CRANBROOK SCHOOL

YEAR 12

TERM 3, 2008

TRIAL HSC EXAMINATION

Chemistry

Total marks (100)

General Instructions

- Reading time -5 minutes

Section I
Pages 3-17

- Working time - 3 hours
- Write using blue or black pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A data sheet and a Periodic Table are provided at the back of this paper
- Write your Student Number at the top of pages to be marked.

Part A - 15 marks

- Attempt Questions 1-15
- Allow about 30 minutes for this part

Part B - 85 marks

- Attempt Questions 16-30
- Allow about 2 hours and 30 minutes for this part

The content and format of this paper does not necessarily reflect the content and format of the HSC examination paper.
\qquad

Section I

Total Marks (100)

Part A - $\mathbf{1 5}$ marks

Attempt Questions 1-15
Allow about 30 minutes for this part
Use the multiple-choice answer sheet.
Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample
$2+4=$
$A_{A} \bigcirc^{2}$
(B) 6
(C)
8
(D) 9
D 0

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A

$\mathrm{C} \bigcirc$
D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

B correct
\qquad

1. Which equation represents a redox reaction?
(A) $\quad 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
(B) $\quad \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \quad 2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{FeCO}_{3}(\mathrm{~s})$
(C) $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \quad \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$
(D) $\quad \mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+\mathrm{FeSO}_{4}(\mathrm{aq}) \rightarrow \quad \mathrm{MnSO}_{4}(\mathrm{aq})+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$
2. Which molecule contains a co-ordinate covalent bond?
(A) CO
(B) $\quad \mathrm{CO}_{2}$
(C) Ammonia
(D) BF_{3}
3. Which of the following statements regarding flame colours is correct?
(A) Copper is brick-red
(B) Lead is blue
(C) Barium is pale green
(D) Chloride is yellow
4. Ammonia is produced using the Haber process. Which statement below is correct?
(A) More ammonia is produced by heating the reaction vessel.
(B) More ammonia is produced by adding a catalyst.
(C) Less ammonia is produced by removing CO_{2} and O_{2} from the reactants.
(D) More ammonia is produced by increasing pressure.
5. Which of the following reactions needs to be monitored the closest?
(A) Burning wood.
(B) Diesel used in cars as a fuel.
(C) Production of vinyl chloride from ethylene, oxygen, chlorine using a catalyst.
(D) Production of ethanol by fermentation.
6. Which statement about membrane filters is not correct?
(A) Filter particles that paper filters cannot do.
(B) Filter fluoride from the water.
(C) Filter single celled organisms that are microscopic.
(D) Filter particles that sand filters cannot do.
7. Which of the following is correct concerning esterification?
(A) $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used as a catalyst
(B) The water goes in the top of the condenser and out the bottom.
(C) The top is always closed so no gas escapes
(D) The reaction is fast.
8. What is the concentration of NH_{3} if 20.6 mL of the base is neutralised by 23.2 mL of $0.0496 \mathrm{~mol} / \mathrm{L} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
(A) $0.0279 \mathrm{~mol} / \mathrm{L}$
(B) $0.1117 \mathrm{~mol} / \mathrm{L}$
(C) $0.0559 \mathrm{~mol} / \mathrm{L}$
(D) $1.117 \mathrm{~mol} / \mathrm{L}$
9. A $0.100 \mathrm{~mol} / \mathrm{L}$ acetic acid solution was found to have a $\mathrm{pH}=2.9$. What is the degree of ionisation of acetic acid?
(A) 0.0126%
(B) 1.26%
(C) 0.79%
(D) 3.4%
10. What is the main cause of sulfur dioxide reaching the atmosphere?
(A) Roasting sulfide ores
(B) Burning coal in power stations.
(C) Combusting petrol in petrol engines
(D) Volcanic activity and geothermal hot springs.
11. Which of the following is correct about indicators and their colours?
(A) Methyl orange will be red in $0.1 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ solution.
(B) Phenolphthalein will be red in $0.1 \mathrm{~mol} / \mathrm{L} \mathrm{NaCl}$ solution.
(C) Bromothymol blue will be green in $0.1 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$ solution.
(D) Litmus will be purple in $0.1 \mathrm{~mol} / \mathrm{L}$ acetic acid solution.
12. Which one of the following is a transuranic element?
(A) ${ }^{238} \mathrm{U}$
(B) ${ }^{208} \mathrm{~Pb}$
(C) ${ }^{247} \mathrm{Cm}$
(D) ${ }^{99 \mathrm{~m}} \mathrm{Tc}$
13. What is the correct IUPAC nomenclature for the following molecule?

