SYDNEY GRAMMAR SCHOOL

2007 FORM VI TRIAL HSC EXAMINATION

Chemistry

General Instructions

- Reading time 5 minutes.
- Working time 3 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your candidate number and master's initials at the top of each page in Part B and on the answer booklet

CHECKLIST	,
Each boy should have the following:	
1 Question Paper	
1 Multiple Choice Answer Sheet	
15 - Page Booklet	

Chemistry Classes.

1 MMB	2 RJF	3 JAG
4 JAG	5 TW	6 MTK

Section I Pages 2 - 22

Total marks (100)

This section has two parts, Part A and Part B

Part A

Total marks (15)

- Attempt Questions 1-15
- Allow about 25 minutes for this Section

Part B

Total marks (69)

- Attempt Questions 16-27
- Allow about 2 hours for this Section

Section II Pages 23-26 Total marks (16)

- Attempt Question 28 in this section.
- Allow about 35 minutes for this Section

(D) 9

(D)

Part A

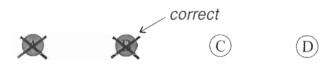
Total marks (15)

Attempt Questions 1-15

Allow about 25 minutes for this Part

Use the multiple-choice Answer Sheet.

Select the alternative A, B, C or D that best answers the question. Fill the response circle completely.


Sample 2 + 4 = (A) 2 (B) 6 (C) 8

(C)

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows.

1 Which of the following combinations listed below correctly identifies the functional groups of alkanol and alkanoic acid.

	alkanol functional group	alkanoic acid functional group
A	-c € H	-c о-н
В	H -C -O-H H	-c H-0
С	-c ⊂ O − H	H -C-O-H H
D	H -C-O-H H	-c_о-н

- What was the Montreal Protocol and its subsequent amendments designed to do?
 - (A) reduce the release of greenhouse gases.
 - (B) ban production of greenhouse gases.
 - (C) limit the production of greenhouse gases to developing countries.
 - (D) phase out the use of CFCs, halons and related substances.
- Which of the following substances could cause eutrophication in a water supply?
 - (A) Ammonium nitrate
 - (B) Sodium chloride
 - (C) Calcium sulfate
 - (D) Sulfuric acid

4 Concentrated sulfuric acid is classified as an oxidising agent. The sulfate ion is usually converted to sulfur dioxide as shown in the following equation:

$$Sn_{(s)} + 2H_2SO_{4(l)}$$
 $SnSO_{4(aq)} + SO_{2(g)} + 2H_2O_{(l)}$

Which statement concerning this reaction is correct?

- (A) The oxidation state of sulfur does not change.
- (B) Tin is reduced as its oxidation state changes from 0 to +II.
- (C) The oxidation state of sulfur decreases from +VI to +IV.
- (D) The sulfuric acid loses electrons as it is converted to sulfur dioxide.
- Which of the following tests is best used to monitor the total dissolved solids in water?
 - (A) hardness
 - (B) dissolved oxygen and biochemical oxygen demand
 - (C) concentration of lead ions
 - (D) conductivity
- 6 The composition of unpolluted dry air at sea level is given in the table below.

Substance	% by volume
Nitrogen	78.1
Oxygen	20.9
Argon	0.93
Carbon dioxide	0.038
others	each < 0.01

Which of the following represents the concentration in ppm (by volume) of carbon dioxide in the troposphere?

- (A) 38 ppm
- (B) 380 ppm
- (C) 3800 ppm
- (D) 38000 ppm

What is the name of the following compound?

- (A) 1 bromo 1, 1, 1 trichloro 1, 2 difluoroethane
- (B) 2 bromo 1, 1, 1 trichloro 2, 2 fluoroethane
- (C) 1 bromo 2,2,2 trichloro 1,1 difluoroethane
- (D) 1,1,1-bromo-2-trichloro-2,2-difluoroethane
- 8 Which statement best represents Arrhenius' definition of an acid?
 - (A) Acids contain oxygen.
 - (B) Acids are proton donors.
 - (C) Acids contain hydrogen.
 - (D) Acids form hydrogen ions in water.
- 9 Which of the following is the best indicator for a strong acid weak base titration?
 - (A) phenolphthalein
 - (B) bromothymol blue
 - (C) methyl orange
 - (D) universal indicator
- 10 Consider the following information about the oxides of three elements X, Y and Z (not their chemical symbols).
 - The oxide of **X** reacts with base only.
 - The oxide of Y reacts with acid only.
 - The oxide of **Z** reacts with both acid and base.

Which of the following could represent X, Y and Z respectively?

- (A) Cl, Na, Mg
- (B) S, Li, Al
- (C) Zn, Cl, P
- (D) K, P, Zn

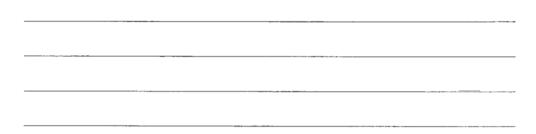
- What would be the pH of a 0.1 M solution of citric acid?
 - (A) less than 1.0
 - (B) 1.0
 - (C) between 1.0 and 7.0
 - (D) greater than 7.0
- Which isotope is most likely to be radioactive?
 - (A) ^{17}O
 - (B) ^{19}F
 - (C) 45Ca
 - (D) ${}^{1}H$
- Which of the following reactions will occur as written?
 - (A) $Cu_{(s)} + Zn(NO_3)_{2(aq)} \rightarrow Cu(NO_3)_{2(aq)} + Zn_{(s)}$
 - (B) $Cu_{(s)} + Sn(NO_3)_{2 (aq)} \rightarrow Cu(NO_3)_{2 (aq)} + Sn_{(s)}$
 - (C) $2Ag_{(s)} + Cu(NO_3)_{2 (aq)} \rightarrow 2AgNO_{3(aq)} + Cu_{(s)}$
 - (D) $\operatorname{Sn}_{(s)} + \operatorname{Cu}(\operatorname{NO}_3)_{2 \text{ (aq)}} \rightarrow \operatorname{Sn}(\operatorname{NO}_3)_{2 \text{ (aq)}} + \operatorname{Cu}_{(s)}$
- What is the name of the process by which ethanol is purified from aqueous solution?
 - (A) distillation
 - (B) fermentation
 - (C) filtration
 - (D) polymerisation
- What is the IUPAC name of the following ester?

