
Student Number:

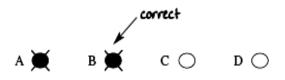
This task is weighted 35% HSC Chemistry assessment mark

Section I

Part A – 15 marks

Allow about 30 minutes for this section.

Instructions


Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

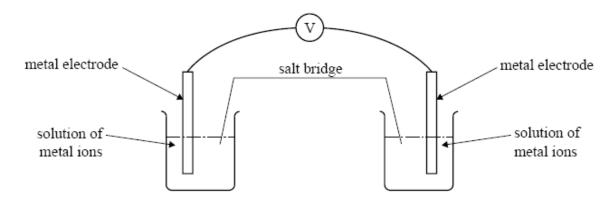
Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		A ()	в 🔴	с 🔾	D ()

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

Section I 75 marks

Part A – 15 marks Attempt Questions 1–15 Allow about 30 minutes for this part


Use the multiple-choice answer sheet for Questions 1–15.

- 1 Which conditions would be best for the fermentation of sugars by yeast?
 - (A) Low oxygen concentration and a temperature between 25°C and 35°C
 - (B) High oxygen concentration and a temperature between $25^{\circ}C$ and $35^{\circ}C$
 - (C) Low oxygen concentration and a temperature between 35°C and 45°C
 - (D) High oxygen concentration and a temperature between 35° C and 45° C
- 2 The monomer ethenylbenzene is more readily identified by its common name, which is
 - (A) Styrene
 - (B) Propylene
 - (C) Acrylonitrile
 - (D) Vinyl chloride
- 3 The heat of combustion of butan-1-ol is 2676 kJ mol^{-1} . What is the value of the heat of combustion in kJ g⁻¹?
 - (A) 27.79
 - (B) 30.41
 - (C) 36.10
 - (D) 44.60
- 4 Which of the following sets of elements contains only those with stable nuclei?
 - (A) $^{238}_{92}U^{16}_{8}O^{24}_{12}Mg$
 - (B) ${}^{18}_{8}O {}^{65}_{30}Zn {}^{12}_{6}C$
 - (C) ${}^{14}_{6}C {}^{16}_{8}O {}^{24}_{12}Mg$
 - (D) ${}^{16}_{8}O {}^{39}_{19}K {}^{12}_{6}C$

5 Four half cells were constructed as follows:

Half cell I: an electrode of metal P in a 1.0 M solution of $P^+(aq)$ ions Half cell II: an electrode of metal Q in a 1.0 M solution of $Q^+(aq)$ ions Half cell III: an electrode of metal R in a 1.0 M solution of $R^+(aq)$ ions Half cell IV: an electrode of Cu(s) metal in a 1.0 M solution of Cu²⁺(aq) ions

The half-cells were connected in pairs, as shown below, to form a series of galvanic cells

For each cell, the polarity of the electrodes and the voltage generated are recorded.

Half cells used	Positive electrode	Negative electrode	Voltage (V)
I and IV	Р	Cu	0.46
II and IV	Cu	Q	0.57
III and IV	Cu	R	1.10
II and III	Q	R	0.53

Which one of the following alternatives lists the metals in order of **increasing** strength as reductants?

- (A) R, Q, Cu, P
- $(B) \qquad Cu, P, Q, R$
- $(C) \qquad P, Cu, R, Q$
- (D) P, Cu, Q, R

6 Which of the following is a condensation polymer?

- (A) polystyrene
- (B) polyethylene
- (C) poly(chloroethene)
- (D) poly(ethylene terephthalate)

- 7 Which of the following is **<u>NOT</u>** an everyday use of indicators?
 - (A) Checking swimming pool acidity.
 - (B) Determining the pH of garden soils.
 - (C) Measuring the eutrophication of lakes.
 - (D) Monitoring wastes from photographic processing.
- 8 When 1 mole of zinc is reacted with 250 mL of 1.0 mol L⁻¹ hydrochloric acid solution, the volume of hydrogen gas formed, at 25°C and 100 kPa, is closest to
 - (A) 1.6 L.
 - (B) 3.1 L.
 - (C) 6.2 L.
 - (D) 12.4 L.
- 9 Which statement best represents Lavoisier's definition of an acid?
 - (A) Acids contain oxygen.
 - (B) Acids are proton donors.
 - (C) Acids contain replaceable hydrogen.
 - (D) Acids ionise in solution to form hydrogen ions.
- 10 Identify which of the following species is amphiprotic.
 - $(A) \quad OH^{-}$
 - (B) NH₃
 - (C) SO_4^{2-}
 - (D) H_3PO_4
- 11 A car engine burns fuel with insufficient air. Identify the substance that would have an increased concentration in the car's exhaust as a result.
 - (A) Water
 - (B) Nitrous oxide
 - (C) Carbon dioxide
 - (D) Carbon monoxide

- 12 The flame test method of analysis can be used to distinguish between
 - (A) methanol and ethanol.
 - (B) sulfuric acid and nitric acid.
 - (C) lithium nitrate and calcium nitrate.
 - (D) sodium carbonate and sodium chloride.
- 13 Which of the following pairs of haloalkanes are isomers of each other?
 - (A) 2-fluoro-3-methylbutane and 1-fluoropentane
 - (B) dichlorodifluoromethane and dichlorodibromomethane
 - (C) 1-fluoro-2-pentene and 2,2-difluoro-3-methylpentane
 - (D) 2-fluoro-3-methylpentane and 1-fluoro-2-methylpentane
- 14 Why is chlorine used to treat local water supplies?
 - (A) To make water suitable for swimming.
 - (B) To kill micro-organisms living in the water.
 - (C) To promote sedimentation of finely suspended solids.
 - (D) To precipitate heavy metal ions such as lead and mercury.
- 15 In a chemical reaction which is held at a constant temperature, the addition of a catalyst
 - (A) affects the equilibrium position.
 - (B) lowers the activation energy required.
 - (C) increases the percentage yield at equilibrium.
 - (D) increases the kinetic energy of the molecules involved in the reaction.

