 days later. Calculate the total amount (including interest) she will pay for the new coat.	2

Question 28 (15 marks)		
(a)	In a television game show, Amanda must choose one case out of the five cases on display. The cases contain the amounts $\$ 15000, \$ 10000, \$ 1000$ $\$ 50$ and $\$ 1$. It is not known which amount is in which case. $\$ 15000$ $\$ 10000$ $\$ 1000$ $\$ 50$ $\$ 1$	
	Calculate Amanda's financial expectation for the television game show.	2
(b)	Kimberly and Eva were on two boats which sailed out of Cairns heading for popular dive sites on the Great Barrier Reef. The first sailed north-east for 55 kilometres. The second sailed on a bearing of 125° for 47 kilometres, as shown in the diagram below.	
	Find the distance between the two dive sites. Give your answer correct to the nearest metre.	2
(c)	Adam needs \$25000 to take Eve on a dream holiday to the Virgin Islands	2

		3 years from now. He has found an account which pays interest of 9.6\% p.a., compounded monthly. What single amount of money will Adam need to invest now so that he will have enough money for the holiday?	
			The lengths of Atlantic Salmon at the Thredbo fish farm are found to be normally distributed with a mean length of 520 mm and a standard deviation of 30 mm.
(d)	(i)	Find the expected percentage of fish with lengths between 490 mm and 550 mm.	$\mathbf{1}$
(e)			Solve these equations simultaneously , showing all necessary working
			The fish farm rejects fish with a length which is more than two standard deviations below the mean length.
(iii)	What is the minimum length of salmon which the fish farm will accept?		
		$\mathbf{1}$	

		$\begin{gathered} 2 w+5 p=15 \\ 2 w-p=3 \end{gathered}$	
(f)		A packet of 40 jubes contains 25 lemon, 10 orange and 5 strawberry jubes. Vania takes a packet into the movies at Bondi Junction and randomly chooses jubes throughout the movie.	
		The tree diagram below represents the possibilities of her first two choices, without replacement.	
	(i)	Complete the tree diagram by writing the correct probability on each branch.	2
	(ii)	Calculate the probability that Vania chooses two jubes with the same flavour.	2

End of Question 28

Question 29 (15 marks) Start a new writing booklet.				
(a)	Stephanie, S, is 1200 metres from her home, H, when she first sees an aeroplane. The angle of elevation from Stephanie to the plane at P is 64°. Five minutes later the plane is directly above Stephanie's home at D. The angle of elevation from Stephanie to D is 23°.			

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { (c) } & & \begin{array}{l}\text { Young's rule can be used to calculate a child's medicine dose. } \\
\text { Young's rule is : } C=\frac{n A}{n+12} \\
\text { Where } C \text { is the child's dose (in mL), } n \text { is the age of the child (in years) and } A \\
\text { is the adult dose (in mL). } \\
\text { For a particular medicine, the adult dose is } 24 \mathrm{~mL}\end{array}
$$ \&

\hline \& (i) \& What is the dose for a 4 year old child?\end{array}\right]\)| (ii) |
| :--- |

(b)		A packing carton is to be constructed as shown in the diagram below. All dimensions are in centimetres.	
	(i)	Show that the surface area (\boldsymbol{S}) of the carton is $S=36 x-2 x^{2}$.	2
	(ii)	Explain why the formula is only valid for the values from $x=0$ to $x=9$.	1
		The diagram below shows the graph of the volume (V) of the carton for values of x from $x=0$ to $x=9$. The dimensions of the carton are chosen so that its volume is a maximum.	1
	(iii)	Find the value of x for which the carton has a maximum volume	1
	(iv)	Find the surface area of the carton when it has maximum volume.	2

Student Number: Solutions.

St Catherine's School

Waverley

Teacher Name:

\qquad

2014

Mathematics General 2

Trial Examination

TASK 4 45\%

Instructions

- Time - 150 minutes plus 5 minutes reading
- Write using black or blue pen only.
- Approved calculators are permitted.
- All necessary working must be shown.
- Marks may be deducted for careless or poorly arranged work.

Section I

- Answer all questions on the multiple choice answer sheet attached.

Section II

- Answer all questions 26 to 30 on the exam paper in the spaces provided.
- A formulae sheet and extra writing space is attached at the rear of the paper.

Section I

Multiple choice

25 Marks
Attempt Questions 1-25
Allow 35 minutes for this section

Section II

75 Marks

Attempt Questions 26-30
Allow about hour 55 minutes for this section
All questions are of equal value.

