Student Number:	
Teacher:	

2006

Trial HSC Examination

CHEMISTRY

Tuesday 29 August 2006, 9am – 12.05pm

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Draw diagrams using pencil
- Board approved calculators may be used
- A data sheet and Periodic Table are provided separately
- Write your student number at the top of every page.

Total marks - 100

Section I – 75 marks

Part A (15 marks)

- Attempt Questions 1-15
- Allow about 30 minutes for this part

Part B (60 marks)

- Attempt Questions 16-28
- Allow about 1 hour and 45 minutes for this part.

Section II - 25 marks

Option

- Attempt Question 29
 - Allow about 45 minutes for this section

WH ML AW 57 students

		Stud	dent Number		
Section I 75 marks		102	iciici		
	15 marks Questions 1- out 30 minu		part		
Use the mu	ltiple-choice ar	nswer sheet.			
Select the a completely.		C or D that be	st answers the	question. Fill in the	ne response oval
Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		A) В	c 🔾	D 🔘
If you think new answer		le a mistake, p	ut a cross throu	ugh the incorrect a	nswer and fill in the
		Α •	В	(c 🔾	D 🔘
				u consider to be th	ne correct answer, ng an arrow as
	1.5	A 🙀	В	Correct	D O

Student Number:	
Tooohom	

1 Which of the following is the correct IUPAC name for the molecule below.

- (A) 1-propanol
- (B) 2-hydroxypropane
- (C) 2-hydroxypropanol
- (D) 2-propanol
- 2 What is the oxidation state of chromium in potassium dichromate, $K_2Cr_2O_7$.
 - (A) -2
 - (B) +3
 - (C) +6
 - (D) + 8
- 3 What is the systematic name for the monomer from which polyvinyl chloride is built?
 - (A) chloroethene
 - (B) 1,1-dichloroethene
 - (C) 1,2-dichloroethene
 - (D) vinyl chloride
- 4 Which of the following are significant natural sources of sulphur dioxide?
 - (A) lightning and bacteria
 - (B) bacterial decomposition and volcanoes
 - (C) internal combustion engine and air conditioning units
 - (D) coal burning power stations and metal ore smelting

	Student Number:
	Teacher:
5	Which of the following is the conjugate base of water?
	$(A) H_3O^+$
	(B) OH
	(C) H_2O_2
	(D) Cl ⁻
6	Which of the following is the common name for 2-hydroxypropane-1,2,3-tricarboxylic acid?
	(A) acetic acid
	(B) citric acid
	(C) ascorbic acid
	(D) sulphuric acid
7	Who defined an acid as a substance containing oxygen?
	(A) Lavoisier
	(B) Davy
	(C) Arrhenius
	(D) Lowry and Bronsted
8	Which of the following equations describes a buffer?
	(A) $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$
	(B) $HCl(aq) + H_2O(aq) \rightarrow Cl^- + H_3O^+$
	(C) $H_2SO_4(aq) + H_2O(l) \leftrightarrows HSO_4^-(aq) + H_3O^+(aq)$
	(D) $CH_3COOH(aq) + H_2O(l) \leftrightarrows CH_3COO^{-}(aq) + H_3O^{+}(aq)$
9	What is the pH of a $1.5 \times 10^{-4} \text{molL}^{-1}$ solution of sulphuric acid assuming complete ionisation?
	(A) 4.0
	(B) 3.8
	(C) 3.5
	(D) 1.5

Student Number:	

Teacher:....

- 10 Which of the following pairs are isomers?
 - (A) graphite and diamond
 - (B) cyclohexane and 1-hexene
 - (C) cyclohexane and cyclohexene
 - (D) carbon-12 (12 C) and carbon-14 (14 C)
- 11 Consider the following standard reduction potentials:

Half-reaction	$E^{\alpha}(V)$
$Ca^{2+} + 2e^{-} \leftrightarrows Ca$	-2.87
$Pb^{2+} + 2e^{-} \leftrightarrows Pb$	-0.13
$Cu^{2+} + 2e^{-} \leftrightarrows Cu$	+0.34
$Ag^+ + e^- \leftrightarrows Ag$	+1.80

Using the above table, which of the following metals is the strongest OXIDANT?