Section I (continued)

Part B – 60 marks Attempt Questions 16–27 Allow about 1 hour and 45 minutes for this part

Answer the questions in the spaces provided.

Show all relevant working in questions involving calculations.

Question 16 (4 marks)

Ethylene is used as a raw material in the production of many other substances.

(a) Construct a flowchart that identifies the industrial source of ethylene, the process by which it is produced, and two useful chemicals formed from ethylene.3

(b) Write a balanced chemical equation to summarise the formation of one of these chemicals.1

Student Number

Marks

Marks

Question 17 (7 marks)

The July 2009 *Scientific American* included an article on "Grassoline", the name given to second-generation biofuels derived from cellulose. The article summarised the advances in technologies to convert cellulose directly into fuel, bypassing the need for the fermentation process needed in first-generation biofuels.

The article stated that "first-generation biofuels are not as environmentally friendly as we would like them to be."

(a) Discuss the above quotation with reference to ethanol derived from sugar cane. 4

Question 17 is continued on the next page

Marks

Question 17 (continued)

(b) Explain why cellulose is considered a potential raw material to build petrochemicals. 3

Question 18 (4 marks)

You performed a first-hand investigation to identify the conditions under which a galvanic cell is produced. Justify the conclusion that you made.

 Question 19 (4 marks)

Marks

Teams of Russian and American scientists claimed the discovery of element 113 in February 2004. Following international conventions, it has initially been given the name ununtrium and the symbol Uut, before a permanent name and symbol are given to it. Uut undergoes rapid radioactive decay but atoms of Uut have been identified with a mass number of 283 and also with a mass number of 284. Identify the number of each type of subatomic particle in an uncharged Uut atom of mass (a) number 284. 1 Atoms of Uut with a mass number of 283 undergo radioactive decay into two particles, (b) one of which is an α -particle. Write a balanced equation for this nuclear reaction. 1 Describe another (other than element 113) recent discovery of an element. 2 (c)

Student Number

Marks

Question 20 (5 marks)

Red cabbage indicator chart

С	olour	ť	ed	vi	olet	р	urple		blue	;	gree	en	у	ellov	v
pł	Η	1	2	3	4	5	6	7	8	9	10	11	12	13	14

(a)	State what colour the red cabbage indicator would be in a 0.05 mol L^{-1} solution of H ₂ SO ₄ . Show your working.	1
		•
(b)	Using the red cabbage indicator, what colour would the solution be if 10 mL of 0.05 m L^{-1} H ₂ SO ₄ was diluted to form a 1L solution?	1
 (c)	What volume of 0.005 mol L^{-1} KOH is required to neutralise 15 mL of the diluted solution of H ₂ SO ₄ ?	
		•
		•
		•
		•

Marks

1

Question 21 (4 marks)

Sulfur forms gases that contribute significantly to the pollution of the atmosphere. Sulfur dioxide (SO₂) is formed when solid fuels such as coal are burned.

(a) Draw the electron dot formula for sulfur dioxide.

(b)	Oxides of sulfur in the atmosphere contribute to the formation of acid rain. Name the acid formed in the atmosphere from sulfur dioxide and write a balanced chemical equation to show its formation.	2
		•
		•
		•
 (c)	Identify a problem affecting the natural environment that is caused by acid rain.	1
		•
		•

Question 22 (4 marks)

Acetic acid (ethanoic acid) is the compound responsible for the sour taste and characteristic odour of vinegar. Vinegar can have a number of uses around the home. It can be used to remove the deposits left when tap water is boiled in kettles; it inhibits the growth of bacteria and so is used as a preservative. It is also used as flavouring in cooking and salad dressings.

Using the information above and your knowledge of chemistry, answer the following questions.

(a) Acetic acid in the form of vinegar is suitable for human consumption. Explain why the $0.1 \text{ mol } L^{-1}$ acetic acid found in vinegar can be consumed, but other acids such as $0.1 \text{ mol } L^{-1}$ hydrochloric and $0.05 \text{ mol } L^{-1}$ sulfuric acids should not be consumed.

(b) The most common deposit left in kettles is calcium carbonate. Write an equation to illustrate how acetic acid removes the calcium carbonate. 1

Marks

4

Question 23 (4 marks)

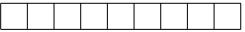
The pH of blood is maintained through buffering. The major buffer system present in blood is based on a carbonic acid/hydrogen carbonate ion buffer. When carbon dioxide enters the blood stream, the following reaction occurs:

 $CO_{2(g)} + 2 H_2O_{(l)} \xrightarrow{} H_2CO_{3(aq)} + H_2O_{(l)} \xrightarrow{} HCO_3^{-}_{(aq)} + H_3O^{+}_{(aq)}$

The presence of carbonic acid and hydrogen carbonate ions maintains the pH of blood to about 7.4.

Use Le Chatelier's principle to explain how the presence of carbonic acid and hydrogen carbonate ions in the blood help to maintain the pH of the blood.

Question 24 (4 marks)


Marks

You p	performed a first-hand investigation to prepare an ester by reflux.	
(a)	Identify the products formed when butanoic acid and propanol are refluxed with acid catalyst.	1
(b)	Identify the acid catalyst used and justify its use in this procedure.	2
		•
		-

(c) In the space below, draw a structural formula to represent the ester formed when butanoic acid and propanol react together.

This page has been intentionally left blank

Examination paper continues on the next page

Student Number

Marks

Question 25 (7 marks)

The Good Weekend magazine supplement of the Sydney Morning Herald published on June 20, 2009, carried an article on Ross Mann, a plant pathologist. The article stated that Mann was working on a natural pesticide to replace "the ozone-depleting chemical methyl bromide, a fumigant used world wide." Methyl bromide's systematic name is bromomethane. (a) Write the formula for methyl bromide: 1 (b) Use equations to justify the assertion that methyl bromide is an ozone-depleting chemical. 4 -----..... (c) Identify the two main groups of haloalkanes that are usually responsible for the destruction of ozone 2 _____

Marks

Question 26 (6 marks)

The Sydney Morning Herald published an article on the toxic metal threat to Sydney's water supply on the 18th June. 2009. The article stated that dangerous levels of copper, boron and arsenic were found in the Cox's River, downstream from a coal-fired power station.

