

CRANBROOK SCHOOL

YEAR 12

TERM 3, 2008

TRIAL HSC EXAMINATION

Chemistry

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A data sheet and a Periodic Table are provided at the back of this paper
- Write your Student Number at the top of pages to be marked.

Total marks (100)

Section I

Pages 3 - 17

100 marks

This section has two parts, Part A and Part B

Part A - 15 marks

- Attempt Questions 1 15
- Allow about 30 minutes for this part

Part B - 85 marks

- Attempt Questions 16 30
- Allow about 2 hours and 30 minutes for this part

The content and format of this paper does not necessarily reflect the content and format of the HSC examination paper.

Section I Total Marks (100)

. .

Part A – 15 marks Attempt Questions 1 - 15 Allow about 30 minutes for this part

Use the multiple-choice answer sheet.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word *correct* and drawing an arrow as follows.

- 1. Which equation represents a redox reaction?
 - (A) $2NaOH(aq) + H_2SO_4(aq) \rightarrow 2H_2O(1) + Na_2SO_4(aq)$
 - (B) $Fe(NO_3)_2(aq) + Na_2CO_3(aq) \rightarrow 2NaNO_3(aq) + FeCO_3(s)$
 - (C) $Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$
 - (D) $Mn(NO_3)_3(aq) + FeSO_4(aq) \rightarrow MnSO_4(aq) + Fe(NO_3)_3(aq)$
- 2. Which molecule contains a co-ordinate covalent bond?
 - (A) CO
 - (B) CO₂
 - (C) Ammonia
 - (D) BF₃
- 3. Which of the following statements regarding flame colours is correct?
 - (A) Copper is brick-red
 - (B) Lead is blue
 - (C) Barium is pale green
 - (D) Chloride is yellow
- 4. Ammonia is produced using the Haber process. Which statement below is correct?
 - (A) More ammonia is produced by heating the reaction vessel.
 - (B) More ammonia is produced by adding a catalyst.
 - (C) Less ammonia is produced by removing CO_2 and O_2 from the reactants.
 - (D) More ammonia is produced by increasing pressure.
- 5. Which of the following reactions needs to be monitored the closest?
 - (A) Burning wood.
 - (B) Diesel used in cars as a fuel.
 - (C) Production of vinyl chloride from ethylene, oxygen, chlorine using a catalyst.
 - (D) Production of ethanol by fermentation.
- 6. Which statement about membrane filters is <u>not</u> correct?
 - (A) Filter particles that paper filters cannot do.
 - (B) Filter fluoride from the water.
 - (C) Filter single celled organisms that are microscopic.
 - (D) Filter particles that sand filters cannot do.

- 7. Which of the following is correct concerning esterification?
 - (A) H_2SO_4 is used as a catalyst
 - (B) The water goes in the top of the condenser and out the bottom.
 - (C) The top is always closed so no gas escapes
 - (D) The reaction is fast.
- 8. What is the concentration of NH_3 if 20.6 mL of the base is neutralised by 23.2 mL of 0.0496 mol/L H_2SO_4 solution?
 - (A) 0.0279 mol/L
 - (B) 0.1117 mol/L
 - (C) 0.0559 mol/L
 - (D) 1.117 mol/L
- 9. A 0.100 mol/L acetic acid solution was found to have a pH = 2.9. What is the degree of ionisation of acetic acid?
 - (A) 0.0126%
 - (B) 1.26%
 - (C) 0.79%
 - (D) 3.4%
- 10. What is the main cause of sulfur dioxide reaching the atmosphere?
 - (A) Roasting sulfide ores
 - (B) Burning coal in power stations.
 - (C) Combusting petrol in petrol engines
 - (D) Volcanic activity and geothermal hot springs.
- 11. Which of the following is correct about indicators and their colours?
 - (A) Methyl orange will be red in 0.1 mol/L HCl solution.
 - (B) Phenolphthalein will be red in 0.1 mol/L NaCl solution.
 - (C) Bromothymol blue will be green in 0.1 mol/L NaOH solution.
 - (D) Litmus will be purple in 0.1 mol/L acetic acid solution.
- 12. Which one of the following is a transuranic element?
 - (A) ²³⁸U (B) ²⁰⁸Pb (C) ²⁴⁷Cm (D) ^{99m}Tc

13. What is the correct IUPAC nomenclature for the following molecule?

- (A) 1,6-dimethylheptan-5-ol
- (B) 1,6-dimethylheptan-2-ol
- (C) Octan-3-ol
- (D) 1,6-dimethylhexan-2-ol
- 14. Which of the following is not a recently developed biopolymer?
 - (A) Biopol
 - (B) Rayon
 - (C) Poly(3-hydroxybutanoate) i.e. PHB
 - (D) Polylactic acid i.e. PLA.
- 15. HDPE and LDPE are both made from ethylene. Which statement correctly relates to the respective polymer?