(A) 1,6-dimethylheptan-5-ol
(B) 1,6-dimethylheptan-2-ol
(C) Octan-3-ol
(D) 1,6-dimethylhexan-2-ol
14. Which of the following is not a recently developed biopolymer?
(A) Biopol
(B) Rayon
(C) Poly(3-hydroxybutanoate) i.e. PHB
(D) Polylactic acid i.e. PLA.
15. HDPE and LDPE are both made from ethylene. Which statement correctly relates to the respective polymer?

	Polymer	Statement
(A)	HDPE	Has as lot of chain banching
(B)	LDPE	Is made at about $60^{\circ} \mathrm{C}$ using very high pressure and uses a catalyst
(C)	LDPE	Is made at high pressure, high temperature and uses a catalyst
(D)	HDPE	Is made at $60^{\circ} \mathrm{C}$, few atmospheres pressure and uses a catalyst

\qquad

Chemistry

Section I (continued)

Part B-85 marks
Attempt Questions 16-30
Allow about 2 hour and $\mathbf{3 0}$ minutes for this part
Answer the questions in the spaces provided.
Show all relevant working in questions involving calculations.
$\longrightarrow \quad$ Marks

Question 16 (6 marks)
(a) Name the ester formed between propanol and methanoic acid.

1
(b) Write the equation, using structural formula for all organic species for the reaction in part (a).

3
(c) Which of the three types of species in part (a) would exhibit a higher melting point if they have a similar molar mass? Explain your answer.

2
\qquad

Marks
Question 17 (8 marks)
A galvanic cell was set up by a student based on the cell $\mathrm{Zn}\left|\mathrm{Zn}^{2+}\right|\left|\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}\right| \mathrm{Pt}$. He drew the cell below to represent his working cell.

Ceil Voltage is: $\quad 2 \mathrm{Fe}^{2+} \stackrel{\rightharpoonup}{ } 2 \mathrm{Fe}^{3+}+2 \mathrm{e}^{-}$ 1.54 V

$$
\mathrm{Zn}^{2+}+2 \mathrm{Fe}^{2+} \longrightarrow 2 \mathrm{Fe}^{3+}+\mathrm{Zn}
$$ $-0.76 \mathrm{~V}$

$$
\underline{0.77 \mathrm{~V}}
$$

Identify $\mathbf{8}$ errors and explain what changes would have to be made to overcome these errors.
\qquad
(Question 17 continues on the next page)
8.
\qquad

Marks
Question 17 (continued)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 18 (4 marks)
Evaluate the use of cellulose as a raw material for the petrochemical industry.
\qquad

Question 19 (3 marks)
Assess the use of indicators for the testing of soil acidity/basicity.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 20 (6 marks)
AAS can be used in many situations. Assess the value of AAS to analyse water samples.
\qquad

Question 21 (7 marks)
Marks
Polyvinyl chloride and cellulose are both polymers.
(a) Compare their production from their raw materials.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Write the equations for both reactions.
(c) Give one use of one of the named polymers and relate the use to the polymer's properties.

Question 22 (2 marks)
Is 100% pure water acidic, basic or neutral? Justify your answer.
\qquad
\qquad
\qquad
\qquad

Question 23 (6 marks)
(a) Describe the natural and industrial origins of the oxides of nitrogen.
(b) Evaluate reasons for concern about the release of these oxides into the environment.
\qquad

Marks
Question 24 (8 marks)
A student added all at once a large volume of $8 \mathrm{molL}^{-1} \mathrm{H}_{2} \mathrm{SO}_{4}$ to solid PbCO_{3} and observed a violent reaction.
(a) Write the equation for the reaction.
(b) Assess the risks associated with this experiment and justify how to minimise these risks.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Justify the procedures that would be used to manage the waste.
\qquad
\qquad
\qquad
\qquad

Question 25 (4 marks)
When hydrochloric acid is added to 5.2 g calcium, a reaction occurs.
(a) Write the equation for the reaction.
(b) Calculate the volume of gas produced at $25^{\circ} \mathrm{C}$ and 100 kPa , assuming all the calcium is consumed.
(c) Assume all the gas escapes into the atmosphere, what would the pH of the salt in pure water be? Justify your answer.

