SYDNEY GRAMMAR SCHOOL

2016 FORM VI TRIAL HSC EXAMINATION

Chemistry

Monday 8th August 8:40 a.m.

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Board-approved calculators may be used
- Write using black pen
- Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your candidate number and master's initials at the top of each page in Part B **and on the Answer Booklets**

CHECKLIST

Each boy should have the following :

1 Question Paper

- 1 Multiple Choice Answer Sheet
- 2 Five Page Booklets

Chemistry Classes:

1. TW	2. AKBB	3. CRMR	
4. EJS	5. MRB	6. MTK	

Section I Pages 3 - 20

Total marks (100)

This section has two parts, Part A and Part B

Part A

- Total marks (20)Attempt Questions 1-20
- Allow about 30 minutes for this Section

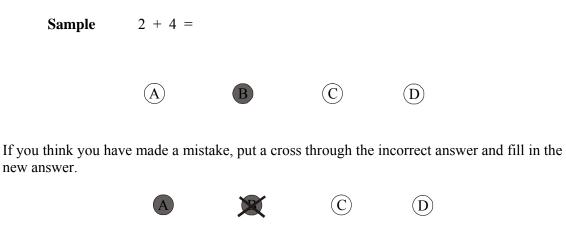
Part B

Total marks (55)

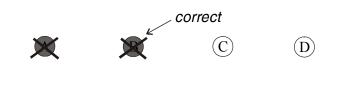
- Attempt Questions 21-33
- Allow about 1 hour and 45 minutes for this Section

Section II

Total marks (25)


- Attempt Question 34 in this section.
- Allow about 45 minutes for this Section

Pages 21-25


Part A Total marks (20) Attempt Questions 1-20 Allow about 30 minutes for this Part

Use the multiple-choice Answer Sheet.

Select the alternative A, B, C or D that best answers the question. Fill the response circle completely.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows.

1 Which of the following is the correct combination of acid/base indicator, colour change and pH range?

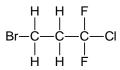
	Indicator	pH range of colour change	Colour Change
(A)	phenolphthalein	8.3 - 10	purple - colourless
(B)	methyl orange	3.1 - 4.4	red - yellow
(C)	bromothymol blue	8.7 - 10.3	yellow - blue
(D)	bromothymol blue	8.7 - 10.3	blue - yellow

2 Consider the gaseous system shown below, enclosed in a container of constant volume.

$$2NOCl_{(g)} \rightleftharpoons 2NO_{(g)} + Cl_{2(g)}$$

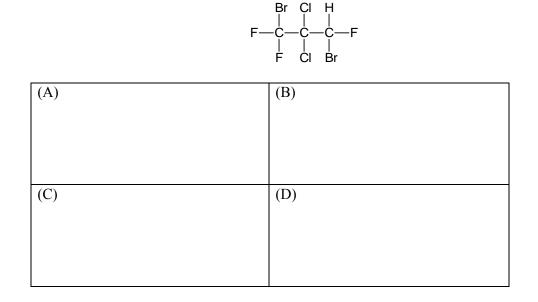
Which of the following will NOT affect the position of equilibrium?

- (A) Adding NO
- (B) Removing Cl_2
- (C) Adding argon
- (D) Heating the system
- 3 What general trend can be observed about the oxides of period 3 elements?
 - (A) As you move from left to right across the period the oxides go from being basic, to amphoteric, to acidic.
 - (B) As you move from left to right across the period the oxides go from being highly reactive to inert.
 - (C) As you move from left to right across the period the oxides go from being gases, to liquids, to solids.
 - (D) As you move from left to right across the period the oxides go from being molecular to lattice structures.
- 4 What is the correct systematic name for citric acid?
 - (A) vitamin C
 - (B) 2-hydroxy-glycerol
 - (C) 2-carboxy-1,2,3-trihydroxypropane
 - (D) 2-hydroxypropane-1,2,3-tricarboxylic acid

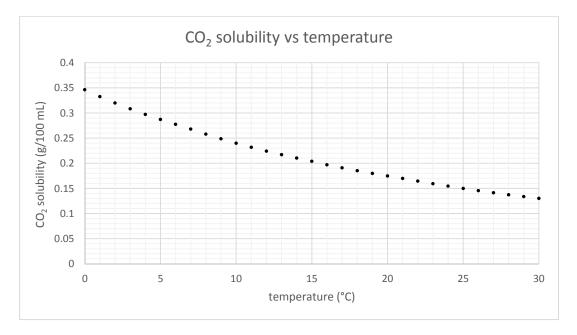

- 5 Which of the following is Davy's definition of an acid?
 - (A) A substance which contains hydrogen.
 - (B) A substance which contains oxygen.
 - (C) A substance which dissolves in water to produce H^+ .
 - (D) A substance which is able to donate a proton.
- **6** What is the correct name for the following compound?

$$\substack{\mathsf{H}_3\mathsf{C}-\mathsf{O}-\mathsf{C}-\mathsf{C}\mathsf{H}_2-\mathsf{C}\mathsf{H}_2-\mathsf{C}\mathsf{H}_3\\ \parallel\\\mathsf{O}}$$

- (A) methyl propanoate
- (B) butyl methanoate
- (C) propyl methanoate
- (D) methyl butanoate
- 7 Which of the following represents an acid/base conjugate pair?
 - (A) NH_3/NH_2^-
 - $(B) H_2O / H_2O_2$
 - (C) CH_3COOH / CH_3CH_2OH
 - (D) CH₃CHOHCH₃ / CH₃COCH₃
- 8 What are alkyl alkanoates more commonly known as?
 - (A) glycerols
 - (B) glycols
 - (C) ethers
 - (D) esters
- **9** If it takes 15 mL of a 0.5 M solution of HCl to completely neutralise a given amount of calcium hydroxide, what volume of 0.5 M ethanoic acid would be required to neutralise the same amount of calcium hydroxide?
 - (A) less than 15 mL
 - (B) exactly 15 mL
 - (C) more than 15 mL
 - (D) 1.154 L