	Polymer	Statement
(A)	HDPE	Has as lot of chain branching
(B)	LDPE	Is made at about 60° C using very high pressure and
		uses a catalyst
(C)	LDPE	Is made at high pressure, high temperature and uses a
		catalyst
(D)	HDPE	Is made at 60° C, few atmospheres pressure and uses a
		catalyst

Chemistry

Section I (continued)

Part B – 85 marks Attempt Questions 16-30 Allow about 2 hour and 30 minutes for this part

Answer the questions in the spaces provided.

Show all relevant working in questions involving calculations.

		Marks
Que	stion 16 (6 marks)	
(a)	Name the ester formed between propanol and methanoic acid.	1
(b)	Write the equation, using structural formula for all organic species for the reaction in part (a).	3

(c) Which of the three types of species in part (a) would exhibit a higher melting point if they have a similar molar mass? Explain your answer.

2

Question 17 (8 marks)

A galvanic cell was set up by a student based on the cell $Zn|Zn^{2+}||Fe^{2+}$, $Fe^{3+}|Pt$. He drew the cell below to represent his working cell.

Identify $\underline{\mathbf{8}}$ errors and explain what changes would have to be made to overcome these errors.

(Question 17 continues on the next page)

8

Student	Number:

uestion 17 (a	continued)						
						<u>_</u>	
uestion 18 (4	marks)						
Jestion 18 (4	• marks) e of cellulose	e as a raw 1	naterial for	r the petroo	chemical i	ndustry.	4
uestion 18 (4 valuate the us	• marks) e of cellulos	e as a raw 1	naterial for	r the petrod	chemical i	ndustry.	4
uestion 18 (4	• marks) e of cellulos	e as a raw 1	naterial for	r the petroc	chemical i	ndustry.	4
uestion 18 (4	e of cellulos	e as a raw i	naterial for	r the petroo	chemical i	ndustry.	4
uestion 18 (4	marks) e of cellulos	e as a raw i	naterial for	r the petroo	chemical i	ndustry. 	4
uestion 18 (4	e of cellulos		naterial for	r the petrod	chemical i	ndustry.	4
uestion 18 (4	e of cellulos		material for	r the petrod	chemical i	ndustry. 	4
uestion 18 (4	e of cellulos		material for	r the petroo	chemical i	ndustry.	4
uestion 18 (4	e of cellulos		naterial for		:hemical i	ndustry.	4
uestion 18 (4	marks)		material for	r the petrod	chemical i	ndustry. 	4
uestion 18 (4	marks)			r the petroo	chemical i	ndustry.	4
uestion 18 (4	marks)				chemical i	ndustry.	4
uestion 18 (4	marks)		material for		chemical i	ndustry.	4
estion 18 (4 aluate the us	marks)					ndustry.	

Student Number:

Question 19 ((3 marks)
---------------	-----------

Assess the use of indicators for the testing of soil acidity/basicity.

Question 20 (6 marks)

AAS can be used in many situations. Assess the value of AAS to analyse water samples.

6

Marks

3

Question 21 (7 marks)		
Poly	vinyl chloride and cellulose are both polymers.	
(a)	Compare their production from their raw materials.	3
		_
		_
		_
		-
		-
(b)	Write the equations for both reactions.	2
	· · · · · · · · · · · · · · · · · · ·	_
		_
		-
<u> </u>	·····	-
(c)	Give one use of one of the named polymers and relate the use to the polymer's properties.	e 2
		-
		-
Ques	tion 22 (2 marks)	
Is 10	0% pure water acidic, basic or neutral? Justify your answer.	2
		-
	<u> </u>	-

Student Number:

0	ation 22 (6 montro)	
Que	stion 23 (6 marks)	
(a)	Describe the natural and industrial origins of the oxides of nitrogen.	3
_		
(b)	Evaluate reasons for concern about the release of these oxides into the environment.	3
_		
_		
_		

Student I	Number:
-----------	---------

Question 24 (8 marks)

A student added all at once a large volume of 8 molL⁻¹ H₂SO₄ to solid PbCO₃ and observed a violent reaction.

(a)	Write the equation for the reaction.	
(b)	Assess the risks associated with this experiment and justify how to minimise these risks.	
(c)	Justify the procedures that would be used to manage the waste.	