Question 26 (4 marks)
Chemists are employed in many industries. Outline the role of a chemist employed in industry, identify the branch of chemistry undertaken and explain one chemical principle that they use. It cannot be a teacher.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Marks
Question 27 (8 marks)
Ozone and oxygen are oxygen allotropes.
(a) Define an allotrope.
\qquad
\qquad
\qquad
\qquad
(b) Compare the properties of oxygen and ozone and account for them on the basis of their molecular structure and bonding.
\qquad

Marks

Question 28 (8 marks)
Assess the effects of CFC's on the ozone layer.
\qquad

Question 29 (5 marks)
(a) Describe and account for the use of ethanol as a solvent in many
different situations.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Give 2 specific uses for ethanol as a solvent (not as a drink) and explain why it is used in preference to water.
\qquad
\qquad
\qquad
\qquad
Question 30 (6 marks)
Discuss how the understanding of acids and bases has changed over time.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DATA SHEET

Some useful formulae

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \quad \Delta H=-m C \Delta T
$$

Some standard potentials

$\mathrm{K}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{K}(\mathrm{s})$	$-2.94 \mathrm{~V}$
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{\sim}$	$\mathrm{Ba}(\mathrm{s})$	-2.91 V
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ca}(\mathrm{s})$	$-2.87 \mathrm{~V}$
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Na}(\mathrm{s})$	$-2.71 \mathrm{~V}$
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mg}(\mathrm{s})$	$-2.36 \mathrm{~V}$
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-}$	$\stackrel{\sim}{\rightleftharpoons}$	$\mathrm{Al}_{(s)}$	$-1.68 \mathrm{~V}$
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mn}(\mathrm{s})$	$-1.18 \mathrm{~V}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{\rightleftharpoons}$	$\frac{1}{2} \mathrm{H}_{2}(g)+\mathrm{OH}^{-}$	-0.83 V
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{\rightleftharpoons}$	$\mathrm{Zn}(\mathrm{s})$	$-0.76 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Fe}(\mathrm{s})$	-0.44 V
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ni}(\mathrm{s})$	$-0.24 \mathrm{~V}$
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{\rightleftharpoons}$	$\mathrm{Sn}(\mathrm{s})$	$-0.14 \mathrm{~V}$
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{*}$	$\mathrm{Pb}(s)$	$-0.13 \mathrm{~V}$
$\mathrm{H}^{+}+\mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{*}$	$\frac{1}{2} \mathrm{H}_{2}(g)$	0.00 V
$\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{\rightleftharpoons}$	$\mathrm{SO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$	0.16 V
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{*}$	$\mathrm{Cu}(\mathrm{s})$	0.34 V
$\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{\sim}$	$2 \mathrm{OH}^{-}$	0.40 V
$\mathrm{Cu}^{+}+\mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{*}$	$\mathrm{Cu}(\mathrm{s})$	0.52 V
$\frac{1}{2} \mathrm{I}_{2}(s)+\mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{*}$	I^{-}	0.54 V
$\frac{1}{2} \mathrm{I}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	I^{-}	0.62 V
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{\sim}$	Fe^{2+}	0.77 V
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ag}(\mathrm{s})$	0.80 V
$\frac{1}{2} \mathrm{Br}_{2}\left(\underline{\text { a }}+\mathrm{e}^{-}\right.$	\rightleftharpoons	Br^{-}	1.08 V
$\frac{1}{2} \mathrm{Br}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	Br^{-}	1.10 V
$\frac{1}{2} \mathrm{O}_{2}(8)+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{H}_{2} \mathrm{O}$	1.23 V
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{e}^{-}$	\rightleftharpoons	Cl^{-}	1.36 V
$\frac{1}{2} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2+}+7 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cr}^{3+}+\frac{7}{2} \mathrm{H}_{2} \mathrm{O}$	1.36 V
$\frac{1}{2} \mathrm{Cl}_{2}(a \mathrm{q})+\mathrm{e}^{-}$	\rightleftharpoons	Cl^{-}	1.40 V
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	1.51 V
$\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{*}$	F^{-}	2.89 V

[^0] this exarnination paper. Some data may have been modified for examination purposes.