- (A) Ca²⁺
- (B) Pb²⁺
- (C) Cu²⁺
- (D) Ag⁺
- 12 To which area had Atomic Absorption Spectroscopy contributed the most?
 - (A) The analysis of organic water pollutants
 - (B) The analysis of pollutant gas levels in the atmosphere
 - (C) The identification and effects of trace elements
 - (D) The identification of metal ions in water

Student Number:	
Taaalaan	

13 A sample of water was collected downstream from a factory producing batteries.

The sample was analysed for zinc content using the following method.

- Standard solutions of zinc were used to prepare a calibration curve.
- One litre of river water was collected.
- A 100 mL sample of this water was diluted to 1 L using distilled deionised water.
- A 50 mL sample of the dilute solution was used to aspirate into an atomic absorption spectrometer.

The following graph was obtained using standard solutions of zinc nitrate.

The absorbance reading of the 50 mL sample of the diluted river water was 1. Which of the following is closest to the concentration of zinc in the original river water sample?

- (A) 10 ppm
- (B) 40 ppm
- (C) 50 ppm
- (D) 100 ppm
- 14 The table below gives the results of some tests performed on water from four different sites.

Test	Site Q	Site R	Site S	Site T
Total dissolved	350	120	50	635
solids (ppm)				
Phosphate (ppm)	2.2	0.02	0.01	1.1
Dissolved oxygen	2.5	5.0	7.0	3.5
(ppm)				
Micro-organisms	190	220	1	2
(CFU/100mL)				

Which site is most likely to be down stream from a farm?

- (A) Site Q
- (B) Site R
- (C) Site S
- (D) Site T

Student Number:	
Teacher:	

A student performed an investigation to measure the sulphate content of ammonium sulphate lawn fertiliser by precipitating the sulphate as barium sulphate (BaSO₄) and weighing the precipitate. His results are tabulated below.

What was weighed	Mass (g)
Ammonium sulphate fertiliser sample	2.00
Clean filter paper	1.05
Filter paper + dry barium sulphate	1.88
precipitate	

What is the percentage of sulphate, by mass, in the measured ammonium sulphate fertiliser?

- (A) 17.1 %
- (B) 24.4 %
- (C) 41.5 %
- (D) 72.7 %

Student Number:	
Teacher: Section I (continued)	
Part B – 60 marks Attempt Questions 16-28 Allow about 1 hour and 45 minutes for this part.	
Answer the questions in the spaces provided.	
Show all relevant working in questions involving calculations.	
Question 16 (6 marks)	Marks
Ethanol can be produced by the addition of water to ethylene OR by fermentation of sugars.	
(a) Give the equation for the production of ethanol by the addition of water to ethylene.	1
(b) Justify the steps for the production of ethanol by fermentation in the school laboratory.	2

Question 16 continues over the page

Teacher:	arks
(c) Discuss the potential wide-scale use of ethanol as an alternative fuel to petrol in cars.	3

Student Number:	
Question 17 (8 marks)	Marks
A student assembled the following equipment in order to determine the Molar Heat of Combustion of ethanol.	
retort stand water aluminium calorimeter alcohol burner	
Experimental results found that the temperature of 100 mL of water increased from 18°C to 58°C on burning 0.76g of ethanol.	
(a) Define the term <i>molar heat of combustion</i> .	
	1
(b) Write a balanced chemical equation to show the complete combustion of ethanol.	1
(c) Calculate the Molar Heat of Combustion of ethanol based on the experimental results.	2

Student Number:	· • • • • • • •
Teacher:	 Marks
(d) Explain how this calculated value would compare to the theoretical value.	
	2
(e) Identify a potential hazard in this experiment and outline how you addressed this hazard	2
	2

	Student Number:	
	Teacher:	
Question 18 (4 marks)		Marks

A Galvanic cell may be constructed by placing one half-cell in a porous pot inside another half-cell as shown below.