- (A) butyl ethanoate
- (B) ethyl propanoate
- (C) ethyl butanoate
- (D) butyl propanoate

Forn	n VI Chemistry		2007 Trial Examination
Atte	et B al marks (69) empt ALL Questions w about 2 hours for this Part	Masters' Initials	Candidate Number
	wer the questions in the spaces w all relevant working in ques	•	ons
Que	stion 16 (4 marks)		Marks
Whe	en a zinc strip is placed in a so	lution of silver nitrate a c	hemical reaction takes
(a)	Write half-equations for the place, and write a balanced		_
			2
(b)	Calculate the E _{cell} if these t cell under standard condition	•	sed an electrochemical
(c)	Predict and explain any obs		made if a silver
-			1

Question 17 (3 marks)

Marks


1

1

The structures of two commercially significant monomers are shown.

(a) Identify the systematic name of ONE of the monomers.

(b) Describe the type of polymerisation that the monomers shown above undergo.

(c) Draw the structure of a polymer made from one of the above monomers.

Form	VI Chemi	stry		2007 Trial Examination
			Masters' Initials	Candidate Number
Ques	tion 18	(5 marks)		Marks
Охуд	en has tw	o allotropes O ₂ a	nd O ₃ .	
(a)	In the s_1 O_3 .	pace provided dra	aw Lewis electron dot diagra	ams for O ₂ and
				1
(b)		these properties	(chemical or physical) of O_2 on the basis of molecular str	
_				4
_				
_				
_				
_				
_				

Form VI Chemistry				2007 Trial Exa	mination	
			Masters' Ir	nitials	Candidate No	umber
Ques	stion 19	(4 marks)				Marks
	ify a buffer ur example		stem and explain	how the buffe	r works with refere	ence
-	1					. 4
-						
-						
-						
-						
Ques	stion 20	(4 marks)				
(a)	Give the	name and form	nula for ONE amp	phiprotic ion.		
-						. 2
(b)		e formulas for a and which is th	ın acid-base conju e base.	gate pair. Ide	ntify which is	
-						. 2
-	- pi, - 25 - pi					
-						

Form	VI Chemistry			2007 Trial Exami	nation ———
			Masters' Initials	Candidate Num	ber
Ques	stion 21 (7 mar)	ks)			Marks
	e course of his studi ochloric acid and ac		measured the pH of ide	ntical concentrations of	
(a)	Explain the diffe	rence in pl	H of the two solutions.		
~					2
-					
He th	nen diluted each solo	ution by a	factor of 10.0.		
(b)			should use to perform th	nis task.	
_					2
-					
-					
	ased by one pH unit			he hydrochloric acid had creased by only 0.5 pH	
(c)	Explain why pH	increases a	as the solutions are dilut	ted.	
-					I
(d)	Explain why the	two solutio	ons change pH by differ	rent amounts.	
-					2
-			-		

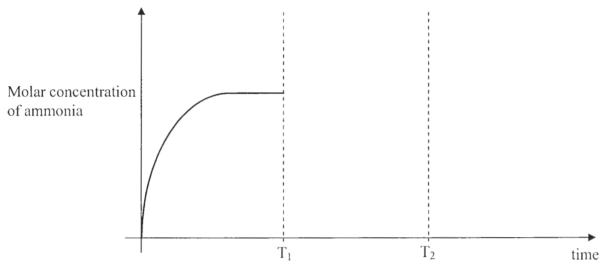
Question 22	(8 marks)
-------------	-----------

Marks

Consider the table of boiling points given below.

substance	bp (°C)	
ethyl ethanoate	77	
ethanol	78	
water	100	
ethanoic acid	118	
sulfuric acid	337	

	Explain the difference in boiling point between ethanol and ethanoic acid.
-	
_	
_	Write a balanced chemical equation, using structural formulas, for
	the reaction between ethanol and ethanoic acid to form an ester.
	Justify the use of <i>heating under reflux</i> when carrying out this reaction.
_	
_	


Question 22 continued on next page.

Form	VI Chemistry		2007 Trial Examin	ation
		Masters' Initials	Candidate Numb	er
Ques	tion 22 continued			Marks
(d) -	Discuss the usefulness of d ester from the reaction mix	_	o separate the product	1
(e)	Explain the use of esters in	processed foods and cosr	netics.	1
-				
-	tion 23 (9 marks)	on the teels of cheeking the	amount of citric soid	
-	ality control chemist was give ${}_{8}\mathrm{O}_{7}$) in sachets to be sold in s	_	amount of curic acid	
quant addec	achet contained 1.750g of po- citatively to a conical flask and I and the acid titrated with sta In L of base was required to re	d dissolved in 20mL of wandardised 1.050 M sodium	ater. An indicator was	
(a)	Identify a suitable indicator	r for the titration and justi	fy your choice.	
-				2
_				
(b) -	State how you would identi	fy the end point of the titr	ration.	1

Question 23 continued on next page.

ues	tion 23 continued	IVI
)	Calculate the percentage of citric acid in the sachet. [Citric acid was the only acid present.]	
-		
_		
_		
-		
_		
-		
_		
	Explain the use of acids as food additives.	
_		
_		

A laboratory experiment was set up to model the Haber process. Nitrogen gas and hydrogen gas were passed over an iron/iron oxide catalyst at 500°C and 25MPa. The molar concentration of ammonia gas was monitored over a period of time and the data graphed as shown below.

At time T_1 the volume of the reaction vessel was doubled while the temperature remained constant.

Sketch on the graph above:

- (i) the change in concentration of ammonia gas at T_1 .
- (ii) the concentration of ammonia after T_1 when a new equilibrium was reached at T_2 .
- (iii) Explain the changes that you have sketched on the graph.

1

Question 25 (9 marks)

Marks

A sample of water was collected from a storm water channel. This channel runs into the ocean. Samples were analysed on site and in the school laboratory. The results are recorded in the table below.