$\begin{gathered} 1 \\ \underset{H}{1} \\ 1.08 \\ \text { Hydrogen } \end{gathered}$	PERIODIC TABLE OF THE ELEMENTSKEY																$\begin{gathered} 2 \\ \mathrm{He} \\ 4.003 \\ \text { Hedium } \end{gathered}$
$\begin{gathered} 3 \\ \mathrm{Li} \\ 6.941 \\ \text { Lithium } \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.012 \\ \text { Beryllium } \end{gathered}$						mic Number	$\begin{gathered} 79 \\ \text { Au } \\ 197.0 \\ \text { Golid } \\ \hline \end{gathered}$	Symmel of efle			$\begin{gathered} \hline 5 \\ B \\ 10.81 \\ \text { Boron } \\ \hline \end{gathered}$	$\begin{gathered} \stackrel{6}{\mathrm{C}} \\ 12.01 \\ \text { Carbon } \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \mathrm{~N} \\ 14.01 \\ \text { Nitrogen } \end{gathered}$		$\begin{gathered} \hline 9 \\ \mathrm{~F} \\ 19.00 \\ \text { Fuorine } \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ \text { Ne.18 } \\ \text { Neon } \\ \hline \end{gathered}$
$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \\ \text { Sodium } \end{gathered}$	$\begin{array}{\|c\|} \hline 12 \\ \mathrm{Mg} \\ 24.31 \\ \text { Magnesium } \end{array}$											$\begin{gathered} 13 \\ \mathrm{Al} \\ 26.98 \\ \text { Aluminium } \end{gathered}$	$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.09 \\ \text { Silicon } \end{gathered}$	$\begin{gathered} 15 \\ \mathrm{P} \\ 30.97 \\ \text { Phosphorus } \end{gathered}$	$\begin{gathered} 16 \\ \text { S } \\ \text { S2.07 } \\ \text { Sulfur } \end{gathered}$	$\begin{gathered} 17 \\ \begin{array}{c} 17 \\ \text { Cl } \\ \text { Chloine } \end{array} \end{gathered}$	$\begin{gathered} 18 \\ \text { Ar } \\ 39.95 \\ \text { Argon } \end{gathered}$
$\begin{gathered} 19 \\ \mathrm{~K} \\ \text { P9.30 } \\ \text { Patasium } \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \\ \text { Calcium } \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ 44.96 \\ \text { Scandium } \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.87 \\ \text { Tianium } \end{gathered}$	$\begin{gathered} 23 \\ \mathrm{~V} \\ 50.94 \\ \text { Vanadium } \end{gathered}$	$\begin{array}{c\|} 24 \\ \mathrm{Cr} \\ 52.00 \\ \text { Croonium } \end{array}$	$\begin{gathered} 25 \\ \mathrm{Mn} \\ 54.94 \\ \text { Manganese } \end{gathered}$	$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55.85 \\ \text { tron } \end{gathered}$	$\begin{gathered} 27 \\ \mathrm{Co} \\ 58.93 \\ \text { Cobalt } \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \mathrm{Ni} \\ 58.69 \\ \text { Nickel } \end{gathered}$	$\begin{aligned} & 29 \\ & \text { Cu } \\ & 63.55 \\ & \text { Copper } \end{aligned}$	$\begin{gathered} 30 \\ \mathrm{Zn} \\ 65.41 \\ \text { Z.ind } \end{gathered}$	$\begin{gathered} 31 \\ G a \\ 69.72 \\ \text { Gallum } \\ \hline \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ \text { Cefmaium } \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \\ \text { Arsenic } \end{gathered}$	$\begin{gathered} 34 \\ \text { Se } \\ 78.96 \\ \text { Sclenium } \end{gathered}$	$\begin{gathered} 35 \\ \text { Br } \\ 79.90 \\ \text { Bromine } \end{gathered}$	$\begin{gathered} 36 \\ \mathrm{Kr} \\ 83.80 \\ \text { Krypoon } \end{gathered}$