(a) Identify the cathode.	1
(b) Coloulate the theoretical valtage of this call	
(b) Calculate the theoretical voltage of this cell.	1
(c) Explain the function of the <i>porous pot</i> .	
	2

Student Number:	• • • • • • • • • • • • • • • • • • • •
Teacher:	
Question 19 (3 marks)	Marks
You performed a first-hand investigation to identify the pH of salt solutions. If solutions of ammonium chloride and sodium chloride were used, predict the acidic, basic or neutral nature of those salts.	3

Student Number:	• • • • • • • • • • • • • • • • • • • •
Teacher:	
Question 20 (4 marks)	Marks
During this course you studied the use of catalysts in a number of different reactions and processes.	
(a) Identify one chemical reaction that uses a catalyst.	1
(b) Name the catalyst used.	1
(c) Explain why the catalyst is used.	2

Student Number:	 •
Teacher:	

Question 21 (7 marks)

Marks

Copper carbonate is decomposed to carbon dioxide and copper (II) oxide when heated.

The volume of carbon dioxide produced can be measured by displacing water.

The results of an investigation into the decomposition of copper (II) carbonate are tabulated below.

Time (s)	Gas Volume at 25°C
	and 100 kPa (mL)
10	20
30	66
50	84
70	90
100	92
130	92

(a) V	Write the equation for the decomposition of copper (II) carbonate.	1

				112				Designation of the last of the						Tool of the last				- Control of		1000					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
												and enterprise						The state of the		-								
400	1			0.000						0		1						5- 1-0-d-6-			1141	1000						
911				-1	lohodan Lohodan Lohodan		4-1-1-					- 1.0										1000		ndre e				
1											dill tool				1.00						i bioli	1.00	4		1			
														Anger Indian			0-10-1				10.0		-			1		
	-0-1			-1-0					The second second				1	for further bands			1-2-1								1			
													1	Andrew (10												1000		
9				1000																								
- Control of the last								diam'n an													1.0					0.000 0.000 0.000 0.000 0.000		
-																					0.0					0.00		
								April and San														114						
														- de de la constante de la con								100.00						
al			e the	••••			••••									•••		• • • •		• • • • • • • • • • • • • • • • • • • •			 				 	
	-	700	the	ac	cura	ac	y o	f t	he :	pro	oce	du	re	to	r c	ol	lec	tin	ıg t	he	ga	S.						

Student Number:	• • • • • • • • • • • • • • • • • • • •
Teacher:	• • • • • • • • • • • • • • • • • • • •
Question 22 (4 marks)	Marks
Safety glasses should always be worn during practical experiments involving acids since spills and splashes can occur. The corrosive nature of acids can damage workbenches or pose a risk to people working in the laboratory.	
A handbook for risk assessment states:	
"To minimise risk, large acid spills should be neutralised with limestone before mopping up."	
Assess this recommended method.	4

Student Number:	• • • • • • • • • • • • • • • • • • • •
Teacher:	
Question 23 (3 marks)	Marks
Special techniques are used to ensure accuracy when preparing a standard solution and conducting a titration.	
Describe ONE such technique for the preparation of the standard solution AND ONE such technique for conducting the titration.	
Explain how each assists in obtaining a valid result.	3

Student Number:	• • • • • • • • • • • • • • • • • • • •
Teacher:	• • • • • • • • • • • • • • • • • • • •
Question 24 (4 marks)	Marks
Explain the importance of monitoring the reaction vessel used in the Haber Process.	4

Student Number:	• • • • • • • • • • • • • • • • • • • •
Teacher:	• • • • • • • • • • • • • • • • • • • •
Question 25 (4 marks)	Marks
Ions produced by industry and farming van move into the environment where they can cause problems.	
Describe and explain evidence for the need to monitor levels of ONE named ion used by society.	4