- 10 Which of the following could result from cracking a single octane molecule?
 - (A) two butane molecules
 - (B) one butane molecule and one butene molecule
 - (C) two butene molecules
 - (D) three propene molecules
- 11 When bromine water is added to hexane and the mixture shaken, why does the hexane layer turn brown?
 - (A) The water quickly reacts with the hexane to form a substitution compound.
 - (B) The bromine slowly reacts with the hexane to form a substitution compound.
 - (C) The bromine quickly reacts with the hexane to form a substitution compound.
 - (D) The bromine dissolves in the hexane.
- 12 Which of the following conditions promotes the fermentation of sugars?
 - (A) A highly acidic environment.
 - (B) A temperature of 78 °C.
 - (C) An anaerobic environment.
 - (D) The addition of the enzyme catalase.
- **13** Which of the following lists contains metals which will **all** displace tin from a solution of tin(II) chloride?
 - (A) silver, iron, zinc
 - (B) iron, zinc, magnesium
 - (C) copper, silver, zinc
 - (D) zinc, magnesium, copper
- 14 Which of the following is the purpose of a salt bridge in a galvanic cell?
 - (A) To maintain the electrical neutrality of each half cell.
 - (B) To provide a path for electron flow between the half cells.
 - (C) To replenish the reactants as they are consumed.
 - (D) To remove spectator ions from each half cell.

- 15 The standard cell potential of an electrochemical reaction is positive. What does this mean?
 - (A) The reaction is not spontaneous under any conditions.
 - The reaction is only spontaneous under standard conditions. **(B)**
 - The reaction is always spontaneous under all conditions. (C)
 - (D) The reaction is spontaneous under standard conditions.
- 16 A 0.132 g sample of anhydrous sodium carbonate is dissolved in water, transferred to a 250 mL volumetric flask and the resulting solution made up to the mark with deionised water. What is the concentration of sodium ions in this solution?
 - $\begin{array}{c} 0.00125 \ \text{mol} \ L^{-1} \\ 0.00250 \ \text{mol} \ L^{-1} \end{array}$ (A)
 - **(B)**
 - $0.00500 \text{ mol } L^{-1}$ (C)
 - $0.0100 \text{ mol } \text{L}^{-1}$ (D)
- 17 What is the name of the haloalkane whose structure is shown below?



- (A) 3-bromo-1-chloro-1,1-difluoropropane
- 1-bromo-3-chloro-3-difluoropropane **(B)**
- (C) 3-bromo-1-chloro-1-difluoropropane
- (D) 1-bromo-3-chloro-3,3-difluoropropane
- 18 1.35 g of a fertiliser containing 56.7% ammonium sulfate by mass was dissolved in water. 10.00 g of solid barium chloride is added and the barium sulfate produced is filtered, washed and dried. What is the mass of dry barium sulfate expected from the fertiliser?
 - (A) 0.555 g
 - (B) 0.764 g
 - 1.35 g (C)
 - (D) 3.28 g

19 Which of the following is an isomer of the haloalkane whose structure is shown below?

20 The following graph shows the solubility of carbon dioxide in water as a function of temperature.

What volume of CO_2 gas is released when a 600 mL of water saturated with carbon dioxide at 5.0 °C is warmed to 25.0 °C?

- (A) 0.135 L
 (B) 0.456 L
 (C) 0.810 L
 (C) 1.444 L
- (D) 1.44 L

BLANK PAGE

Part B Total marks (55) Attempt ALL Questions Allow about 1 hour and 45 minutes for this Part

Answer the questions in the spaces provided Show **all** relevant working in questions involving calculations

Question 21 (4 marks)

Marks

Explain the formation and effects of acid rain, using equations where appropriate.

Questio	n 22 (5 marks)	Marks
The add	ition of an active metal to an acid produces a salt plus hydrogen gas.	
(a)	Write an equation for the reaction of magnesium with hydrochloric acid.	
		1
(b)	Calculate the volume of 0.550 M hydrochloric acid that would be required to completely react with 30.0 g of magnesium.	
		3
(c)	Calculate the volume of hydrogen gas that would be produced, from the reaction described in part (b) of this question, if the reaction took place at 0 °C and 100 kPa.	

1

Questio	on 23 (5 marks)	Marks
	mical experiment 26.2 mL of 0.680 M sulfuric acid solution is mixed with L of 1.38 M sodium hydroxide solution.	
(a)	Write a balanced chemical equation for this reaction.	
		1
(b)	Assuming that there is no volume change, calculate the pH of the resulting solution.	
		4

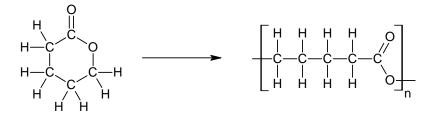
Question 24 (6 marks)

Esterification can be performed in a school laboratory.

- (a) Explain the purpose of adding concentrated sulfuric acid to this reaction.
- (b) Using structural formulae, write a chemical equation for the experiment you performed.

2

1


Marks

(c) With the aid of a diagram, or otherwise, describe the equipment used in this experiment and justify its use.

3

Question 25 (2 marks)

Polybutyrolactone is a renewable biodegradable polyester. It can be made from butyrolactone according to the following equation.