Property	Values	Typical clean water values
Temperature	17°C	N/A
Total dissolved solids	3500 ppm	<100
рН	7.5	6.5-7.3
Dissolved oxygen	9 mg/L	7-9 mg/L
Total phosphate	0.1 mg/L	0.01 mg/L
Nitrate	0.5 mg/L	0.1 mg/L

Justify your response to part (a).	
Briefly describe how you would find the mass of unovater sample.	dissolved solids in the

Question 25 continued on next page.

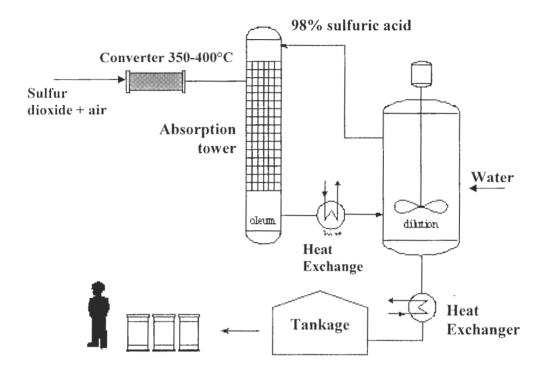
Form	VI Chemistry		2007 Trial Examination	
		Masters' Initials	Candidate Number	
Ques	tion 25 continued		Mark	S
(d)	Propose one reason to explai solids:	n the relatively high val	ue of total dissolved	
-				1
(e)	It is suspected that lead has contemical test that could be contemical test that could be contemical test that it is suspected that lead has contemined to the contemined test that it is suspected that lead has contemined to the contemined test that it is suspected that lead has contemined to the contemined test that it is suspected that lead has contemined to the contemined test that it is suspected that lead has contemined to the contemined test that could be contemined to the contemined test that it is suspected to the contemined test that could be contemined to the contemined test that could be c			
_			. <u> </u>	2
-				
-				
(f)	The concentrations of ions ir monitored. Justify this staten		NE ion you have studied.	•
-				2
_			<u> </u>	

Que	stion 26	(5 marks)	Marks
		f CFCs and halons in the upper atmosphere has led to a decrease in spring, particularly over Antarctica.	
(a)	What is	a CFC?	1
(b)	Identify	one possible origin of CFCs in the atmosphere.	1
(c)	Explain response		2
-			3
-			

Form VI Chemistry		2007 Trial Examin		nination
		Masters' Initials	Candidate Nur	nber
Question 27	(7 marks)			Marks
Evaluate the po	otential of ethanol	as a fuel to replace petroleu	m.	
				7
,				

Section []

16 marks Attempt question 28 in this section. Allow about 35 minutes for this section.


Answer the question in a **writing booklet**. Extra writing booklets are available. Show **all** relevant working in questions involving calculations.

	Pages
Question 28	Industrial Chemistry25
Question 31	Elective 2
Question 32	Elective 3
Question 33	Elective 4
Question 34	Elective 5

Question 28 (16 marks)

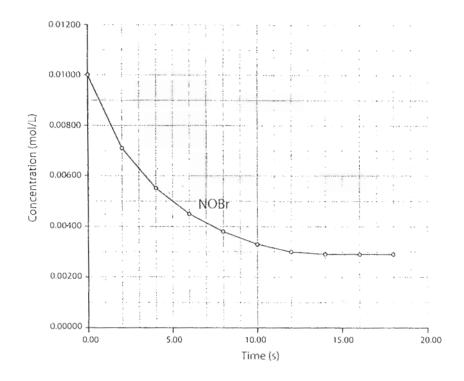
Marks

(a) The diagram below shows the production of sulfuric acid by the Contact process.

- (i) Write an equation for the reaction which occurs in the converter.
- (ii) Name the catalyst which is present in the converter.
- (iii) The pressure in the converter is about 100 kPa and the temperature is nearly 400°C. Explain why these conditions are used.
- (iv) Explain why heat exchangers are necessary whenever the concentration of sulfuric acid changes.
- (v) Based on the properties of sulfuric acid, describe the safety precautions that are necessary for its transport.
- (vi) Identify TWO uses of sulfuric acid.

Question 28 continued on next page.

1


1

3

(b) Experimental data has been collected for the decomposition of nitrosyl bromide (NOBr) as a function of time at constant temperature in a closed system. The reaction equilibrium is:

$$2NOBr_{(g)} = 2NO_{(g)} + Br_{2(g)}$$

The graph shows the change in concentration of NOBr with time.

(i) At what time does the system reach equilibrium?

1

(ii) Using data from the graph above, calculate the value of K for the decomposition of NOBr.

4

(iii) Both NOBr and Br₂ are reddish brown, so this property cannot be used to monitor the system as it approaches equilibrium. Identify a measurable property of the system that a chemist can readily use to determine when the system has reached equilibrium.

Chemistry

Data Sheet				
Avogadro's constant, N_{Λ}		6.022 x10 ²³ mol ⁻¹		
Volume of 1 mole ideal gas: at 100 kPa and				
	at 0 °C (273 K)	22.71L		
	at 25 °C (298K)	24.79 L		
Ionisation constant for water	at 25°C (298.15 K), K _w	1.0×10^{-14}		
Specific heat capacity of water	er	$4.18\times 10^3~Jkg^{-1}K^{-1}$		