(a)	Identify another common source of copper contamination in the Sydney catchment.	1
(b)	Identify an instrumental method of analysis that could be used to determine precisely the amount of copper present in a water sample taken from the Cox's River just downstream from the power station.	1
(c)	Describe tests that a student could use in the school laboratory to identify that a solution contained copper ions.	3
(d)	Identify a possible domestic (household) source of copper contamination in drinking water.	1

Marks

7

Question 27 (7 marks)

Explain why monitoring of the reaction vessel used in the Haber process is crucial and discuss the monitoring required.

..... Cheltenham Girls High School Chemistry Trial HSC 2009

End of Section I

Section II

Marks

25 marks Attempt Questions 28 Allow about 45 minutes for this section

Answer the questions in a writing booklet. Extra writing booklets are available.

Show all relevant working in questions involving calculations.

Question 28 – Industrial Chemistry (25 marks)

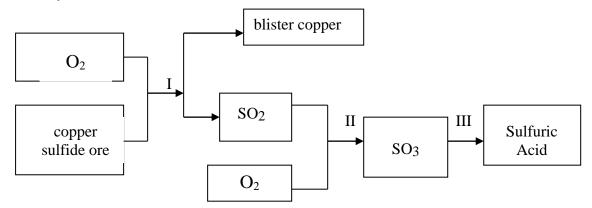
(a) On Tuesday 14th April 2009, the Sydney Morning Herald newspaper reported on an acid spill on the Princes Highway, near Berry, on the N.S.W. South Coast.

The following excerpt was part of the news story.

NSW Fire Brigades has closed a section of the Princes Highway after a truck carrying 20,000 litres of sulfuric acid crashed near Berry today.

Fire Brigade spokesman Craig Brierly said the tanker flipped onto its side and was leaking acid from vents on its roof after crashing about two kilometres north of Berry just after 5 a.m.

The driver managed to get out of the cabin and fire fighters had built makeshift dam walls to stop the acid from leaking off the road, Mr Brierly said.


Three fire engines and two hazardous materials trucks were sent to the incident.

(i)	Identify the main hazard associated with sulfuric acid.	1
(ii)	Explain the Fire Brigades' decision to contain the acid spill to the road.	3
(iii)	Identify a suitable chemical to be used to neutralise the acid and justify your choice.	2
(iv)	Assuming the sulfuric acid is 98% pure, calculate the molarity of the concentrated ac (Hint: the density of sulfuric acid is 1.8g/mL).	id. 2
(v)	Dilute sulfuric acid reacts readily with iron. Explain why steel tankers can be used to transport concentrated sulfuric acid.	3

Question 25 is continued over the page

Question 25 (continued)

- (b) You performed a first-hand investigation in the school laboratory to observe the reactions of sulfuric acid.
- (i) Justify <u>**TWO**</u> additional safe work practices that are required when handling concentrated sulfuric acid, (as opposed to handling dilute sulfuric acid), in the school laboratory.
- (ii) Use balanced equations to explain the results that you observed for concentrated sulfuric acid acting as an oxidising agent and as a dehydrating agent.
- (c) The diagram below represents one way by which sulfuric acid can be prepared industrially.

(i)	Identify another commonly used source of sulfur dioxide.	1
(ii)	Compare the environmental issues associated with the two methods of obtaining sulfur dioxide.	2
(iii)	Justify the conditions you would use to maximise the rate and yield of step II in the above process.	4

End of Examination

3

4

This page has been intentionally left blank

Student Number

Section I – Multiple choice

Answer sheet

	Α	В	C	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

This page has been intentionally left blank

DATA SHEET

Avogadro constant, N _A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at 100 kPa and	
at 0°C (273.15 K)	22.71 L
at 25°C (298.15 K)	24.79 L
Ionisation constant for water at 25°C (298.15 K), K_w	
Specific heat capacity of water	$4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

Some useful formulae

$$pH = -log_{10}[H^+]$$

$\Delta H = -m C \Delta T$

Some standard potentials

		.	
$K^{+} + e^{-}$.	⇒	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	~	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	*	Ca(s)	-2.87 V
$Na^+ + e^-$	\rightleftharpoons	Na(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	~`	Mg(s)	-2.36 V
$Al^{3+} + 3e^{-}$	جك	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	~``	Mn(s)	-1.18 V
$H_2O + e^-$	~2	$\frac{1}{2}$ H ₂ (g) + OH ⁻	-0.83 V
$Zn^{2+} + 2e^{-}$	~	Zn(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	₹	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	~``	Ni(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	←	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	~	Pb(s)	-0.13 V
H ⁺ + e [−]		$\frac{1}{2}H_2(g)$	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	~	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	~	Cu(s)	0.34 V
$\frac{1}{2}O_2(g) + H_2O + 2e^-$	←	20H ⁻	0.40 V
Cu ⁺ + e ⁻	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	\rightleftharpoons	I	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	~``	I-	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	0.77 V
Ag ⁺ + e ⁻	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}\text{Br}_2(l) + e^-$	~	Br ⁻	1.08 V
$\frac{1}{2}$ Br ₂ (aq) + e ⁻	~	Br	1.10 V
$\frac{1}{2}O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H ₂ O	1.23 V
$\frac{1}{2}\text{Cl}_2(g) + e^-$	~``	CI	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	~>	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^-$	~	CI-	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	~	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^-$	~~	F ⁻	2.89 V