(a) Draw an expanded structural formula of the polymer showing 2 repeat units.

1

(b) Draw the monomer that would be required to make polybutyrolactone by condensation polymerisation.

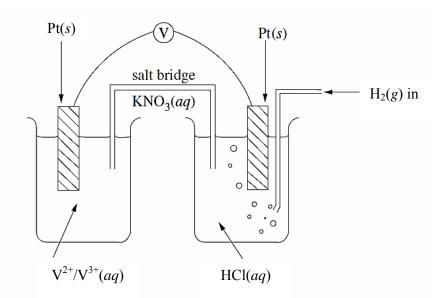
1

Question 26 (3 marks)

Draw and name all products that result from the reaction of hydrogen chloride with 3-bromopropene.

Question 27 (4 marks)

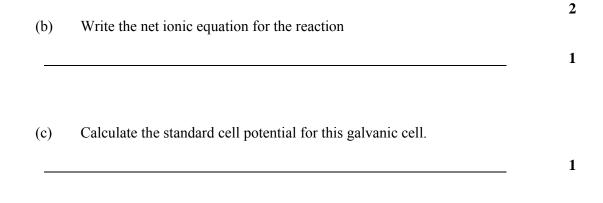
Marks


"The dehydration of ethanol to ethene is the key reaction in a sequence of reactions that enables the sustainable production of polyethene from biomass."

Draw a flow diagram to show how biomass (cellulose) can be converted to polyethylene. The flow diagram should name and outline the processes undertaken as well as the products formed.

 (a) Determine the minimum mass of ethanol that must be combusted in order to heat 500.0 g water from 20.0 °C to 100.0 °C given that the enthalpy or combustion for ethanol is -1367 kJmol⁻¹. (b) Write an equation for the complete combustion of ethanol. 	
(b) Write an equation for the complete combustion of ethanol.	
(b) Write an equation for the complete combustion of ethanol.	
(b) Write an equation for the complete combustion of ethanol.	
(b) Write an equation for the complete combustion of ethanol.	
(c) Explain the need to monitor combustion reactions such as the combustio of petrol in cars.	on

Question 29 (4 marks)


The diagram below displays a $Pt|V^{2+}, V^{3+}||H^+|H_2|Pt$ galvanic cell.

The Standard Reduction Potential for the species in the half-cell on the left is shown below:

$$V^{3+}(aq) + e^- \rightarrow V^{2+}(aq) \qquad E^{\Theta} = -0.26V.$$

(a) On the diagram, clearly label the anode and the direction of electron flow.

Question 30 (2 marks)

High quality phosphorous-doped silicon is made at the Australian Lucas Heights nuclear reactor by immersing essentially perfectly formed silicon crystals into a "neutron bath".

Write the two successive reactions that are responsible for the conversion of silicon-28 into phosphorus-29.

2

Question 31 (4 marks)

A student dissolves an unknown solid in water. When the resulting solution is mixed with the following solutions, the student records these observations:

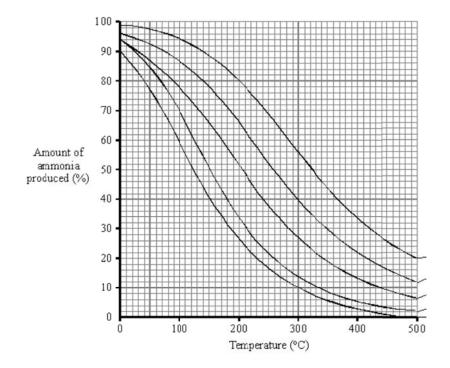
Solution	Observations
barium chloride	white precipitate forms
sodium hydroxide	brown precipitate forms
lead(II) nitrate	no visible reaction

The student concludes that the unknown solid is iron(III) sulfate. Assess the validity of the student's conclusion.

4

Question 32 (6 marks)

Farmer Heinz has harvested a very successful crop of beans, whereas neighbouring Farmer Stagg's crop is less impressive. Farmer Heinz says that the availability of some trace elements in soil varies with pH and suggests that their soil manganese levels might differ as a result of different soil pH.


Explain how you could use atomic absorption spectroscopy and any other relevant techniques to assess the validity of this hypothesis.

Question 33 (4 marks)

Marks

The following is a graph of percentage conversion of nitrogen and hydrogen to ammonia against temperature, for pressures between 25 and 400 atm.

- (a) On the graph, clearly label the line corresponding to a pressure of 400 atm.
- (b) With reference to the graph, explain the choice of temperature for the commercial production of ammonia.

3

1

BLANK PAGE

Pages

Section II

25 marks Attempt question 34 in this section. Allow about 45 minutes for this section.

Answer the question in a **writing booklet**. Extra writing booklets are available. Show **all** relevant working in questions involving calculations.

Question 34	Industrial Chemistry23-25
Question 35	Elective 2
Question 36	Elective 3
Question 37	Elective 4
Question 38	Elective 5

23

(b)

(c)

Question 34 (25 marks)

(a) The Water-gas shift reaction (WGSR) is an important industrial reaction and can be written as per below.

$$\mathrm{CO}_{(\mathrm{g})} + \mathrm{H}_2\mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{g})} + \mathrm{H}_{2(\mathrm{g})}$$

At 588 K, the equilibrium constant is 31.4.