Some useful formulae

 $pH = -\log_{10}[H^{+}] \qquad \Delta H = -mC\Delta T$

Standard Potentials

K' + e'		$K_{(s)}$	-2.94 V
$Ba^{2+} + 2e^{\sim}$		$Ba_{(s)}$	-2.91 V
$Ca^{2+} + 2e^{-}$		$Ca_{(s)}$	-2.87 V
$Na^+ + e^-$		$Na_{(s)}$	-2.71 V
$Mg^{2+} + 2e^{-}$		$Mg_{(s)}$	-2.36 V
$AI^{3+} + 3e^{-}$		$Al_{(s)}$	-1.68 V
$Mn^{2+} + 2e^{-}$		$Mn_{(s)}$	-1.18 V
$II_2O + e^-$	\rightleftharpoons	$\frac{1}{2}$ $H_{2(g)} + OH^{-}$	-0.83 V
$Zn^{2+} + 2e^{-}$		$Zn_{(s)}$	-0.76 V
$Fe^{2+} + 2e^{-}$		$Fe_{(s)}$	-0.44 V
$Ni^{2+} + 2e^{-}$		$Ni_{(s)}$	-0.24 V
$Sn^{2+} + 2e^{-}$		$\mathrm{Sn}_{(s)}$	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	$Pb_{(s)}$	-0.13 V
$H^+ + e^-$		½ H _{2(g)}	0.00 V
$SO_4^{2-} + 4II^+ + 2e^-$	===	$SO_{2(g)} + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	~~~	$Cu_{(s)}$	0.34 V
$\frac{1}{2}O_{2(g)} + H_2O + 2e^{-}$	\rightleftharpoons	20H ⁻	0.40 V
$Cu^+ + e^-$	~ `	$Cu_{(s)}$	0.52 V
$\frac{1}{2} I_{2(s)} + e^{-}$		I ~	0.54 V
$\frac{1}{2} I_{2(aq)} + c^{-}$		1-	0.62 V
$Fe^{3+} + e^{-}$		Fe^{2+}	0.77 V
$\Lambda g^+ + e^-$		$Ag_{(s)}$	0.80 V
$\frac{1}{2} Br_{2(1)} + e^{-}$		Br^-	1.08 V
$\frac{1}{2} Br_{2(aq)} + e^{-}$	\rightleftharpoons	Br"	1.10 V
$\frac{1}{2}$ O ₂ + 2H' + 2e	$\overline{\longleftarrow}$	H_2O	1.23 V
$\frac{1}{2} \operatorname{Cr}_2 \operatorname{O}_7^{2-} + 7 \operatorname{H}^4 + 3 e^-$		$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$^{1}/_{2} Cl_{2(g)} + e^{-}$	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2} \text{Cl}_{2(aq)} + e^{-}$	\rightleftharpoons	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2} F_{2(g)} + e^{-}$	\rightleftharpoons	F	2.89 V

- {
[272] Romigenium
[271] Demotschiun
[268] Meitenium
[277] Heatin
БП [264.1] Вониш
25 [266.1] Sebogiun
[262.1] Dubrium
[261.1] Activides Rutherfordium
Activites
[226.0] Redien
[223.0] Francium

	63 64 65 66 67 68 69 70 71 Eu Ca Th Dy Ho Fr Tm Yo Lu	157.3 158.9 162.5 164.9 167.3 168.9 173.0	Gadalinium Terinium Dyspensium Helmium Erbium Tublium Ylluchium I	
	36	162.5	Dysprosium	
	254	158.9	Tertorium	
	2 3	1573	Gadalinim	
	:S:3	152.0	Bropies	
	SFS SFS	150.4	Semanican	
	61 Pm	[144.9]	Protectivism	
	\$ 2	144.2	Noodymium	
	8년	140.9	Precodyntium	
S	ಜನ	140.1	Cerium	
Lanthanide	S7 La	138.9	Lentheran	Actinides

į			-1	
	82	[259.1]	Nobelitera	
	101 Md	[258.1]	Mendelevier	
	S.E.	[257.1]	Fermium	
	99 E	[252.1]	Enverten	
	ರ೫	[251.1]	Californium	
	が説	[247.1]	Bedelin	
	ૠુ	[247.1]	Option	
	95 Am	[243.1]	Amenicites	
	25	[244.1]	Plutozian	
	93 N	[237.0]	Neptunian	
	92 U	238.0	Unrium	
	91 Pa	231.0	Protectinium	
	85	232.0	Therium	
Actimides	88€	[227.0]	Actimien	

Where the atomic weight is not known, — the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Mp and To are given for the isotopes. 197 Mp and 99 Tc

SYDNEY GRAMMAR SCHOOL

2007 FORM VI TRIAL HSC EXAMINATION

Chemistry crib

General Instructions

- Reading time 5 minutes.
- Working time 3 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your candidate number and master's initials at the top of each page in Part B and on the answer booklet

CHECKLIST
Each boy should have the following:
1 Question Paper
1 Multiple Choice Answer Sheet
1 5 - Page Booklet

Chemistry Classes.

1 MMB	2 RJF	3 JAG
4 JAG	5 TW	6 MTK

Section I Pages 2 - 22

Total marks (100)

This section has two parts, Part A and Part B

Part A

Total marks (15)

- Attempt Questions 1-15
- Allow about 25 minutes for this Section

Part B

Total marks (69)

- Attempt Questions 16-27
- Allow about 2 hours for this Section

Section II Pages 23-26 Total marks (16)

- Attempt Question 28 in this section.
- Allow about 35 minutes for this Section

Part A Total marks (15) Attempt Questions 1-15 Allow about 25 minutes for this Part

- 1. D
- 2. D
- 3. A
- 4. C
- 5. D
- 6. B
- 7. C
- 8. D
- 9. C
- 10. B
- 11. C
- 12. C
- 13. D
- 14. A
- 15. C

Form VI Chemistry		2007 Trial Examination
Part B	Masters' Initials	Candidate Number

Total marks (69)
Attempt ALL Questions
Allow about 2 hours for this Part

Answer the questions in the spaces provided Show all relevant working in questions involving calculations

Question 16 (4 marks)

Marks

When a zinc strip is placed in a solution of silver nitrate a chemical reaction takes place.

(a) Write half-equations for the oxidation and reduction reactions taking place, and write a balanced chemical equation for the overall reaction.

$$Zn_{(s)} \rightarrow Zn^{2+} + 2e^{-} Oxidation$$

$$Ag_{+(aq)} + e^{-} \rightarrow Ag_{(s)} Reduction$$

$$2AgNO_{3(aq)} + Zn_{(s)} \rightarrow Zn(NO_3)_{2(aq)} + 2Ag_{(s)} (1 mark)$$
2

(b) Calculate the E_{cell} if these two half-reactions comprised an electrochemical cell under standard conditions.

$$E_{cell} = +0.76 + 0.80V) = 1.56V$$

(c) Predict and explain any observations that would be made if a silver strip was placed in a solution of zinc nitrate.