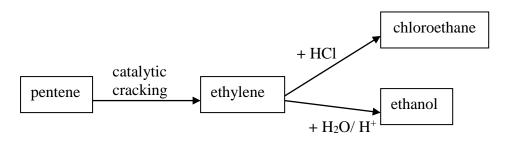
Image: constrained by the co	Г								Т	9 - E	-						_	T			٤Ì								
FRIODIC TABLE OF THE ELEMENTS 4 Aust. Name (1) 70 (1) Some of constrained (1) 70 (1)	ſ	He 4.003	Helium	Se 10	20.18	Neon	18 Ar	39.95	Argon	86 Kr	83.80	Krypton	S4 Xe	131.3	Xenon	Rn 86	[222.0	Kadon	0n0		Ununoctiu			0					
PRIODIC TABLE OF THE ELEMENTS 4 Ame: Nume KEY 90: 90	¥.			οц	19.00	Fluorine	C 1	35.45	Chlorine	35 Br	79.90	Bromine	53 I	126.9	lodine	85 At	[210.0]	Astaune	/11				71	175.0	Lutetium		103	[262.1]	Lawrencium
FRIODIC TABLE OF THE ELEMENTS 84 9011 American bolication sequence sequ				∞O	16.00	Oxygen	16 S	32.07	Sulfur	Se 34	78.96	Selenium	52 Te	127.6	Tellurium	84 Po	[210.0]	LIULIOIO	Uuh		Ununhexium		24	173.0	Ytterbium		102 No	[259.1]	INDEFINIT
PERIODIC TABLE OF THE ELEMENTS B4 b1 b0112 KEY b0112 KEY b012 KEY b012 <td></td> <td></td> <td></td> <td>۲Z</td> <td>14.01</td> <td>Nitrogen</td> <td>15 P</td> <td>30.97</td> <td>Phosphorus</td> <td>33 As</td> <td>74.92</td> <td>Arsenic</td> <td>Sb Sb</td> <td>121.8</td> <td>Antimony</td> <td>83 Bi</td> <td>209.0</td> <td>DISMUU</td> <td>CII</td> <td></td> <td></td> <td></td> <td>69 mT</td> <td>168.9</td> <td>Thulium</td> <td></td> <td>101</td> <td>[258.1]</td> <td>Mendelevium</td>				۲Z	14.01	Nitrogen	15 P	30.97	Phosphorus	33 As	74.92	Arsenic	Sb Sb	121.8	Antimony	83 Bi	209.0	DISMUU	CII				69 mT	168.9	Thulium		101	[258.1]	Mendelevium
PERIODIC TABLE OF THE ELEMENTS 84 9012 KEY 1000 KEY 10000 KEY 1000 KEY 10				o ں	12.01	Carbon	14 Si	28.09	Silicon	G23	72.61	Germanium	50 Sn	118.7	Tin	82 Pb	207.2	114	Uud		Onunduadium		68 Fr	167.3	Erbium		100	[257.1]	Letibiuit
PERIODIC TABLE OF THE ELEM 4 KEY 9.02 20.02 9.012 20.01 9.012 20.01 9.012 20.01 9.012 20.01 9.012 20.01 9.013 20.01 9.014 20.01 9.015 20.01 9.016 20.01 9.017 20.01 9.018 20.01 9.019 20.01 9.02 20.01 20.01 9.03 20.01 20.01 20.01 9.04 40.0 40.0 40.0 40.0 9.03 88.91 99.91 100.11 100.29 100.79 9.000 10.01 10.01 10.02 100.79 107.9 9.000 10.01 10.01 10.02 107.9 107.9 9.000 10.01 10.01 10.02 107.9 107.9 9.000 10.01 10.01 10.02 107.9 <td></td> <td></td> <td></td> <td>βΩ</td> <td>10.81</td> <td>Boron</td> <td>13 Al</td> <td>26.98</td> <td>Aluminium</td> <td>31 Ga</td> <td>69.72</td> <td>Gallium</td> <td>49 In</td> <td>114.8</td> <td>Indium</td> <td>18 T</td> <td>204.4</td> <td>1112</td> <td>CII</td> <td></td> <td></td> <td></td> <td>67 Ho</td> <td>164.9</td> <td>Holmium</td> <td></td> <td>99 Ec</td> <td>[252.1]</td> <td>Cubichum</td>				βΩ	10.81	Boron	13 Al	26.98	Aluminium	31 Ga	69.72	Gallium	49 In	114.8	Indium	18 T	204.4	1112	CII				67 Ho	164.9	Holmium		99 Ec	[252.1]	Cubichum
PERIODIC TABLE OF THE BC 9010: KEY FC 100: KEY FC 100: FC <	ENTS									Zn30	65.39	Zinc	48 Cd	112.4	Cadmium	80 Hg	200.6	110	Uub		Onunbium		96	162.5	Dysprosium		98 87	[252.1]	Californian
PERIODIC TABLE O 4 9.012 Berrillan KEY Manic Number Mg 9.012 Berrilla Berrilla 9.012 Berrilla Berrilla 9.012 Berrilla Annic Number Mg 12 Mg 20 Mg 12 Mg 20 Mg 13 Mg 21 Mg 23 Manic Number 20 Mg 44.96 47.95 44.96 47.95 44.96 47.95 44.96 47.95 20 Cation 22 Cation 23 56 24 57-71 25 43 24 55.85 55.85 55.95 20 Cation 20 56 37-71 17 73 74 74 75 75 76 75 77 75 88 Sol-103 178.5 180.9 183.8 186.2 190.2 192.2 88 Sol-103 178.5 180.9 183.8 186.2 190.2 192.2 88 Sol-103 177 264.11 105.11 1026.11 102.9 192.2 88 Sol 99-103 104 105 188.6 190.2 192.2 88 Sol 104.1 105 105 1007 19	ELEM			ment		ent				ຣິບັ	63.55	Copper	47 Ag	107.9	Silver	79 Au	197.0	111	Uuu		Chundham		65 Th	158.9	Terbium		97 BV	[249.1] Betelim	DEINEIMIN