(i)	Write the expression for the equilibrium constant.	1
(ii)	The equilibrium constant decreases with an increase in temperature for this reaction. Is the forward reaction exothermic or endothermic? Justify your answer.	2
(iii)	2.50 moles each of both $CO_{(g)}$ and $H_2O_{(g)}$ and 5.00 moles each of $CO_{2(g)}$ and $H_{2(g)}$ are added at 588 K to a 10 L vessel. Calculate the concentration of $H_{2(g)}$ at equilibrium.	3
chemistry	If ur is often transported to sulfuric acid plants by truck. Describe the and justify the conditions used during the industrial production of cid from molten sulfur.	7
Compare	the structure of a soap with that of one specific type of detergent.	2

Question 34 continued on next page.

Complete parts (d) and (e) in a new Answer Booklet.

(d)	Account f	or the cleaning action of soap.	3
(e)	(i)	Identify the feedstock that is common to both the Solvay process and the production of NaOH.	1
	(ii)	Compare the factors affecting the location of a chemical plant to produce NaOH using a mercury cell with the factors affecting the location of a chemical plant to perform the Solvay process.	3
	(iii)	Calculate the mass of the desired product of the Solvay process if 1.00 tonnes of calcium carbonate is completely used up.	3

BLANK PAGE

Chemistry

Data Sheet

Avogadro's constant, NA		$6.022 \ x10^{23} \ mol^{-1}$
Volume of 1 mole ideal gas:	at 100 kPa and	
	at 0 °C (273 K)	22.71L
	at 25 °C (298K)	24.79 L
Ionisation constant for water	1.0×10^{-14}	
Specific heat capacity of wate	er	$4.18 \times 10^3 Jkg^{-1}K^{-1}$

Some useful formulae

 $pH = -\log_{10}[H^+] \qquad q = mC\Delta T$

Standard Potentials

$K^{+} + e^{-}$	\rightleftharpoons	K _(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	~	Ba _(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	\rightleftharpoons	Ca _(s)	-2.87 V
$Na^+ + e^-$	\rightleftharpoons	Na _(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	$Mg_{(s)}$	-2.36 V
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Al _(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	\rightleftharpoons	Mn _(s)	-1.18 V
$H_2O + e^-$	\rightleftharpoons	$\frac{1}{2}$ H _{2(g)} + OH ⁻	-0.83 V
$Zn^{2+} + 2e^{-}$	\rightleftharpoons	Zn _(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe _(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni _(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	\rightleftharpoons	Sn _(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb _(s)	-0.13 V
$H^{+} + e^{-}$	\rightleftharpoons	1/2 H _{2(g)}	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_{2(g)} + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu _(s)	0.34 V
$^{1}/_{2}O_{2(g)} + H_{2}O + 2e^{-}$	\rightleftharpoons	20H ⁻	0.40 V
$Cu^+ + e^-$	\rightleftharpoons	Cu _(s)	0.52 V
$\frac{1}{2} I_{2(s)} + e^{-1}$	\rightleftharpoons	I ⁻	0.54 V
$\frac{1}{2} I_{2(aq)} + e^{-1}$	\rightleftharpoons	I ⁻	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag _(s)	0.80 V
$\frac{1}{2} \operatorname{Br}_{2(1)} + e^{-1}$	\rightleftharpoons	Br^{-}	1.08 V
$\frac{1}{2} \operatorname{Br}_{2(aq)} + e^{-1}$	\rightleftharpoons	Br^{-}	1.10 V
$\frac{1}{2}O_2 + 2H^+ + 2e^-$	\rightleftharpoons	H ₂ O	1.23 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2} Cl_{2(g)} + e^{-1}$	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2} Cl_{2(aq)} + e^{-1}$	\rightleftharpoons	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2} F_{2(g)} + e^{-1}$	\rightleftharpoons	F^-	2.89 V