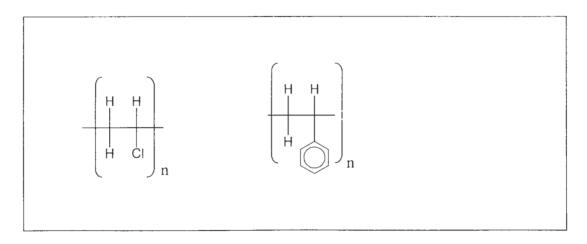
No visible reaction because zinc is more active metal than silver – no displacement would be expected.

Question 17 (3 marks)

Marks

The structures of two commercially significant monomers are shown.

- (a) Identify the systematic name of ONE of the monomers.
 - chloroethene or phenylethene


1

(b) Describe the type of polymerisation that the monomers shown above undergo.

These monomers undergo addition polymerisation.

1

(c) Draw the structure of a polymer made from one of the above monomers.

Oxygen has two allotropes O₂ and O₃.

(a) In the space provided draw Lewis electron dot diagrams for O_2 and O_3 .

(b) Contrast two properties (chemical or physical) of O₂ and O₃ and explain these properties on the basis of molecular structure and/or bonding.

contrasts 1 prop (1 mark)

contrasts 2 props or contrasts 1 prop and explains this (2 marks)

contrasts 2 props and explains 1 very well or contrasts 2 props and includes satisfactory explanation (3 marks)

contrasts 2 props and explains the contrasts at a high level (4 marks)

Sample answer

Ozone is much more soluble in water than oxygen (570mg/L compared to 10mg/L). This is because oxygen does not have a dipole moment since it is a linear molecule whereas ozone is bent and as a result has a dipole moment. Water is a polar solvent and hence dissolves substances with hydrogen bonding or dipole moments present better than substances with only dispersion forces present between molecules (like oxygen). Ozone has a higher boiling point than oxygen even when its larger molecular weight is taken into account. This is again because of the bent shape of the molecule and the existence of a dipole as well as dispersion forces. Since oxygen only has dispersion forces between the molecules, which are weaker than dipole-dipole, less energy is required to overcome the intermolecular forces of oxygen and hence a lower temperature is required for oxygen to boil than ozone.

Question 19 (4 marks)

Marks

Identify a buffer in a natural system and explain how the buffer works with reference to your example.

Identify a buffer in a natural system and explain how the buffer works with reference to your example.

	Criteria	Marks
	As below + uses equations to show buffer reactions for acid and base	4
9	As below + uses equations to show buffer reactions for acid or base	3
9	As below + describes how the buffer responds to pII changes	2
•	Identifies a buffer pair and the natural system in which it works	ı

- Very poorly done.
- Many boys totally confused amphiprotic with buffers and hence only stated one ion as important to the buffer.

4

Question 20 (4 marks)

(a) Give the name and formula for ONE amphiprotic ion.

Give the name and formula for ONE amphiprotic ion.		2
	Criteria	Marks
	Gives name and formula for amphiprotic ion	2
	Gives name or formula for amphiprotic ion	1

- Some confusion between amphoteric and amphiprotic
- Too many boys answered with a compound instead of an ion.

2

(b) Write the formulas for an acid-base conjugate pair. Identify which is the acid and which is the base.

Write the formulas for an acid-base conjugate pair. Identify which is the acid and which is the base

Criteria	Marks
 Gives formulae for conjugate pair AND identifies acid and base. 	2
Gives formulae for conjugate pair	1

generally well done

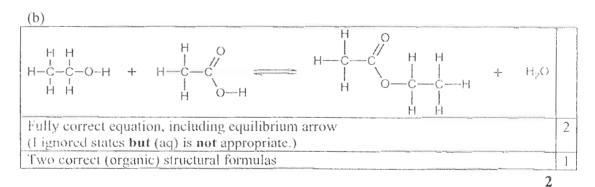
Form	VI Chemis	stry		2007 Trial Exam	ination
			Masters' Initials	Candidate Num	ıber
Ques	tion 21	(7 marks)			Marks
In the	e course of ochloric aci	his studies a pup d and acetic acid	il measured the pH of identi	cal concentrations of	
(a)	Explain	the difference in	pH of the two solutions.		
			and relates [H ₃ O ⁺] to pH have different [H ₃ O ⁻] because o	of different strengths	2
He the	en diluted (each solution by	a factor of 10.0.		2
(b)	Describe	the procedure he	should use to perform this t	task.	
	Identifies	the use of a pipette	e and volumetric flask (of appro e <i>and</i> volumetric flask, or e <i>or</i> volumetric flask of specific		2
When increas units.	he re-meas sed by one	sured the pH of e pH unit, but that	ach solution, the pH of the had increased	nydrochloric acid had ased by only 0.5 pH	2
(c)	Explain w	why pH increases	as the solutions are diluted.		
		that [H ₃ O ³] decrea related to pH (eg p	ses as the solutions are diluted $H = -\log[H_3O]^4$)	and explains how	1
d)	(d)		ions change pH by different		
	equilibrin	m position)	dilution) and HOAc (dilution p		2
	explains t	he change in HCI a	r HUAC		1

Question 22 (8 marks)

Marks

Consider the table of boiling points given below.

substance	bp (°C)
ethyl ethanoate	77
ethanol	78
water	100
ethanoic acid	118
sulfuric acid	337


(a) Explain the difference in boiling point between ethanol and ethanoic acid.

(a) Explanation including dispersion forces and hydrogen bonding 2
Explanation involving hydrogen bonding or dispersion forces 1

Note: both ethanol and acetic acid can form a maximum of one H-bond per molecule. Also, forces are 'stronger' or 'weaker' not 'more' or 'less'

2

(b) Write a balanced chemical equation, using structural formulas, for the reaction between ethanol and ethanoic acid to form an ester.

Question 22 continued on next page.