FRIODIC TABLE 4 9.012 KEY 80.012 Berlinm 4 80.012 9.012 Remic Number 9.012 State 9.012 State 9.012 State 9.012 State 9.012 State 9.013 State 9.014 State 87.027 State 88.010 State 87.011 Ta 88 State 89-103 Ref 88 State	JF THE		-	Symbol of ele		Name of elem				Ni Ni	58.69	Nickel	46 Pd	106.4	Palladium	78 Pt	195.1	110	Uun		Chunanum		49 29	157.3	Gadolinium		96 96	[244.1]	Cumun
4 4 Be 9.012 Berylliun 12 Mg 9.012 Berylliun 12 Mg 44.96 Admin 71 Z 20 Sc 71 Agnesiun 70.94 Sc 71 Agnesiun 76.94 Sc 77.9 Sr 40.08 88.91 Sc 91.02 Sc 77.4 Sc 77.3 Sc 77.3 Sc 77.3 Ba 178.5 Ba 178.5 Banium Instation Actinides Ruberfortum Moydemin 704 Sc 73 Banium Lanthanides Banium Lanthanides Radium Consum Scool 105 Scool 105 Scool 105 Banium Lananhanides	ABLE C	KEY		97 Au	197.0	Gold				C03	58.93	Cobalt	45 Rh	102.9	Rhodium	Ц Г	192.2 Indiana	100	Wt	[268]	MCINETIAN		63 Fu	152.0	Europium		95 Am	[241.1] Americium	Interiment
4 4 Be 9.012 Berylliun 12 Mg 9.012 Berylliun 12 Mg 44.96 Admin 71 Z 20 Sc 71 Agnesiun 70.94 Sc 71 Agnesiun 76.94 Sc 77.9 Sr 40.08 88.91 Sc 91.02 Sc 77.4 Sc 77.3 Sc 77.3 Sc 77.3 Ba 178.5 Ba 178.5 Banium Instation Actinides Ruberfortum Moydemin 704 Sc 73 Banium Lanthanides Banium Lanthanides Radium Consum Scool 105 Scool 105 Scool 105 Banium Lananhanides	DDIC T			tomic Number	Atomic Weight					Fe 26	55.85	Iron	Ru Ru	101.1	Ruthenium	% So	190.2 Osminn	100	Hs	[265.1]	HIDISCHU		62 Sm	150.4	Samarium		94 Pu	[239.1] Plutonium	
4 Be 9.012 4 9.012 Be 9.012 9.012 Be 9.012 9.012 Be Mg 9.012 Deyllium 12 Mg 44.96 Assession 22 Sa 21 Za 23 Sa 39 A0.08 44.96 At 37 50.94 Automic 178.7 Sa 39 Satistim Yanadium Sasontium Zanotium	PERIC			<						Mn 25	54.94	Manganese	43 Tc	[16.86]	Technetium	75 Re	186.2		Bh	[264.1]	Bohrum		61 Pm	[146.9]	Promethium		93 Nn	[237.0] Neptunium	
4 4 Becyllium 12 9.012 Becyllium 12 Mg Pagnesium 23.1 Magnesium 20 Sci 21 Magnesium 20 Sci 21 Magnesium 23 Magnesium 24.31 Magnesium 23 Sci 21 20 22 20 22 20 21 21 22 22 23 38 39 37 39 38 39 37 24 38 33 39 40.03 Radium Aritinum 88 89-103 Redium Actinides 137.3 Barium 88 89-103 Radium Actinides 138.9 140.1 Lanthanides 6 138.9<										52	52.00	Chromium	42 Mo	95.94	Molybdenum	47 7	183.8 Tunesten	106	Sg	[263.1]	Seaborgium		09 N	144.2	Neodymum		92 11	238.0 Uranium	
4 4 Beryllium 12 9.012 Beryllium 12 Ng 24.31 Magnesium 23 24.31 Magnesium 20 20 21 20 21 20 21 20 38 38 39 37 38 87.62 88.91 Strontium Ytrium 7 137.3 Barium Lanthanides Radium Actinides 8 89-103 Radium Actinides 8 138.9 Lanthanide 88 8 138.9 133.9 Lanthanide 7 57 7 57 8 57										<23	50.94	Vanadium	4g	92.91	Niobium	73 Ta	180.9 Tantalum	105	ිස්	[262.1]	Unniiona		62 F	140.9	rtaseodymium		91 Pa	231.0 Protactinium	
4 Beryllium 12 Mg 24.31 Magnesium Magnesium 38 87.62 Strontium 88 Ra Radium										Ti 72	47.87	Titanium	42 4	91.22	Zirconium	Hf Hf	178.5 Hafnium	104	Rf	[261.1]	Vumenorular	s	S8 Ce 88	140.1	Cenuil		8Ę	232.0 Thorium	
4 Beryllium 12 Mg 24.31 Magnesium Magnesium 38 87.62 Strontium 88 Barium 88 Radium			_							21 Sc	44.96	Scandium	39 Y	88.91	A ttrium	57-71	Lanthanides	89-103				Lanthanide	57 La	138.9	ranuanun	Actinides	89 AC	[227.0] Actinium	
1 H H.008 Hydrogen 1.008 Hydrogen 1.1 0.08 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	_			Be	9.012	Beryllium	Mg 12	24.31 Maemesium	unical data	C28	40.08	Calcium	Sr 38	87.62	шприоле	56 Ba	137.3 Barium	88	Ra	[226.0] Radium					-				-
	-	H 1.008 Hydrosen	C	E.	6.941	Lithium	11 Na	22.99 Sodium		5N V	39.10	Potassium	37 Rb	85.47	Kupidium	Cs SS	132.9 Caesium	87	出	[223.0] Francium									