2 He 4.003	Helium 10 Ne Neon 18 Neon 18 Ar Ar Ar Ar	36 Kr 83.80 83.80 83.80 xrypton 54 76 131.3 Xee 131.3	Radon 118 UuO	Ununoctium	version).
	9 F 19.00 Fluorine 17 Cl 35.45 Cl	35 Br 79.90 ^{Bromine} 53 I 126.9 Iodine	At At Astatine 117 Uus	Unumpentium Livermorium Unanseptium 69 70 71 Tm Yb Lu 168.9 173.1 175.0 Thaliam Ytterbium Lutetium	103 Lr Lawrencium
	8 0 0 0xygen 16 5 32.07 Saifur	34 Se 78.96 Selenium 52 Te 127.6 Tallurium	Po Po 116 Lv	Livermorium 70 Yb 173.1 Ytterbium	102 No Nobelium Elements (Ji
	7 N 14.01 Nitrogen 15 P 30.97 2fbesphorus	33 AS A4:92 Arsenic 51 Sb 121.8 Antimoay	Bi Bi 209.0 ^{Bisenuth} 115 Uup	Ununpentium 69 168.9 Thulium	101 Md Mendelevium Table of the
	6 C C 12.01 12.01 14 Si Silicon	32 Ge Germanium 50 Sn 118.7 Tin.7	82 Pb 207.2 Lead 114 Fl	Flerovium 68 Er 167.3 Erbium	100 Fm Fernium
	5 B Baron 10.81 Baron 13 Al Al	31 Ga 69.72 Gallium 49 In 114.8 Indiam	204.4 T1 204.4 T1 204.4 113 Uut	Ununtrium 67 Ho 164.9 Holmium	99 Es Einsteinium
CINER		30 Zn 65.38 65.38 2 ^{zine} 72ine 72ine Cd 112.4 Cd	80 Hg 200.6 ^{Mercury} 112 Cn	Copernicium 66 Dy 162.5 Dysprosium	98 Cf Californium
FEMILURY LABLE OF THE ELEMENTS		29 Cu 63.55 ^{Copper 47} Ag 107.9 Silver	79 Au 197.0 ^{Gold} 111 Rg	Darmstaditum Roentgentium Copernicium 64 65 66 Gd T'b Dy 157.3 158.9 162.5 Gadolinium Terbium Dysprosium	97 Bk Berkelium
		28 Ni Nickel Nickel Pd 106.4 Pd	78 Pt 195.1 Platinum 110 Ds	64 64 64 157.3 Gadolinium	96 Cm ^{Curium}
	KEY 79 Au 197.0 Gold	27 C0 58.93 58.93 cosait 45 Rh 102.9 Rh 102.9 Rh	77 Ir 192.2 Iridium 109 Mt	Meitnerium 63 Eu Buropium	95 Am Americium
	Atomic Number Symbol Atomic Weight Name	26 Fe 55.85 Iron 44 Ru 101.1 Ruhanium	76 Os 190.2 ^{Osmium} 108 Hs	Hassium 62 Sin 150.4 Samarium	94 Pu Plutonium gures. e is sourced
	Atomic Number Symbol Standard Atomic Weight Name	25 Mn 54.94 ^{Manganese} 43 Tc	75 Re 186.2 Rheniun 107 Bh	Bohrium 61 Pm Promethium	Actinoids Actinoids 89 91 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Paa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Actinium Protectinium Vegtunium Putonium Americium Curium Beckelium Californium Elancienium Md No Lr Standard atomic weights are abridged to four significant figures. Elements with no reported values in the table have no stable moclides. Standard Applied Chemistry Periodic Table of the Elements (January 2016 version).
		24 Cr 52.00 ^{Chromium} 42 Mo 95.96 Molvbdemun	74 W 183.9 Tungsten 106 Sg	Seaborgium 60 Nd 144.2 Neodymium	92 U 238.0 Unnnium ed to four si ed to four si c numbers 1
		23 V 50.94 Vanadium 41 Nb 92.91 Niobium	73 73 180.9 180.9 105 Db	Dubnium 59 Pr Praseodymiun	91 Pa 231.0 Protactinium Is are abridge ts are abridge ts with atomic
		22 Ti 47.87 Ttanium 40 Zr 91.22 21.22	72 Hf 178.5 ^{Hafnium} 104 Rf	Rutherfordium oids 58 Ce 140.1 Cerium	s 90 Th 232.0 mic weight tith no report on elements
		21 Sc 44.96 Scandum 39 Y 88.91 Ytrium	57–71 Lanthamoids 89–103	Actinoids Ruthe Lanthanoids 57 La 138.9 14 138.0 Co	Actinoids Actinoids 91 92 93 94 89 70 71 72 231.0 238.0 94 Act 232.0 231.0 238.0 79 94 Actinium Thorizon 7rotactinium 0 92 94 Actinium Thorizon 233.0 238.0 94 Actinium Protactinium 0 238.0 94 Standard atomic weights are abridged to four significant figures. Flements with no reported values in the table have no stable nuclides. Information on elements with atomic numbers 113 and above is source
	4 Be 9.012 Beryllium 12 Mg 24.31 Magnesium	20 Ca 40.08 Calcium 38 Sr Sr 87.61 Strontiam	56 56 Ba 137.3 ^{Barium} 88 Ra Ra	Radium	
$_{ m H}^{ m 1}$	Hydrogen 3 LLi 6.941 Lifthium 11 Na 222.99 Sodium	19 K 39.10 Potassium 37 Rb 85.47 Rb Rb	55 CS C3 132.9 ^{Caesium} 87 Fr	Francium	

Form VI Chemistry

2016 Trial Examination

28

1 Which of the following is the correct combination of acid/base indicator, colour change and pH range?

	Indicator	pH range of colour change	Colour Change
(A)	phenolphthalein	8.3 - 10	purple - colourless
(A) (B)	methyl orange	3.1 - 4.4	red - yellow
(C)	bromothymol blue	8.7 - 10.3	yellow - blue
(D)	bromothymol blue	8.7 - 10.3	blue - yellow

2 Consider the gaseous system shown below, enclosed in a container of constant volume.

$$2NOCl_{(g)} \rightleftharpoons 2NO_{(g)} + Cl_{2(g)}$$

-

Which of the following will NOT affect the position of equilibrium?

- (A) Adding NO
- (B) Removing Cl₂

(C) Adding argon

(D) Heating the system

3 What general trend can be observed about the oxides of period 3 elements?

(A) As you move from left to right across the period the oxides go from being basic, to amphoteric, to acidic.

- (B) As you move from left to right across the period the oxides go from being highly reactive to inert.
- (C) As you move from left to right across the period the oxides go from being gases, to liquids, to solids.
- (D) As you move from left to right across the period the oxides go from being molecular to lattice structures.

4 What is the correct systematic name for citric acid?

- (A) vitamin C
- (B) 2-hydroxy-glycerol
- (C) 2-carboxy-1,2,3-trihydroxypropane
- (D) 2-hydroxypropane-1,2,3-tricarboxylic acid

- 5 Which of the following is Davy's definition of an acid?
 - (A) A substance which contains hydrogen.
 - (B) A substance which contains oxygen.
 - (C) A substance which dissolves in water to produce H^+ .
 - (D) A substance which is able to donate a proton.

6 What is the correct name for the following compound?

(A) methyl propanoate

(B) butyl methanoate

(C) propyl methanoate

(D) methyl butanoate

7

Which of the following represents an acid/base conjugate pair?