ł orm	n VI Chemistry		2007 Trial Examination	n
		Masters' Initials	Candidate Number	
Ques	stion 22 continued		Ma	arks
(c)	Justify the use of <i>heatir</i> reaction.	ng under reflux when carrying	g out this	
	without loss of materi Identifies that higher	emperature means that equilib quilibrium is not affected signi	rium is achieved sooner.	2
	without loss of materi Identifies that higher t	emperature means that equilib quilibrium is not affected signi	rium is achieved sooner.	1
				2
(d)	Discuss the usefulness ester from the reaction (d)	of distillation as a technique t mixture.	o separate the product	
	Distillation would sep	arate ethyl acetate and unreac t st separate these two substances		
(-)	Fundain the use of content	- '	a ation	1
(e)	(c)	s in processed foods and cosr	netics.	
	The state of the s	at Guitar adams (EtOAs mon)	be a solvent in cosmetics)	Ti
		'explain' not 'identify'		

Question 23 (9 marks)

Marks

A quality control chemist was given the task of checking the amount of citric acid $(C_6II_8O_7)$ in sachets to be sold in supermarkets.

The sachet contained 1.750g of powder. The contents of a sachet was transferred quantitatively to a conical flask and dissolved in 20mL of water. An indicator was added and the acid titrated with standardised 1.050 M sodium hydroxide solution. 23.80mL of base was required to reach the end point.

(a) Identify a suitable indicator for the titration and justify your choice.

(a)		
Identifies phenolphthalein and explains why the equivalence point is basic (citrate	2	
ion is basic – conjugate base of a weak acid or weak acid/strong base titration).		
Identifies phenolphthalein or identifies that the equivalence point is basic		

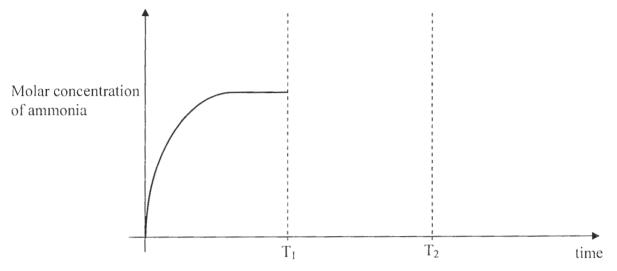
2

(b) State how you would identify the end point of the titration.

(b)		
Identifies that the end point occurs at the first permanent colour change or	1	
identifies the colour change (colourless → pink or red)		

1

Question 23 continued on next page.


Form	VI Chemistry 2007 Trial Examina	ation
	Masters' Initials Candidate Number	er
Ques	ction 23 continued	Marks
(c)	Calculate the percentage of citric acid in the sachet. [Citric acid was the only acid present.]	
	Correctly calculates the % citric acid (91.45%) to 4 sig figs Correctly calculates the % citric acid (91.45%) Calculates the chemical amount of citric acid in the sample (8.330 mmol) Calculates the chemical amount of NaOII (24.99 mmol)	4 3 2 1
(d)	Explain the use of acids as food additives.	
	(d) Identifies two of: the low pH inhibits the growth of microorganisms or low pH prevents oxidation or the sour taste enhances the flavour. Identifies one of: the low pH inhibits the growth of microorganisms or low pH	2

prevents oxidation or the sour taste enhances the flavour.

Question 24 (4 marks)

Marks

A laboratory experiment was set up to model the Haber process. Nitrogen gas and hydrogen gas were passed over an iron/iron oxide catalyst at 500°C and 25MPa. The molar concentration of ammonia gas was monitored over a period of time and the data graphed as shown below.

At time T_1 the volume of the reaction vessel was doubled while the temperature remained constant.

Sketch on the graph above:

(i) the change in concentration of ammonia gas at T_1 .

1

- (i) Sharp drop in [NH₃] on graph. Should be half initial concentration, but any sharp drop = 1 mark
- (ii) the concentration of ammonia after T_1 when a new equilibrium was reached at T_2

1

- (ii) Concentration drops further, exponential decay, levels off at T₂ when equilibrium is reached. Sigmoid curve or ↑ concentration = 0 marks.
- (iii) Explain the changes that you have sketched on the graph.

2

(iii) I mark for explaining each change in (i) and (ii) above.
 For (i) an explanation relating doubled (or increased) volume to halved (or decreased) concentration
 For (ii) an explanation relating to Le Châtelier's principle.

Note that Le Châtelier himself is not personally responsible for the change in equilibrium position and neither is his principle! Also don't abbreviate: LCP, conc. etc.

Another common faux pas was to refer to 'forward' or 'reverse' reactions without writing an equation!

Form VI Chemistry		2007 Trial Examination
	Masters' Initials	Candidate Number

Question 25 (9 marks)

Marks

A sample of water was collected from a storm water channel. This channel runs into the ocean. Samples were analysed on site and in the school laboratory. The results are recorded in the table below.

Property	Values	Typical clean water values
Temperature	17°C	N/A
Total dissolved solids	3500 ppm	<100
рН	7.5	6.5-7.3
Dissolved oxygen	9 mg/L	7-9 mg/L
Total phosphate	0.1 mg/L	0.01 mg/L
Nitrate	0.5 mg/L	0.1 mg/L

(a)	Identify a property in the above table that should be tested 'on site'.	
	(a) Temperature	1
(b)	Justify your response to part (a).	
	(b) The temperature of the sample can change if energy is transferred as heat from the sample to the surroundings or vice versa.	1

- (c) Briefly describe how you would find the mass of undissolved solids in the water sample.
 - (c) Filter the solution through a filter paper of known mass, then dry and weigh filter paper + undissolved solids, calculate mass of undissolved solids. I mark for the filtration step, 1 mark for more detail about weighing etc.

Note that to calculate the *percentage* of undissolved solids you would have to take a *known mass* of solution, however this was not explicit in the question and was not required.

Question 25 continued on next page.

Question 25 continued Marks

(d) Propose one reason to explain the relatively high value of total dissolved solids:

(d) Any reasonable answer involving the stormwater passing over/through dissolvable material.

In many cases it was not clear if boys were talking about dissolved or undissolved solids. Boys had to explicitly refer to dissolving to get the mark.

1

- (e) It is suspected that lead has contaminated the storm water channel. Describe a chemical test that could be carried out on the water sample to determine the presence of lead ions.
 - (e) Adding a solution of $\Gamma_{(aq)} \rightarrow \text{canary yellow precipitate of PbI}_{2(s)}$.

One mark for chemical test (not AAS) and one for result.