Section I	
Q1-25	
Section II	
Q26	$/ 15$
Q27	$/ 15$
Q28	$/ 15$
Q29	115
Q30	$/ 15$
TOTAL	$/ \mathbf{1 0 0}$

Trial HSC 2014 mathematics
 Student Name or Number
 \qquad

Mathematics General 2: Multiple Choice Answer Sheet
Completely fill the response oval representing the most correct answer.

2014-Trial HSC. Solutions.
multiple Choice
(1)

$$
\begin{align*}
& \$ 14.50 \times 38+\$ 14.50 \times 5 \times 1.5 \\
= & \$ 659.75 \tag{C}
\end{align*}
$$

(2)

$$
\begin{align*}
& \frac{\text { Cartlin, } 4 \times 3 \times 2 \times 1}{5 \times 4 \times 3 \times 2 \times 1}+\frac{4 \times 3 \times 2 \times 1, \text {, cartlir }}{5 \times 4 \times 3 \times 2 \times 1} \\
& \begin{aligned}
\frac{24}{120}+\frac{24}{120} & =\frac{48}{120} \\
& =\frac{2}{5}
\end{aligned}
\end{align*}
$$

(3) Car colour is categorical (A)
(4). exponential curve $y=2^{x}$
(5) (D)
(6) $95 \mathrm{~km} / \mathrm{h}$ $95000 m / \mathrm{h}$

$$
\begin{gather*}
95000 \div 3600 \\
26.4 \mathrm{~m} / \mathrm{s} \tag{B}
\end{gather*}
$$

(7) - current month $\$ 125.30$

- latest account.

$$
-\$ 17.50+\$ 10.30+\$ 0.75-\$ 5.40
$$

averall down - $\$ 11.85$

- previous month would have been higher $\begin{aligned} & \$ 125.30 \\ = & \$ 137.15\end{aligned}$

$$
=\$ 137.15
$$

(8)

$$
\begin{align*}
& =\frac{4}{6} \times 180 \\
& =120 \text { goals expected } \tag{C}
\end{align*}
$$

(9) Highest correlation (A)
(10) $6500 \times \$ 2.95=\$ 19,175$ total

Dividend Total $=\$ 1093.30$

$$
\begin{align*}
\text { yield } & =\$ \frac{1093.30}{19175} \\
& \$ 0.057 \\
& =5.7 \% \tag{C}\\
& =50
\end{align*}
$$

(11) $\quad \frac{71 \times 4+x}{5}=75$
(12).

$$
\begin{align*}
& \frac{6 x^{2} y}{3} \div \frac{2 y}{5} \\
& \frac{6 x^{2} y}{3} \times \frac{5}{2 y}=\frac{30 x^{2}}{6} \\
&=5 x^{2} \tag{A.}
\end{align*}
$$

(13)

$$
\begin{align*}
\frac{ \pm 0.5}{182} & = \pm 0.00274 \\
& = \pm 0.27 \% \tag{C}
\end{align*}
$$

(14)

$$
\begin{align*}
& d=\frac{5 v t}{18}+\frac{v^{2}}{170} \\
& d=\frac{5 \times 80 \times 2}{}+\frac{80^{2}}{170} \\
& \alpha=82.09 \\
& d=82 \mathrm{~m} . \quad B . \tag{B.}
\end{align*}
$$

(15)

$$
\begin{align*}
y & =k x \quad \text { direct vo } \\
m & =k \sim \quad \text { if } \quad m=40 \\
40 & =k \times 10 \quad n=10 \\
k & =4 \\
m & =4 \sim \\
& =4 \times 45 \quad \text { if } n=45 \\
\therefore \quad m & =180 \quad c
\end{align*}
$$

directuariation
(16). Higher the living standards the higher life expectancy therefore positive correlation
(17).

$$
\begin{align*}
\bar{x} & =68 \quad s=9 \quad z=2 \tag{C.}\\
z & =\frac{x-\bar{x}}{s} \\
2 & =\frac{x-68}{9} \\
\therefore 18 & =x-68 \\
\therefore x & =86
\end{align*}
$$