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes 237 Np and 99 Tc.

Cheltenham Girls High School Chemistry Trial HSC 2009

Marking guidelines

Section I – Part A


1	А	8	В
2	А	9	А
3	С	10	В
4	D	11	D
5	D	12	С
6	D	13	А
7	C	14	В
	C	15	В

Section I – Part B

Question 16(a)

Marks
3
2
1

Suggested answer:

Question 16(b)

Criteria	Marks
• Writes correct equation	1

Suggested answer:

 $C_2H_4(g) + HCl(aq) \longrightarrow C_2H_5Cl(l)$

Question 17(a)

Criteria	Marks
• Discusses the quotation using at least <u>TWO</u> environmentally friendly examples and at least <u>TWO</u> environmentally damaging examples for the process of deriving ethanol from sugar cane	4
Correctly identifies at least <u>TWO</u> environmental issues associated with deriving ethanol from sugar cane <u>AND/OR</u>	2-3
• Identifies both environmental benefits and problems associated with deriving ethanol from sugar cane	
• Correctly identifies an environmental issue associated with deriving ethanol from sugar cane	1

Suggested answer:

When ethanol is made from fermented sugar cane, claims are often made that it is an environmentally friendly process as the sugar cane is a renewable source and the process can also be viewed as being greenhouse neutral. However, claims that it is greenhouse neutral ignore the greenhouse emissions associated with the cultivation and fertilising of the sugar cane and the distillation of the fermentation product. Degradation of the land used to grow the sugar cane and the disposal of the waste fermentation liquor are both environmental problems associated with the fermentation of sugar cane.

Question 17(b)

Criteria	Marks
• Explains why cellulose is considered a potential raw material to build petrochemicals	3
• Correctly identifies that both petrochemicals and cellulose contains carbon chains	2
Correctly identifies cellulose contains carbon atoms OR	1
Identifies that petrochemicals contain carbon chains	

Suggested answer:

Many of the chemicals derived from petroleum contain a carbon-carbon chain as their backbone. Cellulose has a long carbon chain structure and is both renewable and plentiful. Research is being conducted into producing the starting material for petrochemicals (ethanol and ethylene) from cellulose, as well as the Grassoline mentioned in the article.

Question 18

Criteria	Marks
• Correctly states appropriate conclusion(s) and justifies the conclusion with correct results	4
 Correctly states appropriate conclusion(s) <u>AND/OR</u> Correctly identifies appropriate observations 	2-3
 Correctly identifies an observation that could be made as the cell is tested OR Correctly states an appropriate conclusion 	1

Suggested answer:

For a cell to produce a potential difference, it requires two different half-cells, a salt bridge and external wires to connect the two half-cells and complete the circuit. When the two half-cells are identical, or the salt bridge or external wires are missing, no voltage was recorded for the cell.

Question 19(a)

	Criteria	Marks
•	Correctly identifies the number of all 3 sub-atomic particles	1

Suggested answer:

- protons: 113
- electrons: 113
- neutrons: 171

Question 19(b)

	Criteria	Marks
•	• Writes a correctly balanced nuclear equation	1

Suggested answer:

 $^{283}_{113}$ Uut $\rightarrow {}^{4}_{2}$ He + ${}^{279}_{111}$ Rg

Question 19(c)

Criteria	Marks
• Correctly describes the discovery of another recently discovered element	2
Correctly identifies another recently discovered element	1

Suggested answer:

In 1999 a research team in Dubna in Russia announced the discovery of element 114. It was made by colliding a calcium-48 ion into a plutonium-244 target using a heavy ion accelerator.

Question 20(a)

Criteria	Marks
• Identifies the colour of the indicator with working shown	1

Suggested answer:

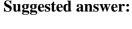
 $pH = -log_{10} [0.05 x2] = 1$, hence the indicator would turn red in the solution.

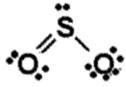
Question 20(b)

Criteria	a	Marks
• Correctly calculates the pH of the dilute cabbage indicator colour	ed H ₂ SO ₄ solution and relates to the	1
Suggested answer:		
$c_1v_1 = c_2v_2$	$pH = -log_{10} [0.0005 x2] = 3$	
$\mathbf{c}_2 = \mathbf{c}_1 \mathbf{v}_1$	Hence the indicator would turn viole	et in the
V2	solution.	
$= 0.05 \ge 0.010$		
1.000		

= <u>0.0005</u>

Question 20(c)


Criteria	Marks
Correctly calculates the volume of KOH showing working	3
Correctly calculates the number of moles of KOH	2
• Correctly calculates the number of moles of H ₂ SO ₄ via either method OR	
Writes balanced equation	
OR	1
• Identifies 2:1 mole ratio of base to acid	
OR	
Makes 2 errors but applies basic titration calculation	


Suggested answer:

$2\text{KOH}_{(aq)} + \text{H}_2\text{SO}_{4(aq)} \rightarrow \text{K}_2\text{SO}_{4(aq)} + 2$	$2H_2O_{(l)}$
moles of sulfuric acid in 15mLdiluted solutio	$n = 15 \ge 0.0005$
	1,000
	$= 7.5 \times 10^{-6} \text{ moles}$
moles KOH required for neutralisation	$= 2 \times 7.5 \times 10^{-6}$
	= <u>1.5 x 10⁻⁵ moles</u>
volume of $0.005 \text{ mol } L^{-1} \text{ KOH required}$	= <u>n</u>
	С
	= <u>1.5 x 10⁻⁵</u>
	0.005
	= 0.003L = 3mL
	4

Question 21(a)

Criteria	Marks
• Correctly draws the electron dot formula for sulfur dioxide	1
Suggested answer	

Question 21(b)

Criteria	Marks
Names sulfurous acid and writes a correctly balanced chemical equation	2
 Writes a correctly balanced chemical equation <u>OR</u> Names sulfurous acid 	1

Suggested answer: Sulfurous acid.

 $H_2O_{(l)} + SO_{2(g)} \rightarrow H_2SO_{3 (aq)}$

Question 21(c)

Criteria	Marks
Correctly identifies a problem affecting the natural environment that is caused by acid rain	1

Suggested answer:

Trees in Black Forest in Germany have been stripped of foliage.

Question 22(a)

Criteria	Marks
• Explains why the acetic acid found in vinegar can be consumed but other acids such as 0.1 mol L ⁻¹ hydrochloric and 0.05 mol L-1 sulfuric acids should not be consumed	3
Identifies that acetic acid is a weak acid <u>AND</u>	2
• Identifies that hydrochloric acid and sulfuric acids are strong acids	
Identifies that the acids have different strengths	
OR	
• Identifies that acetic acid is a weak acid	1
OR	
Identifies that hydrochloric acid and sulfuric acids are strong acids	

Suggested answer

The concentration of acids and their relative strength both impact on the acid's pH. Acetic acid is a weak acid and is only about 1% ionised, therefore 0.1 mol L^{-1} acetic acid has a pH of approximately 3.Whereas, 0.1 mol L^{-1} hydrochloric and 0.05 mol L-1 sulfuric acids are fully ionized and both have a pH of 1. The lower pH value of these acids reflects their greater acidity, and this increased acidity level means that it is dangerous to consume them.