- (A) NH_3/NH_2^-
- (B) H_2O / H_2O_2

(C) CH_3COOH / CH_3CH_2OH

(D) CH₃CHOHCH₃ / CH₃COCH₃

8 What are alkyl alkanoates more commonly known as?

(A) glycerols(B) glycols

(C) ethers

(D) esters

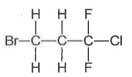
9

If it takes 15 mL of a 0.5 M solution of HCl to completely neutralise a given amount of calcium hydroxide, what volume of 0.5 M ethanoic acid would be required to neutralise the same amount of calcium hydroxide?

(A) less than 15 mL
(B) exactly 15 mL
(C) more than 15 mL
(D) 1.154 L

Form VI Chemistry

- 10 Which of the following could result from cracking a single octane molecule?
 - (A) two butane molecules
 - (B) one butane molecule and one butene molecule
 - (C) two butene molecules
 - (D) three propene molecules
- 11 When bromine water is added to hexane and the mixture shaken, why does the hexane layer turn brown?
 - (A) The water quickly reacts with the hexane to form a substitution compound.
 - (B) The bromine slowly reacts with the hexane to form a substitution compound.
 - (C) The bromine quickly reacts with the hexane to form a substitution compound.

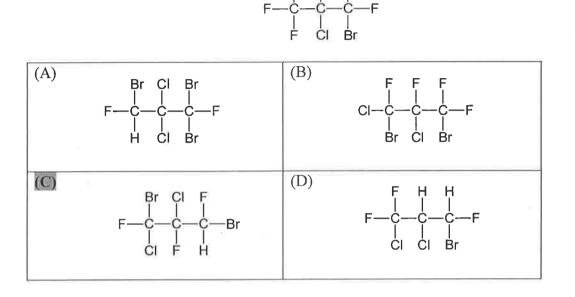

(D) The bromine dissolves in the hexane.

- 12 Which of the following conditions promotes the fermentation of sugars?
 - (A) A highly acidic environment.
 - (B) A temperature of 78 °C.
 - (C) An anaerobic environment.
 - (D) The addition of the enzyme catalase.
- 13 Which of the following lists contains metals which will all displace tin from a solution of tin(II) chloride?
 - (A) silver, iron, zinc
 - (B) iron, zinc, magnesium
 - (C) copper, silver, zinc
 - (D) zinc, magnesium, copper
- 14 Which of the following is the purpose of a salt bridge in a galvanic cell?
 - (A) To maintain the electrical neutrality of each half cell.
 - (B) To provide a path for electron flow between the half cells.
 - (C) To replenish the reactants as they are consumed.
 - (D) To remove spectator ions from each half cell.

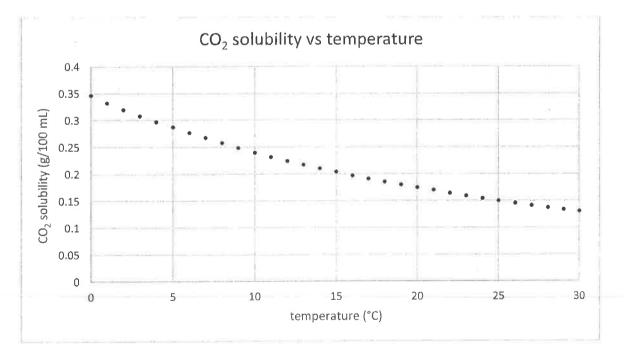
- 15 The standard cell potential of an electrochemical reaction is positive. What does this mean?
 - (A) The reaction is not spontaneous under any conditions.
 - (B) The reaction is only spontaneous under standard conditions.
 - (C) The reaction is always spontaneous under all conditions.

(D) The reaction is spontaneous under standard conditions.

- 16 A 0.132 g sample of anhydrous sodium carbonate is dissolved in water, transferred to a 250 mL volumetric flask and the resulting solution made up to the mark with deionised water. What is the concentration of sodium ions in this solution?
- 17 What is the name of the haloalkane whose structure is shown below?


140	Address of the local division of the	
15	(A)	
	A 1	A promo l obloro l ditilioropropono
- 8	A.A.J.	3-bromo-1-chloro-1,1-difluoropropane

- (B) 1-bromo-3-chloro-3-difluoropropane
- (C) 3-bromo-1-chloro-1-difluoropropane
- (D) 1-bromo-3-chloro-3,3-difluoropropane
- 18 1.35 g of a fertiliser containing 56.7% ammonium sulfate by mass was dissolved in water. 10.00 g of solid barium chloride is added and the barium sulfate produced is filtered, washed and dried. What is the mass of dry barium sulfate expected from the fertiliser?
 - (A) 0.555 g
 - (B) 0.764 g
 - (C) 1.35 g
 - (D) 3.28 g


Form VI Chemistry

19 Which of the following is an isomer of the haloalkane whose structure is shown below?

Br CI H

20 The following graph shows the solubility of carbon dioxide in water as a function of temperature.

What volume of CO_2 gas is released when a 600 mL of water saturated with carbon dioxide at 5.0 °C is warmed to 25.0 °C?

(A)	0.135 L
(B)	0.456 L
(C)	0.810 L
(D)	1.44 L

2016 Trial Mark Scheme Ques 21 - 24 (AKBB)

Ques 21

4 Marks	Comprehensive discussion of the formation & effects of acid rain, including at least one relevant equation for the formation and one for the effects.
3 Marks	Comprehensive discussion of EITHER the formation OR effects of acid rain, AND a brief discussion of the other, as well as at least one relevant equation.
	OR
	Brief discussion of the formation AND effects of acid rain, including at least two relevant equations.
1. D. T.	OR
	Comprehensive discussion of EITHER the formation OR effects of acid rain, including at least two relevant equations.
2 marks	Brief discussion of the formation AND effects of acid rain.
	OR
	Comprehensive discussion of the formation OR effects of acid rain.
1 mark	Brief discussion of the formation OR effects of acid rain.
	OR
	Equation of the formation OR effects of acid rain.