Many boys said adding $C\Gamma_{(aq)}$ to give a white ppt but this is not Pb-specific, $Ag^+_{(aq)}$ will give a white precipitate of $AgCl_{(s)}$. 1 mark only for this.

2

- (f) The concentrations of ions in substances used by society need to be monitored. Justify this statement with reference to ONE ion you have studied.
 - . . -
 - (f) I mark for ion and a specific effect of that ion. Second mark for detail as to why the monitoring the concentration of this ion is important.

f-orm	VI Chemistry		2007 Trial Examination	
		Masters' Initials	Candidate Number	
Ques	cion 26 (5 marks)		Mark	ζS
	resence of CFCs and halons in levels in spring, particularly		as led to a decrease in	
(a)	What is a CFC?			
	(a) Haloalkane containing	Cl, F but no H atoms.		1
(b)	Identify one possible origin	of CFCs in the atmosphe	re.	
	(b) From aerosols, refriger	rators etc	a anno	1
(c)	Explain how CFCs destroy or response.	ozone. Use relevant chem	ical equations in your	
	(c) First mark for equation Second mark for equat Third mark for any fur regeneration of the Cl	ion showing the destructio ther related equation, in the	I radical from CFC n of O ₃ by the CI radical best answers this involved the	

Question 27 (7 marks)

Marks

Evaluate the potential of ethanol as a fuel to replace petroleum.

3 positives and 3 negative detailed points needed, PLUS a thorough evaluation.

Many boys quoted one of the points below but did not have sufficient detail to attract a mark

Positives

~ carbon neutral Renewable resource More complete combustion Less $S \rightarrow less SO_2$ production Lower combustion temp $\rightarrow less NO_x$ production

Negatives

Lower enthalpy of combustion per mol and per g
Cars need modifications to run on >10-15% EtOH
Takes up arable land otherwise used for food
Process, distillation etc costly in terms of energy

Plus thorough evaluation taking into account both positives and negatives.

Some boys gave a very long introduction about why a replacement for petroleum as a fuel was needed or why ethanol can replace petroleum as a chemical feedstock for industry, be careful and read the question!

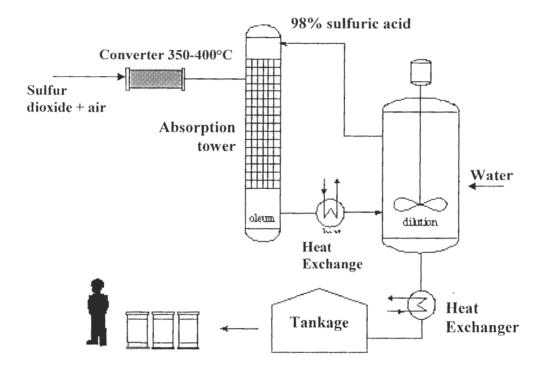
Form VI Chemistry		2007 Trial Examination
	Masters' Initials	Candidate Number

BLANK PAGE

Section II

16 marks Attempt question 28 in this section. Allow about 35 minutes for this section.

Answer the question in a **writing booklet**. Extra writing booklets are available. Show **all** relevant working in questions involving calculations.


	Pages
Question 28	Industrial Chemistry25
Question 31	Elective 2
Question 32	Elective 3
Question 33	Elective 4
Question 34	Elective 5

BLANK PAGE

Question 28 (16 marks)

Marks

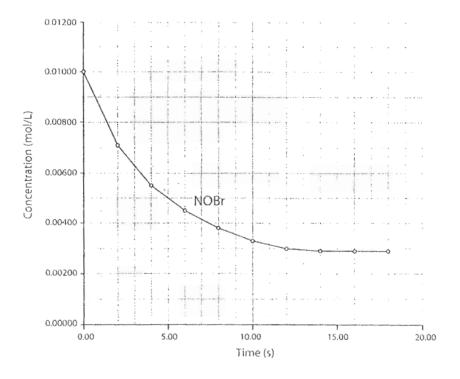
(a) The diagram below shows the production of sulfuric acid by the Contact process.

- (i) Write an equation for the reaction which occurs in the converter.
- (ii) Name the catalyst which is present in the converter.
- (iii) The pressure in the converter is about 100 kPa and the temperature is nearly 400°C. Explain why these conditions are used.
- (iv) Explain why heat exchangers are necessary whenever the concentration of sulfuric acid changes.
- (v) Based on the properties of sulfuric acid, describe the safety precautions that are necessary for its transport.
- (vi) Identify TWO uses of sulfuric acid.

Question 28 continued on next page.

1

1


1

3

(b) Experimental data has been collected for the decomposition of nitrosyl bromide (NOBr) as a function of time at constant temperature in a closed system. The reaction equilibrium is:

$$2NOBr_{(g)} = 2NO_{(g)} + Br_{2(g)}$$

The graph shows the change in concentration of NOBr with time.

(i) At what time does the system reach equilibrium?

1

(ii) Using data from the graph above, calculate the value of K for the decomposition of NOBr.

4

(iii) Both NOBr and Br₂ are reddish brown, so this property cannot be used to monitor the system as it approaches equilibrium. Identify a measurable property of the system that a chemist can readily use to determine when the system has reached equilibrium.

Chemistry

	Data Sheet	
Avogadro's constant, $N_A \dots$		6.022 x10 ²³ mol ⁻¹
Volume of 1 mole ideal gas:	at 100 kPa and	
	at 0 °C (273 K)	22.71L
	at 25 °C (298K)	24.79 L
Ionisation constant for water	at 25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water	er	$4.18 \times 10^3 \mathrm{Jkg^{-1}K^{-1}}$