Question 22(b)

	Criteria	Marks
•	Writes a correctly balanced chemical equation	1

Suggested answer:

 $2CH_3COOH_{(aq)} + CaCO_{3(s)} \rightarrow (CH_3COO)_2 Ca_{(aq)} + H_2O_{(l)} + CO_{2(g)}$

Question 23

Criteria	Marks
• Correctly explains, with reference to Le Chatelier's principle, how the	
reactions of the carbonic acid/hydrogen carbonate ion buffer system	
helps to maintain the pH of the blood	4
AND	
Includes correctly balanced equation(s) for reactions	
• Correctly describes how the reactions of the carbonic acid/hydrogen	
carbonate ion buffer system helps to maintain the pH of the blood	
AND	2-3
• Presents a correctly balanced equation for <i>at least one</i> of the	
equilibrium shifts	
• Correctly identifies a direction shift for the equilibrium system	1

Specimen Answer:

When the acidity of the blood increases, according to Le Chatelier's principle, the equilibrium will shift to the left to produce carbonic acid.

 $H_2CO_{3(aq)} + H_2O_{(1)} \longrightarrow HCO_3^{-}(aq) + H_3O^{+}(aq)$

The carbonic acid will then decompose to form carbon dioxide (second equilibrium shifts to the left), which will be removed from the blood when it travels through the lungs, resulting in a minimisation of the original pH decrease.

 $CO_{2(g)} + 2 H_2O_{(l)} \xrightarrow{\qquad} H_2CO_{3(aq)} + H_2O_{(l)}$

If the pH of the blood increases, the equilibrium system will shift to the right in accordance with Le Chatelier's principle, producing more hydronium ions, and lowering pH as a result.

$$CO_{2(g)}$$
 + 2 H₂O_(l) \longrightarrow H₂CO_{3(aq)} + H₂O_(l) \longrightarrow HCO₃⁻_(aq) + H₃O⁺_(aq)

Question 24(a)

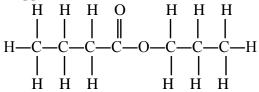
Criteria	Marks
Correctly identifies both products	1

Suggested answer:

propyl butanoate and water

Question 24(b)

Criteria	Marks
Correctly identifies the catalyst used	
AND	2
• Correctly justifies its use in terms of rate and yield	
Correctly identifies the catalyst used	
OR	1
• Correctly identifies a reason for using the acid	


Suggested answer:

Concentrated sulfuric acid is used. Acids catalyse esterification reactions and the use of concentrated sulfuric acid helps improve yield, since water is also a product.

Question 24(c)

Criteria	Marks
• Correctly draws the structural formula for propyl butanoate	1

Suggested answer:

Question 25(a)

	Criteria	Marks
•	Correctly writes the formula for methyl bromide	1

Suggested answer: CH₃Br

Question 25(b)

Criteria	Marks
 Correctly describes the process by which ozone is destroyed by methyl bromide <u>AND</u> Includes <u>THREE</u> correctly balanced equations for reactions 	4
 Correctly describes the process by which ozone is destroyed by methyl bromide <u>AND</u> Includes <u>at least ONE</u> correctly balanced equations for reactions 	2-3
 Presents a correctly balanced equation for one of the ozone destroying reactions <u>OR</u> Correctly identifies an aspect of the ozone destruction 	1

Suggested answer:

The methyl bromide will be broken down by u.v. light to form a bromine free radical.

UV light

 $CH_3Br(g) \rightarrow CH_3 \bullet(g) + Br \bullet(g)$

The bromine atom then reacts with ozone:

 $Br^{\bullet}(g) + O_3(g) \rightarrow BrO^{\bullet}(g) + O_2(g)$

And the BrO free radical that is formed reacts with an oxygen atom to form oxygen gas, reforming the bromine free radical.

 $BrO_{\bullet}(g) + O_{\bullet}(g) \rightarrow O_{2}(g) + Br_{\bullet}(g)$

The last two steps are repeated thousands of times, allowing one molecule of methyl bromide to destroy thousands of ozone molecules.

Question 25(c)

	Criteria	Marks
•	Correctly identifies the two main groups of chemicals that destroy ozone	2
•	Correctly identifies one of the two main groups of chemicals that destroy ozone	1

Suggested answer:

CFCs and halons

Question 26(a)

Criteria		Marks
• Identifies another common source of concatchment.	pper contamination in the Sydney	1

Suggested answer:

Industrial effluent. (Or run-off from copper mines).

Question 26(b)

	Criteria	Marks
•	Correctly identifies the instrumental method of analysis	1

Suggested answer:

Atomic absorption spectroscopy

Question 26(c)

Criteria	Marks
• Correctly describes <u>at least TWO</u> tests (either steps or results) that a student could use in a school laboratory to identify copper ions in solution	3
• Correctly identifies tests (either steps or results) that a student could use in a school laboratory to identify copper ions in solution	2
• Correctly identifies a test for copper ions	1

Suggested answer:

When NaOH solution is added to the water sample a blue precipitate forms. When ammonia solution is added to the mixture the precipitate dissolves to form a deep blue solution. The solution produces a blue-green coloured flame when a flame test is conducted.

Question 26(d)

	Criteria	Marks
•	Correctly identifies a domestic source of copper ions	1

Suggested answer:

Copper pipes used to carry hot water.