Problems

FDM - Formation Discussion Missing EFM – Effects Discussion Missing FDW - Formation Discussion Weak

EDW - Effects Discussion Weak

FEM -Formation Equation Missing

EEM - Effects Equation Missing

Formation equations

 $\begin{array}{l} \mathrm{SO}_2(\mathrm{g}) + \mathrm{H}_2\mathrm{O}(\mathrm{I}) &\rightarrow \mathrm{H}_2\mathrm{SO}_3(\mathrm{aq}) \\ \mathrm{2H}_2\mathrm{SO}_3(\mathrm{aq}) + \mathrm{O}_2(\mathrm{g}) &\rightarrow \mathrm{2H}_2\mathrm{SO}_4(\mathrm{aq}) \\ \mathrm{SO}_3(\mathrm{g}) + \mathrm{H}_2\mathrm{O}(\mathrm{I}) &\rightarrow \mathrm{H}_2\mathrm{SO}_4(\mathrm{aq}) \\ \mathrm{2NO}_2(\mathrm{g}) + \mathrm{H}_2\mathrm{O}(\mathrm{I}) &\rightarrow \mathrm{HNO}_2(\mathrm{aq}) + \mathrm{HNO}_3(\mathrm{aq}) \\ \mathrm{2HNO}_2(\mathrm{aq}) + \mathrm{O}_2(\mathrm{g}) &\rightarrow \mathrm{2HNO}_3(\mathrm{aq}) \\ \underline{\mathrm{Effects\ equations}} \\ \mathrm{CaCO}_3(\mathrm{s}) + \mathrm{H}_2\mathrm{SO}_4 \rightarrow \mathrm{CaSO}_4(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{I}) + \mathrm{CO}_2(\mathrm{g}) \end{array}$

 $Fe(s) + H_2SO_4 \rightarrow FeSO_4 + H_2(g)$

Ques 22

a	$Mg + 2HCl \rightarrow MgCl_2 + H_2$	1 mark
b	30.0g of Mg is $30/24.31 = 1.234$ mol	1 mark
	2 x 1.234 mol of HCl	1 mark
	$Vol = 2 \times 1.234 / 0.550$	
	= 4.49L	1 mark
с	Vol of $H_2 = 1.234 \times 22.71$	
	= 28.0L	1 mark

Ques 23

a
$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$
 1 mark

(equation of first protonation of the acid or equation shown as an equilibrium not accepted)

b	•	1	
	H ₂ SO ₄	NaOH	Marks
n	0.0262×0.68	0.0375×1.38	
	= 0.0178 mol	= 0.05175 mol	1
ratio	1 (0.0178)	: 2 (0.0356)	
	limiting	excess = 0.0161 mol	1
conc		0.0161/(0.0262+0.0375)	
		= 0.253M	1
рОН		$-\log_{10}[0.253]$	
		=0.597	
pН		14 - 0.597	
-		=13.4	1

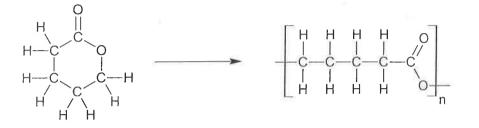
Ques 24

a	catalyst	1 mark
b	*correct organic components	1 mark
	*double headed arrow, conc H_2SO_4 and water	1 mark
С	*heated reaction vessel and condenser identified	1 mark
	(simply identifying the apparatus as reflux is NOT a description)	
	(many boys seemed to confuse the terms condenser and refluxer)	

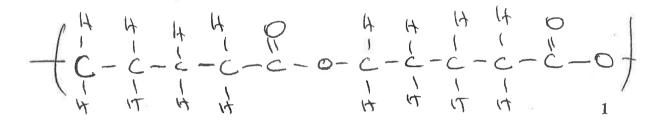
*reactants heated in order to increase reaction rate 1 mark

*gaseous mixture of reactants and products condensed to prevent them escaping to the atmosphere 1 mark

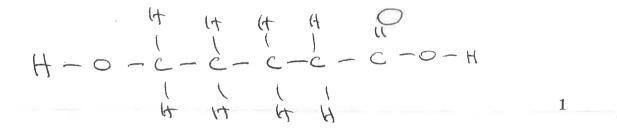
Somewhat holistically marked. For 3 marks the answer had to be comprehensive and perfect.



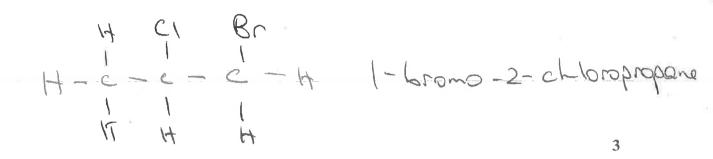
2016 Trial Examination


Question 25 (2 marks)

Marks


Polybutyrolactone is a renewable biodegradable polyester. It can be made from butyrolactone according to the following equation.

(a) Draw an expanded structural formula of the polymer showing 2 repeat units.



(b) Draw the monomer that would be required to make polybutyrolactone by condensation polymerisation.

Question 26 (3 marks) Marks

Draw and name all products that result from the reaction of hydrogen chloride with 3-bromopropene.

mark for each correct structure (2)

Imark for both names correct

Question 27 (4 marks)

"The dehydration of ethanol to ethene is the key reaction in a sequence of reactions that enables the sustainable production of polyethene from biomass."

Draw a flow diagram to show how biomass (cellulose) can be converted to polyethylene. The flow diagram should name and outline the processes undertaken as well as the products formed.