Some useful formulae

$$pH = -\log_{10}[H^{\dagger}] \qquad \Delta H = -mC\Delta T$$

Standard Potentials

$K^+ + e^-$		$K_{(s)}$	−2.94 V
$Ba^{2+} + 2e^{-}$	~~~	$Ba_{(s)}$	-2.91 V
$Ca^{2+} + 2e^{-}$	~~	$Ca_{(s)}$	-2.87 V
$Na^+ + e^-$		$Na_{(s)}$	-2.71 V
$Mg^{2+} + 2e^{-}$		$Mg_{(s)}$	-2.36 V
$Al^{3+} + 3e^{-}$		$Al_{(s)}$	-1.68 V
$Mn^{2+} + 2e^{-}$		$Mn_{(s)}$	-1.18 V
$H_2O + e^-$		$\frac{1}{2} H_{2(g)} + OH^{-1}$	-0.83 V
$Zn^{2+} + 2e^{-}$	~~~	$Zn_{(s)}$	-0.76 V
$Fe^{2+} + 2e^{-}$		$Fe_{(s)}$	-0.44 V
$Ni^{2+} + 2e^{-}$	~~~	$Ni_{(s)}$	-0.24 V
$Sn^{2+} + 2e^{-}$		$Sn_{(s)}$	-0.14 V
$Pb^{2+} + 2e^{-}$		$Pb_{(s)}$	-0.13 V
$H^+ + e^-$		1/2 H _{2(g)}	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$		$SO_{2(g)} + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	~~~	$Cu_{(s)}$	0.34 V
$\frac{1}{2}$ O _{2(g)} + H ₂ O + 2e ⁻²		2OH-	0.40 V
$Cu^+ + e^-$	~~~	$Cu_{(s)}$	0.52 V
$\frac{1}{2} I_{2(s)} + e^{-}$		I-	0.54 V
$\frac{1}{2} I_{2(aq)} + e^{-}$	~~	I ⁻	0.62 V
$Fe^{3+} + e^{-}$	~~	Fe ²⁺	0.77 V
$Ag' + e^{-}$		$Ag_{(s)}$	0.80 V
$\frac{1}{2} Br_{2(1)} + e^{-}$		Br ⁻	1.08 V
$\frac{1}{2} Br_{2(aq)} + e^{-}$	√~~	Br	1.10 V
$\frac{1}{2}$ O ₂ + 2H ⁺ + 2e ⁻		H_2O	1.23 V
$\frac{1}{2} \operatorname{Cr}_2 \operatorname{O}_7^{2-} + 7 \operatorname{H}^+ + 3 \operatorname{e}^-$	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2} \text{Cl}_{2(g)} + e^{-}$		Cl	1.36 V
$\frac{1}{2} \text{Cl}_{2(aq)} + e^{-}$	~~ ~	Cl~	1.40 V
$MnO_4^- + 8H^+ + 5e^-$		$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2} F_{2(g)} + e^{-}$		F^-	2.89 V

j						-	I						r			Ι			1		
	니킥	4.003	Helium	22	20.18	Neca	814	39.95	Arge	82	83.80	Krypton	25%	131.3	Xeam	25	[222.0]	Reden			
				ω\r	19.00	Fluoring	20	35,45	Chlorine	宏 盎	79.90	Buzzine	53	126.9	locane	SA.	[210.0]	Attribe			
				ωO	16.00	Onygen	1.6 S	32.07	Suffa	28	78.96	Selection	52 E	127.6	Telhnium	25%	[209.0]	Polonium			
				r-Z	14.01	Nibrogan	Za.	₹0.97	Phaphans	33 Ås	74.92	Armatic	ĭZ₽Ş	121.8	Antimory	25.2	209.0	Figures			
				υœ	12.01	Carbon	S: 4	28.09	Siliem	83	72.64	Gentarien	So Cr	118.7	E	252	207.2	less.			
				'nΨ	10.81	Berten	13 A	36.98	Aluminium	<u>-</u> 28	69.72	Gallium	49 In	114.8	H	-18E	204.4	Tellien			
c/s	ı									30 Zn	65.41	Zirz	&B	112.4	Cederatem	유뮌	200.6	Mercay			
EL EMENTS				TICL .		ĬŤ				රියි	63.55	Copper	47	107.9	Silver	₽3	197.0	Pies	Re 1	[272]	Romiganium
田田田				Symbol of clement		Name of element				Z/8	58.69	Nichel	46 Pd	105.4	Palladian	738	195.1	Platrago	23	[271]	Democation
SLE OF		KEV		79 Au	197.0	Gæld				58	58.93	Cobs 1	45 Rh	102.9	Rhosum	77 II	192.2	Fiders	109 Mt	[268]	Meitzenium
PERIODIC TABLE OF				Aumie Number	Alomic Weight					76 Fe	55.85	hra	44 Ru	101.1	Rightmium	දර	190.2	Osmin	108 FR	[277]	Hassien
PERIO				7	*					755 745	54.94	Метрепет	43 Tc	[16.76]	Technotium	7.5 Re	186.2	Rhenium	107 Bh	[264.1]	Botaim
										7.O	52.00	Chronium	745 So	95.94	Molyhdonen	73	183.8	Program	106 Sg	[266.1]	Scaborgium
										23	50.94	Vanediza	2 5	92.91	Niobium	E ^E	180.9	Tertalum	55.63	[262.1]	Dutanica
										7,72	47.87	Blasica	8 ⁷ Z	91.22	Zirtonium	五,	178.5	Haffaun	25.5	[261.1]	Retherfordura
										25%	44.96	Scandium	39	88.91	Ythirm	5701		Latsherside	89□03		Actinides
				4 K	9.012	Beryllium	12 Mg	24.31	Magnetium	83	40.08	Celcium	38	87.62	Stranstern	56 Ba	137.3	Banium	88 Ra	[226.0]	Radium
)72	1.008	Hydrogen	Ľn	6.941	Libium	二浬	22.99	Socium	57	39.10	Potentin	37 83	85.47	Rutsidium	55	132.9	Coccium	787	[223.0]	Francium
														_	_						1

	P.59	9 2	61 Pm	55 F.S	E3	2 2	25	රීපී	25	8世	Tm Tm	70 7.6	EA
138.9 140.	140.9	144.2	[144.9]	150.4	152.0	1573	158.9	162.5	164.9	167.3	168.9	173.0	175.0
entherson Center	m Presodynium	Noodymium	Protection	Sementen	Erapian	Gadainsten	Terbium	Dypanerun	Homer	Ti di	Thelium	Yttechim	Luthur

Where the atomic weight is not known. The relative atomic mass of the most common radicactive iscupe is shown in that keeps. The atomic weights of Np and Te are given for the isonopes. The atomic weights of Np and Te are given for the isonopes.