Question 27

Criteria	Marks
 Demonstrates an extensive knowledge of the Haber process including the factors that are monitored and managed Provides a comprehensive explanation of why the reaction conditions used need to be monitored or managed and relates them to the nature of the reaction and safety concerns 	6-7
Includes a balanced chemical equation	
Demonstrates a thorough knowledge of the Haber process	4-5
• Explains why some reaction conditions are monitored or managed	4-3
 Demonstrates a sound knowledge of the Haber process OR Demonstrates a limited knowledge of the Haber process and identifies (a) 	2-3
reaction condition(s) that is (2 marks)/are(3 marks) monitored or managed	
Identifies the reactants and products of the Haber process OR	
 Gives one correct statement about the Haber process <u>OR</u> 	1
Identifies one reaction condition that is monitored	

Section II Question 28(a)(i)

Criteria	Marks
Correctly identifies a hazard associated with sulfuric acid	1

Suggested answer:

Sulfuric acid is corrosive.

Question 28(a)(ii)

Criteria	Marks
Correctly explains the dangers posed by the acid spill to the environment by linking them to a change in pH.	3
Correctly describes the dangers posed by the acid spill to the environment.	2
Correctly identifies a danger posed by the acid.	1

Suggested answer:

The Fire Brigades would want to stop the acid from entering the waterways via drains, as this would change the pH of the water body and could endanger aquatic organisms. They would also want to avoid it contaminating roadside soil, as a change in its pH would impact on plant life and other organisms; and could also result in the acid leaching into the waterways via run-off.

Question 28(a)(iii)

Criteria	Marks
Correctly identifies a suitable chemical to be used to neutralise the acid and justifies choice	2
Correctly identifies a suitable chemical to be used to neutralise the acid	1

Suggested answer:

Sodium carbonate / sodium hydrogen carbonate as it is a stable solid that is safe to handle, store and transport; cheap and limits environmental damage if excess is used.

Question 28(a)(iv)

Criteria	Marks
Correctly calculates the concentration of sulfuric acid	2
Correctly calculates the mass of sulfuric acid per litre	1

Suggested answer:

The mass of sulfuric acid per litre = % mass x density = 0.98 x 1 8 x 10³

 $=1.76 \times 10^3 \text{ gL}^{-1}$

Concentration of sulfuric acid = $\frac{1.76 \times 10^3}{98.076}$ = 18 mol L⁻¹

Question 28(a)(v)

Criteria	Marks
Correctly explains why steel tankers can be used to transport concentrated sulfuric acid, including a balanced chemical equation.	3
Correctly describes the reaction between sulfuric acid and iron, including a balanced chemical equation.	
OR	2
Correctly identifies the absence of hydronium ions in concentrated sulfuric acid and states that they are needed for a reaction with iron to occur	
Correctly identifies the absence of hydronium ions in concentrated sulfuric acid	
OR	1
Includes a relevant balanced chemical equation.	

Suggested answer:

When dilute sulfuric acid reacts with iron, the iron is oxidised through its reaction with the hydronium (hydrogen) ions present in the acid.

 $2H_3O^+_{(aq)} + Fe \rightarrow Fe^{2+}_{(aq)} + H_{2(g)} + 2H_2O_{(1)}$

As concentrated sulfuric acid is mainly molecular and contains very few hydronium ions, the above reaction doesn't occur to any extent between the concentrated acid and the iron in the tanker. Thus steel tanker can be used to transport the tanker safely.

(Can also include the precipitation reaction between the iron and sulfate ions to form the passivating iron sulfate layer inside the tanker, but not required

Question 28(b)(i)

Criteria	Marks
Justifies two correctly identified safe work practices	3
Justifies a correctly identified safe work practice	
OR	2
Correctly identifies two safe work practices	
Correctly identifies a safe work practice	1

Question 28(b)(ii)

Criteria	Marks
Correctly uses balanced equations to explain the results for concentrated sulfuric acid acting as an oxidising agent and as a dehydrating agent	4
Describes the results for concentrated sulfuric acid acting as an oxidising agent and as a dehydrating agent AND/OR	2 - 3
Writes correctly balanced chemical equation(s) for reactions Identifies a correct observation for one of the reactions	
OR	1
Writes a correctly balanced chemical equation for one of the reactions	

Suggested answer:

When concentrated sulfuric acid is added to potassium bromide crystals, a brown vapour and liquid formed. This was bromine, formed when bromide ions were oxidised.

 $2KBr_{(s)} + 3H_2SO_{4(l)} \rightarrow 2KHSO_{4(s)} + SO_{2(g)} + 2H_2O_{(l)} + Br_{2(l)}$

When concentrated sulfuric acid is added to copper sulfate crystals, the blue colour is bleached form the crystals as the water of crystallisation is removed from them.

$$CuSO_{4.5}H_{2}O_{(s)} \rightarrow CuSO_{4.(s)+} 5H_{2}O_{(l)}$$

Question 28(c)(i)

Criteria	Marks
Correctly identifies another commonly used source of sulfur dioxide	1

Suggested answer:

Sulfur dioxide is formed by combusting sulfur (that was extracted by the Frasch process).

Question 28(c)(ii)

Criteria	Marks
Correctly identifies similar/different environmental issues between the two processes	2
Correctly identifies an environmental issue associated with one of the processes	1

Suggested answer:

The above process uses a polluting by-product from copper production and as such has a positive impact on the environment. There are environmental concerns surrounding the mining of sulfur using the Frasch process including the potential formation of noxious gases and land subsidence.

Question 28(c)(iii)

Criteria	Marks
 Uses Le Chatelier's principle to justify one set of reaction conditions that will maximise the yield of SO3 Writes a balanced chemical equation Justifies the need to use an intermediate reaction temperature to maximise yield because of the exothermic nature of the reaction Identifies that a catalyst should be used to maximise reaction rate 	3 - 4
 Uses Le Chatelier's principle to justify ONE set of reaction conditions that will maximise the yield of SO₃ OR Identifies that the reaction is exothermic and explains the effect of a change in temperature on reaction yield OR Any TWO of the statements from 1 mark guidelines below 	2
 Identifies that the reaction is exothermic OR Writes a balanced chemical equation for the second step in the Contact process OR States Le Chatelier's principle OR Identifies that adding a catalyst will maximise reaction rate OR Identifies that an increase in concentration of either reactant will increase the yield 	11