	Student Number:	
	Teacher:	
Question 26 (3 marks)		Marks
(a) Define a coordinate covalent bond	<i>I</i> .	1
(b) Draw a Lewis electron dot structur <i>covalent bond</i> .	re to model the formation of the <i>coordinate</i>	2

Student Number:	
Teacher:	
Question 27 (6 marks)	Marks
Ozone is being gradually removed from the stratosphere by our use of chlorofluorocarbons (CFC).	
(a) Identify ONE CFC molecule that has caused problems and its source.	1
(b) Give equations to demonstrate the removal of ozone from the stratosphere by this CFC.	2
(c) Evaluate the effectiveness of replacement chemicals for CFC's.	3

Student Number:	• • • • • • • • • • • • • • • • • • • •
Teacher:	
Question 28 (4 marks)	Marks
Assess the effectiveness of methods used to purify and sanitise mass water supplies.	4

Student Number:
Teacher:

Question 29 – Shipwrecks, Conversation and Corrosion (25 marks)

Marks

(a) In 1780 Luigi Galvani generated an electric current by taking two wires made of different metals, at one end joining them together and at the other end placing them on a dissected frog's leg muscle.

The muscle contracted, prompting Galvani to coin the term *animal electricity*.

Outline how a more recent chemist, Alessandro Volta, interpreted Galvani's results and describe how he built on Galvani's work.

3

1

1

2

(b) The experiment below was set up to investigate the factors that affect the rate of electrolysis.

- (i) Give the half-equation for the reaction occurring at the cathode.
- (ii) Calculate the voltage required for the reaction to proceed.
- (iii) In some investigations, reaction rate can be measured by recording the change in temperature.

Describe what the investigator could have recorded as a measure of reaction rate in this investigation.

- (iv) Identify one other factor that the investigator may have varied and give the likely result of varying this factor on reaction rate.
- (c) Describe how the process of *cathodic protection* minimises rusting of iron in marine environments.

Student Number:	
Teacher:	
(d) In the year 1770 Captain Cook tossed 10 cannons overboard when his ship, the Endeavour, hit a coral reef.	Marks
These were discovered 200 years later but they were in poor condition. They were covered in coral (CaCO ₃) and extensively pitted and corroded.	
They were recovered and firstly kept in a basic sodium hydroxide solution.	
(i) Explain why the cannons would be kept in a basic solution before work began on them.	1
(ii) Describe how the coral may have been removed.	1
(iii) Describe and explain how the corrosion may have been halted and reversed.	3
(iv) Describe and explain how the cannons may be treated to protect them from further corrosion as they are displayed.	2
(d) Identify and discuss factors that influence the rate of corrosion of a steel shipwreck in deep ocean waters.	6

END OF PAPER

Student Number:	
Teacher:	