(18) $\$ 760.36$ per month
for every \$ 100,000

$$
\begin{aligned}
& =\$ 760.36 \times 4.5 \times 12 \times 20 \\
& =\$.821188 .80 \\
& \text { is closest to. }
\end{aligned}
$$

$$
=\$ 82.1189
$$

(19). Probability thy win one race each

$$
\begin{aligned}
\text { P(Ava win, zoe loser) } & =0.8 \times 0.3 \\
& =0.24 \\
\text { P(Ava lo fer, zoe wins) } & =0.2 \times 0.7 \\
& =0.14 \\
\text { Total probability } & =0.24 \\
& =0.38
\end{aligned}
$$

(20).

$$
\text { 0). } \begin{aligned}
\frac{y}{b} & =\sin 44^{\circ} \\
y & =b \sin 44^{\circ} \\
\tan 34^{\circ} & =\frac{y}{x} \\
\tan 34^{\circ} & =\frac{b \sin 44^{\circ}}{x} \\
x \tan 34^{\circ} & =b \sin 44^{\circ} \\
x & =\frac{b \sin 44^{\circ}}{\tan 34^{\circ}}
\end{aligned}
$$

(21) Told the truth were $154+12=166$ were told they lied 12

$$
\begin{aligned}
\frac{12}{166} & =0.0722 \\
& =7.2 \%
\end{aligned}
$$

(22).

$$
\begin{align*}
\Delta & =b^{2}-4 a c \\
8.1 \times 10^{7} & =b^{2}-4 \times 3.9 \times 10^{8} \times 5.4 \\
b^{2} & =8.1 \times 10^{7}+4 \times 3.9 \times 10^{8} \times 5.4 \\
b & =\sqrt{8.1 \times 10^{7}+4 \times 3.9 \times 10^{8} \times 5.4} \\
b & =9.22 \times 10^{4} \quad B \tag{B}
\end{align*}
$$

23

$$
\begin{aligned}
& \quad 32 \mathrm{CB}=32768 \mathrm{mB} \\
& =32768 \mathrm{mB} \div 6.4 \mathrm{mB}
\end{aligned}
$$

$=5120$ data files can be stored.
(24). $1.8 \mathrm{c} / 10 \mathrm{hrs}$.
(D.
$1800 \mathrm{ml} / 10 \mathrm{hrs}$
$180 \mathrm{ml} / \mathrm{hrs}$
$3 \mathrm{ml} / \mathrm{min}$ if fluidis

(25)

$$
\begin{align*}
E & =A(S-3 Y) \\
E & =A S-3 A Y \\
3 A Y & =A S-E \\
Y & =\frac{A S-E}{3 A} \tag{C}
\end{align*}
$$

(d)		The daily maximum temperature for Sydney was recorded by Genevieve at Observatory Hill on every day in January. The information is summarised in the frequency distribution table below. $\begin{gathered} \text { frequenci } \\ (f) \\ 5 \\ 3 \end{gathered}$	
	(i)	Find the median temperature for January	1
	(ii)	middle of 31 is 16 th score $\therefore 26^{\circ}$ Find the value of N in the table above ($\frac{1}{2}$ mork if they recognide	mid
		$\begin{aligned} 27 \times 7 & =N \\ N & =189 \end{aligned}$	
(e)		There's more than one road north! -STOPRREVIVE SURVIVE	

Question 29 (15 marks) Start a new writing booklet.			
(a)		Stephanie, S, is 1200 metres from her home, H, when she first sees an aeroplane. The angle of elevation from Stephanie to the plane at P is 64°. Five minutes later the plane is directly above Stephanie's home at D. The angle of elevation from Stephanie to D is 23°.	
		How far did the aeroplane travel from P to D, to the nearest metre?	3
(b)		The blood alcohol content BAC, \boldsymbol{B}, of an adult male after drinking beer varies inversely with his weight, $\boldsymbol{W} \mathrm{kg}$. If a 72 kg man has a $\mathrm{BAC}, \boldsymbol{B}$ value of 0.059 after drinking a beer.	
	(i)	Find the value of \boldsymbol{B}, correct to three decimal places, of a 90 kg man who drinks the same amount as a 72 kg man. $\begin{array}{rlrl} B & =\frac{k}{\omega} & \text { then } & B=\frac{4.248}{\omega} \\ 0.059 & =\frac{k}{72} & B & =\frac{4.248}{90} \\ \cdot K & =4.248 \end{array}$	
	(ii)	What does this inverse equation imply?	1
		this implies that an increafe in your weight Will decreafe BAC.	

End of exam paper

$$
\therefore S A \stackrel{\text { End of exam paper }}{=144 \mathrm{~cm}^{2}}
$$