Stu	dent	N	um	ber:

Que	stion 25 (4 marks)
Whe	n hydrochloric acid is added to 5.2g calcium, a reaction occurs.
(a)	Write the equation for the reaction.
(b)	Calculate the volume of gas produced at 25°C and 100 kPa, assuming all the calcium is consumed.
(c)	Assume all the gas escapes into the atmosphere, what would the pH of the salt in pure water be? Justify your answer.
Ques	tion 26 (4 marks)
Ques Chen emple expla	tion 26 (4 marks) nists are employed in many industries. Outline the role of a chemist byed in industry, identify the branch of chemistry undertaken and in <u>one</u> chemical principle that they use. It cannot be a teacher.
Ques Chen emple expla	tion 26 (4 marks) nists are employed in many industries. Outline the role of a chemist byed in industry, identify the branch of chemistry undertaken and in <u>one</u> chemical principle that they use. It cannot be a teacher.
Ques Chen emple expla	tion 26 (4 marks) nists are employed in many industries. Outline the role of a chemist byed in industry, identify the branch of chemistry undertaken and in <u>one</u> chemical principle that they use. It cannot be a teacher.
Ques Chen emple expla	tion 26 (4 marks) hists are employed in many industries. Outline the role of a chemist byed in industry, identify the branch of chemistry undertaken and in <u>one</u> chemical principle that they use. It cannot be a teacher.
Ques Chen emple expla	tion 26 (4 marks) hists are employed in many industries. Outline the role of a chemist byed in industry, identify the branch of chemistry undertaken and in <u>one</u> chemical principle that they use. It cannot be a teacher.
Ques Chen emple expla	tion 26 (4 marks) hists are employed in many industries. Outline the role of a chemist byed in industry, identify the branch of chemistry undertaken and in <u>one</u> chemical principle that they use. It cannot be a teacher.

14.

Que	stion 27 (8 marks)	Marks
Ozoi	ne and oxygen are oxygen allotropes.	
(a)	Define an allotrope.	2
		-
		-
		-
(b)	Compare the properties of oxygen and ozone and account for them on the basis of their molecular structure and bonding.	6
		-
		-
		-
	<u> </u>	-
		-
		-
		-
		-

Student	Num	ber:

Student Humber.	
	Marks
Question 28 (8 marks)	
Assess the effects of CFC's on the ozone layer.	8

)ue	stion 29 (5 marks)	Mar
ι)	Describe and account for the use of ethanol as a solvent in many different situations.	3
)	Give 2 specific uses for ethanol as a solvent (not as a drink) and explain why it is used in preference to water.	2
	· · · · · · · · · · · · · · · · · · · ·	
ues	stion 30 (6 marks)	
SCI	uss how the understanding of acids and bases has changed over time.	6
_		

DATA SHEET

~~

Avogadro constant, N _A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at 100 kPa and	
at 0°C (273.15 K)	22.71 L
at 25°C (298.15 K)	24.79 L
Ionisation constant for water at 25°C (298.15 K), K_{w}	1.0×10^{-14}
Specific heat capacity of water	$4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

Some useful formulae

 $pH = -\log_{10}[H^+] \qquad \Delta H = -m C \Delta T$

Some standard potentials

K⁺ + e [−]	\rightleftharpoons	K(s)	2.94 V
$Ba^{2+} + 2e^{-}$	~^	Ba(s)	-2.91 V
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca(s)	-2.87 V
Na ⁺ + e ⁻	\rightleftharpoons	Na(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	$\stackrel{\rightarrow}{\leftarrow}$	Mg(s)	-2.36 V
Al ³⁺ + 3e ⁻	~~	Al(s)	-1.68 V
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn(s)	-1.18 V
$H_{2}O + e^{-}$	$\stackrel{\leftarrow}{\leftarrow}$	$\frac{1}{2}H_2(g) + OH^{-}$	-0.83 V
$Zn^{2+} + 2e^{-}$	~`	Zn(s)	-0.76 V
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	⇒	Ni(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
Pb ²⁺ + 2e [~]	$\frac{1}{\sqrt{2}}$	Pb(s)	-0.13 V
H ⁺ + e ⁻	~``	$\frac{1}{2}H_{2}(g)$	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
Cu ²⁺ + 2e ⁻	$\stackrel{\sim}{\leftarrow}$	Cu(s)	0.34 V
$\frac{1}{2}O_2(g) + H_2O + 2e^{-1}$	\rightleftharpoons	20H-	0.40 V
Cu ⁺ + e ⁻	~^	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	\leftarrow	I	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	$\frac{1}{\sqrt{2}}$	I-	0.62 V
Fe ³⁺ + e	ᆕ	Fe ²⁺	0.77 V
Ag* + e"	⇔	Ag(s)	0.80 V
$\frac{1}{2}Br_2(l) + e^{-l}$	ᆕ	Br	1.08 V
$\frac{1}{2}Br_2(aq) + e^{-}$	\rightleftharpoons	Br ⁻	1.10 V
$\frac{1}{2}O_2(g) + 2H^+ + 2e^-$	\leftarrow	H ₂ O	1.23 V
$\frac{1}{2}Cl_2(g) + e^{-1}$		CI	1.36 V
$\frac{1}{2}Cr_2O_7^{2-} + 7H^+ + 3e^-$	⇒	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}Cl_2(aq) + e^-$	⇔	CI-	1.40 V
$MnO_4^{-} + 8H^+ + 5e^-$	~2	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^-$	~`	F ⁻	2.89 V