BLANK PAGE

	Student	Number:									
	Taaahar	•									
4			• • • • • • • • • • • • • • • • • • • •								
	DATA S	SHEET									
Avogadro constant, N_A			$6.022 \times 10^{23} \text{ mol}^{-1}$								
Volume of 1 mole ideal gas: at 10											
at	at 0°C (273.15 K) 22.71 L										
		,	24.79 L								
Ionisation constant for water at 25	5°C (298.1	15 K), K _w	1.0×10^{-14}								
Specific heat capacity of water			$4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$								
		ıl formulae									
$pH = -\log_{10}[H$	[+]	ΔH	$=-mC\Delta T$								
Son	Some standard potentials										
K ⁺ + e [−]	. ⇌	K(s)	-2.94 V								
Ba ²⁺ + 2e ⁻	₩	Ba(s)	-2.94 V -2.91 V								
$Ca^{2+} + 2e^{-}$		Ca(s)	-2.87 V								
Na ⁺ + e ⁻	=	Na(s)	-2.71 V								
$Mg^{2+} + 2e^{-}$		Mg(s)	-2.36 V								
$A1^{3+} + 3e^{-}$		Al(s)	-1.68 V								
$Mn^{2+} + 2e^-$	\rightleftharpoons	Mn(s)	-1.18 V								
$H_2O + e^-$		$\frac{1}{2}H_2(g) + OH^-$									
$Zn^{2+} + 2e^{-}$	₹	Zn(s)	-0.76 V								
$Fe^{2+} + 2e^{-}$	~2	Fe(s)	-0.44 V								
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni(s)	-0.24 V								
$Sn^{2+} + 2e^{-}$	~~	Sn(s)	-0.14 V								
$Pb^{2+} + 2e^{-}$	←	Pb(s)	-0.13 V								
$H^{+} + e^{-}$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g)	0.00 V								
$SO_4^{2-} + 4H^+ + 2e^-$		$SO_2(aq) + 2H_2O$	0.16 V								
$Cu^{2+} + 2e^{-}$	∠_	Cu(s)	0.34 V								
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 26	e⁻ ⇌	20H-	0.40 V								
Cu ⁺ + e ⁻	\rightleftharpoons	Cu(s)	0.52 V								
$\frac{1}{2}\mathbf{I}_2(s) + \mathbf{e}^-$	-	I_	0.54 V								
$\frac{1}{2}I_2(aq) + e^{-}$	(-)	I-	0.62 V								
$Fe^{3+} + e^{-}$		Fe ²⁺	0.77 V								
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V								
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^{-}$	~	Br ⁻	1.08 V								
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^-$	/	Br ⁻	1.10 V								
$\frac{1}{2}O_2(g) + 2H^+ + 2e$		H ₂ O	1.23 V								
$\frac{1}{2}\operatorname{Cl}_{2}(g) + e^{-}$	~	CI ⁻	1.36 V								
$\frac{1}{2}\text{Cr}_2\text{O}_7^{2-} + 7\text{H}^+ +$		$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V								
$\frac{1}{2}\operatorname{Cl}_{2}(aq) + e^{-}$	-	CI ⁻	1.40 V								
$MnO_4^- + 8H^+ + 5e$	- -	$Mn^{2+} + 4H_2O$	1.51 V								

F-

 $\frac{1}{2}F_2(g) + e^-$

2.89 V

_			
Έ.	eac	hε	r:

																		re	ac	ene	Ι.	• •	• • •	• • •	• •	• • •	• •
	2 He	4.003	Helium	10	Ne	20.18	Neon	18	Ar	39.95	Argon	36	Ϋ́	83.80	Krypton	54	Xe	131.3	Xenon	98	Kn	[222.0]	Radon	118	Ono	1	Ununoctium
				6	Į,	19.00	Fluorine	17	ت ت	35.45	Chlorine	35	Br	79.90	Bromine	53	I	126.9	Iodine	85	At	[210.0]	Astatine	117			
				8	0	16.00	Oxygen	16	S	32.07	Sulfur	34	Se	78.96	Selenium	52	Te	127.6	Tellurium	84	2	[210.0]	Polonium	116	Cuh	ļ	Ununhexium
				7	Z	14.01	Nitrogen	15	Д	30.97	Phosphorus	33	As	74.92	Arsenic	51	Sb	121.8	Antimony	83	Bi	209.0	Bismuth	115			
				9	Ü	12.01	Carbon	14	Si	28.09	Silicon	32	පු	72.61	Germanium	50	Sn	118.7	Tin	82	2	207.2	Lead	114	Dnd	1	Ununquadium
				5	В	10.81	Boron	13	A	26.98	Aluminium	31	g	69.72	Gallium	49	In	114.8	Indium	81	=	204.4	Thallium	113			
STZ.												30	Zu	62:39	Zinc	48	P S	112.4	Cadmium	08:	Hg	200.6	Mercury	112	QnD	1	Ununbium
FLEMENTS					ment		ent					53	ວີ	63.55	Copper	47	Ag	107.9	Silver	79	Au	197.0	Gold	111	Ouu	I	Unununium
OF THE					Symbol of element		Name of element					28	z	58.69	Nickel	46	Ьd	106.4	Palladium	78	ĭ	195.1	Platinum	110	Oun	1	Ununnilium
		VEV	NE.	79	Au	197.0	Gold					27	ဒိ	58.93	Cobalt	45	Rh	102.9	Rhodium	77	1	192.2	Iridium	109	Mt	[568]	Meitnerium
PERIODIC TABLE				Atomic Number		Atomic Weight						2 6	Fe	55.85	Iron	44	Ru	101.1	Ruthenium	92	ŝ	190.2	Osmium	108	HS	[265.1]	Hassium
PERIC				¥		•						25	Mn	54.94	Manganese	43	Tc	[98.91]	Technetium	75	Re	186.2	Rhenium	107	Bh	[264.1]	Bohrium
												75	ל	27.00	Chromium	42	Wo	95.94	Molybdenum	74	× ;	183.8	Tungsten	106	28	[263.1]	Seaborgium
												23	>	50.94	Vanadium	41	SP PP	92.91	Niobium	73	14	180.9	Tantalum	105	on	[262.1]	Dubnium
												153	11	47.87	Titanium	40	Zr	91.22	Zirconium	72	111	178.5	Hafnium	89–103 104	2	[261.1]	Rutherfordium
			,				_					21	S	44.96	Scandium	39	X	88.91	Yttrinm	57-71			Lanthanides	89-103			Actinides
_				4,6	Be	9.012	Beryllium	12	Mg	24.31	Magnesium	86	Z.	40.08	Calcium	38	Sr	87.62	Strontium	56 B3	200	137.3	Barium	88 G	L'A	[226.0]	Radium
	Н	1.008	Hydrogen	ω;	=	6.941	Lithium	Ξ;	Na	22.99	Sodium	19	4	39.10	Potassium	37	Rb	85.47	Rubidium	55	3	132.9	Caesium	87	1	[223.0]	Francium
																											_

es	
ಶ	
Ξ	
a	
£	
Ľa	

									The state of the s		-			
47	20	04	9	71	03	63	17	37	"	-	0)	0/	1	i
10	20	23	3	10	70	co	40	CO	00	/0	200	69	9	
-	č	D	TIN	D	-	r.	7	Ē	,		t	È	,	.,
3	3	14	חמו	LIII	OIII	Eu	3	01	2	9	H	Im	χp	T
1200	1401	0001	0			000		0	1		-			
136.9	140.1	140.9	7.44.7	146.9	200	152.0	15/3	2×0	62.5	0 79	1673	168.0	1730	1750
			!			2	2	1.00	2	1:10	201	1.001	0.017	0.01
Lanthanum	Cerinm	Praseodymium	Neodymium	Promethium	Samarinm	Furonium	Gadolinium	Terhinm	Dvenroeim	Holminm	Echium	Thulium	Vitarhium	I whatiness
									- delicarion	TIPITION .		TIMINATI	TIMELOIGH	Luicium

Actinidae

7	Actinides														
	80	06	01	60	03	10	90	90	0.7	00	00	100	101	5	501
		2	77	77	C	+	2	2	1	20	77	3	101	107	501
	Ac	I.P	Pa	<u> </u>	a N	Pu	Am	E C	Bk	ť	H.	Fm	Md	N	-
	1000	0000	0.00	0000	1000					5	3		77.7	21	1
_	[0.777]	737.0	731.0	738.0	0./67	739.1	241.1	244.1	249.1	1252.1	1252.1	257.11	1258.11	1259 11	11 696
_	Actinium	Thomas	Destantiation	Transission	N.										-
	TIME TO SERVICE TO SER	Illononi	rotacumum	Oramum	mebranian	Lintounia	Amencium	Cunum	Berkellum	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
					The same in case of the last										

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes 237 Np and 99 Tc.