$\begin{gathered} 37 \\ \text { Rb } \\ 85.57 \\ \text { Rubidium } \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ \text { Sr } \\ 87.62 \\ \text { Sconium } \\ \hline \end{gathered}$	$\begin{gathered} 39 \\ \mathrm{Y} \\ 88.91 \\ \text { Ytuium } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 40 \\ \mathrm{Zs} \\ 91.22 \\ \text { Zinconium } \\ \hline \end{array}$	$\begin{gathered} 41 \\ \mathrm{Nb} \\ 92.91 \\ \text { Niobum } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 42 \\ \mathrm{Mo} \\ 95.94 \\ \text { Molybdenum } \end{array}$	$\begin{gathered} 43 \\ \mathrm{Tc} \\ {[97.91]} \\ \text { Trchenetium } \end{gathered}$	$\begin{gathered} 44 \\ \text { Ru } \\ 10.1 \\ \text { Rubrenium } \end{gathered}$	$\begin{gathered} \hline 45 \\ \text { Rh } \\ 102.9 \\ \text { Rhodium } \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.4 \\ \text { Palladium } \end{gathered}$	$\begin{gathered} \hline 47 \\ \mathrm{Ag} \\ 107.9 \\ \text { Silver } \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ \mathrm{Cd} \\ 112.4 \\ \text { Cadmium } \\ \hline \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { In } \\ 114.8 \\ \text { Indium } \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 18.7 \\ \hline \text { Tin } \\ \hline \end{gathered}$	$\begin{gathered} 51 \\ \text { Sb } \\ 12.18 \\ \text { Animinony } \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.6 \\ \text { Tollurium } \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.9 \\ \text { lodine } \\ \hline \end{gathered}$	$\begin{gathered} 54 \\ \text { Xe } \\ 131.3 \\ \text { Xenon } \\ \hline \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ 1329 \\ \text { Casium } \end{gathered}$	$\begin{gathered} 56 \\ \mathrm{Ba} \\ 137.3 \end{gathered}$ Barium	Lanthanods	$\begin{gathered} 72 \\ \text { Hf } \\ \text { H78.5 } \\ \text { Bhafium } \end{gathered}$	$\begin{gathered} 73 \\ \mathrm{Ta} \\ 180.9 \\ \text { Thnalum } \end{gathered}$	Tungsten $\begin{gathered} 74 \\ W \\ 183.8 \\ \text { Tingesen } \end{gathered}$	$\begin{gathered} 75 \\ \mathrm{Re} \\ 186.2 \\ \text { Renenium } \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.2 \\ 0.0 .2 \end{gathered}$ Osmium	$\begin{gathered} 77 \\ \mathrm{lr} \\ 192.2 \\ \text { Indium } \end{gathered}$	$\begin{aligned} & 78 \\ & \mathrm{Pt} \end{aligned}$ $\begin{gathered} \text { Pr } \\ 195.1 \end{gathered}$ Platinur	$\begin{gathered} 79 \\ \mathrm{Au} \\ 197.0 \\ \text { Gold } \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.6 \\ \text { Mercury } \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{Tl} \\ 204.4 \\ \text { Thallium } \end{gathered}$	$\begin{gathered} 82 \\ \mathrm{~Pb} \\ 207.2 \\ \text { Lenad } \end{gathered}$	$\begin{gathered} 83 \\ \text { Bi } \\ 209.0 \\ \text { Bismuth } \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ \text { [2090.0] } \\ \text { Pelocium } \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ {[210.0]} \\ \text { Astaiane } \end{gathered}$	$\begin{gathered} 86 \\ \text { Rn } \\ {[222.0]} \\ \text { Raton } \end{gathered}$
$\begin{gathered} 87 \\ \mathrm{Fr} \\ {[223]} \\ \text { Francium } \end{gathered}$	$\begin{gathered} 88 \\ \text { Ra } \\ {[226]} \\ \text { Radium } \end{gathered}$	89-103	$\begin{array}{\|c\|} \hline 104 \\ \mathrm{Rf} \\ {[26]} \\ \text { Rutherarodium } \end{array}$	$\begin{gathered} 105 \\ \mathrm{Db} \\ \{262] \\ \text { DLubnium } \end{gathered}$	$\begin{gathered} 106 \\ \text { Sg } \\ \text { [2b60 } \\ \text { Seaborsium } \end{gathered}$	$\begin{gathered} 107 \\ \text { Bh } \\ {[264]} \\ \text { Bohium } \\ \hline \end{gathered}$	Hassium $\begin{aligned} & 108 \\ & \text { Hs } \\ & \text { H277] } \\ & \text { [27sive } \end{aligned}$	$\begin{gathered} 109 \\ \mathrm{Mt} \\ \text { Meimeriun } \\ \text { Meince } \end{gathered}$	$\begin{gathered} 110 \\ \text { Ds } \\ \text { Darsin } \\ \text { Darmatatium } \end{gathered}$	$\begin{array}{\|c\|} \hline 111 \\ \mathrm{Rg} \\ \text { Rongengenium } \end{array}$							