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

				1	1	1								
He He Helium	10 Ne 20.18 ^{Neon}	18 Ar 39.95 Argon	36 Kr 83.80 Krypton	54 Xe 131.3 Xenon	86 Rn [222.0] Radon									
	9 F Fluorine	17 CI 35.45 Chlorine	35 Br 79.90 Bromine	53 T 126.9 Iodine	85 At [210.0] Astatine			71 Lu 175.0 Lutetium		103 Lr [262] Lawrencium				
	8 0 16.00 ^{0xygen}	16 S 32.07 Sulfur	34 Se 78.96 Selenium	52 Te 127.6 Tellarium	84 Po [209.0] Polonium			70 Yb 173.0 Ytterbium		102 No Nobelium				
	7 N 14.01 Nitrogen	15 P 30.97 Phosphorus	33 As 74.92 Arsenic	51 Sb 121.8 Antimony	83 Bi 209.0 Bismuth			69 Tm 168.9 Thuitum		101 Md [258] Mendelevium				
	6 C 12.01 Carbon	14 Si Silicon	32 Ge 72.64 Germanium	50 Sn 118.7 Tin	82 Pb 207.2 Lead			68 Er 167.3 Erbium		100 Fm [257] Fermium				
	5 B 10.81 Boron	13 Al 26.98 Atuminium	31 Ga 69.72 Gallium	49 In 114.8 Indium	81 T1 204.4 Thallium			67 Ho 164.9 Holmium		99 Es [252] Einsteinium				
	KEY Atomic Number 79 Atomic Weight 197.0 Atomic Weight 001 Name of element		30 Zn 65.41 zine	48 Cd 112.4 Cadmiun	80 Hg 200.6 Mercury			66 Dy 162.5 Dysprosium		98 Cf [251] Californium				
				29 Cu 63.55 Copper	47 Ag 107.9 Silver	79 Au 197.0 Gold	111 Rg [272] Roentgenium		65 Tb 158.9 ^{Terbium}		97 Bk [247] Berteliun			
			28 Ni 58.69 Nickel	46 Pd 106.4 Palladium	78 Pt 195.1 Platinum	110 Ds [271] Darmstadtium		64 Gd 157.3 Gadolinium		96 Cm [247] Ourium				
KEY			27 Co 58.93 Cobalt	45 Rh 102.9 Rhodium	77 Ir 192.2 Iridium	109 Mt [268] Meinerium		63 Eu 152.0 Europium		95 Am [243] Americium				
			26 Fe 55.85 Iron	44 Ru I01.1 Ruthenium	76 Os 190.2 Osmium	108 Hs [277] Hassium		62 Sm 150.4 Samarium		94 Pu [244] Plutonium				
			25 Min 54.94 Manganese	43 Tc [97.91] Technetium	75 Re 186.2 Rhenium	107 Bh [264] Bohrium		61 Pm [145] Promethium		93 Np [237] Neptunium				
							24 Cr 52.00 Chromium	42 Mo 95.94 Molybdenum	74 W 183.8 Tungsten	106 Sg [266] Seaborgium		60 Nd 144.2 Neodymium		92 U 238.0 Uranium
				23 V 50.94 Vanadium	41 Nb 92.91 Niobium	73 Ta 180.9 Tantalum	105 Db [262] Dubnium		59 Pr 140.9 Praseodymium		91 Pa 231.0 Protactinium			
								22 Ti 47.87 Titanium	40 Zr 91.22 Zirconium	72 Hf 178.5 Hafnium	104 Rf [261] Rutherfordium	S	58 Ce I40.1 Cerium	
			21 Sc 44.96 Scandium	39 Y 88.91 Yuuium	57–71 Lanthanoids	89–103 Actinoids	Lanthanoid	57 La 138.9 Lanthanum	Actinoids	89 Ac [227]				
	4 Be 9.012 Beryllium	12 Mg 24.31 Magnesium	20 Ca 40.08 Calcium	38 Sr 87.62 Strontium	56 Ba 137.3 Barium	88 Ra [226] Radium	-							
H 1.008 tydrogen	3 Li 6.941 Lithium	11 Na 22.99 Sodium	19 K 39.10 ^{Potassium}	37 Rb 85.47 Rubidium	55 Cs 132.9 Caesium	87 Fr [223] Francium								

For elements that have no stable or long-lived nuclides, the mass number of the nuclide with the longest confirmed half-life is listed between square brackets. The International Union of Pure and Applied Chemistry Periodic Table of the Elements (October 2005 version) is the principal source of data. Some data may have been modified.