Lanthanoids														
$\begin{gathered} 57 \\ \mathrm{La} \\ 138.9 \\ \text { Lanthanum } \end{gathered}$	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.1 \\ \text { Cerium } \end{gathered}$	$\begin{array}{\|c\|} \hline 59 \\ \text { Pr } \\ \text { Prasedodymium } \\ \hline \end{array}$	$\begin{gathered} 60 \\ \text { Nd } \\ \text { Neduymin } \\ \text { Ney } \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ \text { Promenchium } \end{gathered}$	$\begin{gathered} 62 \\ \substack{62 \\ \text { Smand } \\ \text { Samaium }} \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ \text { Euvepum } \\ \text { Europum } \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ \text { Gadolinium } \end{gathered}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ \text { Trebi.9 } \\ \text { Tetibum } \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ \text { 162.5 } \\ \text { Dyprosium } \end{gathered}$	$\begin{gathered} 67 \\ \text { H0. } \\ \text { 164.9 } \\ \text { Holmium } \end{gathered}$	$\begin{gathered} 68 \\ \text { Er } \\ 167.3 \\ \text { Erbium } \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm} \\ \begin{array}{c} 69 \\ \text { Thnolium } \end{array} \end{gathered}$	$\begin{gathered} 70 \\ \text { Yb } \\ \text { Yys.0 } \\ \text { Yytebium } \end{gathered}$	$\begin{gathered} 71 \\ \text { Lu } \\ \text { L7550 } \\ \text { Luktium } \end{gathered}$
Actinoids														
89 Ac $[227]$ Accinium	$\begin{gathered} 90 \\ \text { Th } \\ \text { 232.0 } \\ \text { Thorium } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Pa} \\ \text { Pa } \\ \text { Proactinium } \end{array}$	$\begin{gathered} 92 \\ \mathrm{U} \\ 238.0 \\ \text { Unanium } \end{gathered}$	$\begin{gathered} 93 \\ \mathrm{~Np} \\ \text { [237] } \\ \text { Neppunium } \end{gathered}$	$\begin{gathered} 94 \\ \mathrm{Pu} \\ {[244]} \\ \text { Plutonium } \end{gathered}$	$\begin{gathered} 95 \\ \mathrm{Am} \\ \text { [243] } \\ \text { Americium } \end{gathered}$	$\begin{gathered} 96 \\ \mathrm{Cm} \\ {[247]} \end{gathered}$	$\begin{gathered} 97 \\ \text { Bk } \\ \text { [247] } \\ \text { Bekclium } \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ {[25]} \\ \text { chuifomium } \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ \text { [2s25] } \\ \text { Einstinum } \end{gathered}$	$\begin{gathered} 100 \\ \text { Fm } \\ {[257]} \\ \text { Femmium } \end{gathered}$	$\begin{gathered} 101 \\ \text { Md } \\ \text { Mencrec } \\ \text { Mender } \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ \text { [259] } \\ \text { Noblium } \end{gathered}$	$\begin{gathered} 103 \\ \mathrm{Lr} \\ {[262]} \\ \text { Lewrencium } \end{gathered}$

The International Union of Pure and Applied Chemistry Periodic Table of the Elements (October 2005 version) is the principal source of data. Some data may have been modified.

[^0]: Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for