4 Collulose 1, hydrolysis glucose 6 fermentation V distillation othand. b delightration ethylene polymerization pdyethylene I mark all products 2 marks all process names Imark one musing 15 process atlines. 1 mark for 2 or more process atlines.

(6 marks)

Question 28

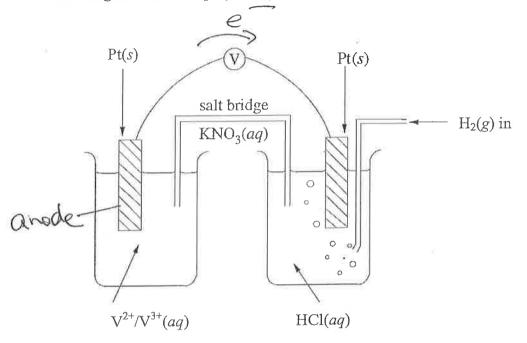
(a)

2016 Trial Examination

to heat 500.0 g water from 20.0 °C to 100.0 °C given that the enthalpy of
combustion for ethanol is
$$-1367 \text{ kJmol}^{-1}$$
.
Imark $q = m \text{ CAT} = 0.5000 \times 4.18 \times 80.03$
 $= 167.2 \text{ kJ}$
Imark. $n \text{ otherwise} = 167.2 = 0.1223 \text{ mol}$
Imark. $n \text{ otherwise} = 167.2 = 0.1223 \text{ mol}$
 $BH = 1367$
Imark $M \text{ otherwise} = 0.1223 \times 46.068$
 $= 5.639 (3 sy fy)$

Determine the minimum mass of ethanol that must be combusted in order

(b) Write an equation for the complete combustion of ethanol.


1 + 3H2011. C2. 4504(1)+ 30 2,021

(c) Explain the need to monitor combustion reactions such as the combustion of petrol in cars.

related Dollute 2 a 292 cency related. e

Question 29 (4 marks)

The diagram below displays a $Pt|V^{2+}, V^{3+}||H^+|H_2|Pt$ galvanic cell.

The Standard Reduction Potential for the species in the half-cell on the left is shown below:

 $V^{3+}(aq) + e^- \rightarrow V^{2+}(aq) \qquad E^{\Theta} = -0.26V.$

(a) On the diagram, clearly label the anode and the direction of electron flow.

(b) Write the net ionic equation for the reaction 31 $2\sqrt{\frac{2}{100}} + 2H^{+}(00) + 2\sqrt{100} + H_{2}(0)$ 1

(c) Calculate the standard cell potential for this galvanic cell.

$$0-26V$$
1

Marks

2016 Trial Examination

Question 30 (2 marks)

High quality phosphorous-doped silicon is made at the Australian Lucas Heights nuclear reactor by immersing essentially perfectly formed silicon crystals into a "neutron bath".

Write the two successive reactions that are responsible for the conversion of silicon-28 into phosphorus-29.

29 28 29 Ô 29 \geq + 0 15

Marks

Question 31 (4 marks)

Marks

A student dissolves an unknown solid in water. When the resulting solution is mixed with the following solutions, the student records these observations:

Solution	Observations
barium chloride	white precipitate forms
sodium hydroxide	brown precipitate forms
lead(II) nitrate	no visible reaction

The student concludes that the unknown solid is iron(III) sulfate. Assess the validity of the student's conclusion.

Sample answer:

- Solutions of barium chloride and iron(III) sulfate will indeed react to form a white precipitate of barium sulfate, so the student's conclusion is consistent with the first observation.
- Solutions of sodium hydroxide and iron(III) sulfate will indeed react to form a brown precipitate of iron(III) hydroxide, so the student's conclusion is consistent with the second observation.
- Solutions of lead(II) nitrate and iron(III) sulfate will react to form a white precipitate of lead(II) sulfate, so the student's conclusion is **inconsistent** with the third observation.
- The student's conclusion is therefore **invalid**.

4 marks:	 Identifies the products of reactions that would take place between iron(III) sulfate and the given solutions and relates
	these to the observations
	• Assesses student's conclusion as invalid .
3 marks:	 As for 4 marks, but does not identify the products of all reactions or does not relate products to observations
2 marks:	• Identifies the products of two out of the three reactions that would take place between iron(III) sulfate and the given solutions and relates these to the observations
1 marks:	 Identifies the products of any reaction that would take place between iron(III) sulfate and the given solutions

Notes:

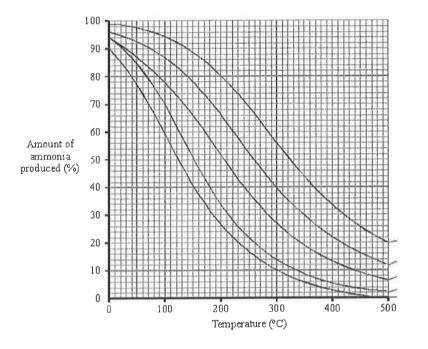
- Balanced equations **including states** are an easy way to identify the products, but equations were not essential to get 4 marks.
- It was not necessary to identify what the unknown solid was in order to answer the question! A few boys tried to do this, with varying levels of success.

2016 Trial Examination

Question 32 (6 marks)

Farmer Heinz has harvested a very successful crop of beans, whereas neighbouring Farmer Stagg's crop is less impressive. Farmer Heinz says that the availability of some trace elements in soil varies with pH and suggests that their soil manganese levels might differ as a result of different soil pH.

Explain how you could use atomic absorption spectroscopy and any other relevant techniques to assess the validity of this hypothesis.


	 escribes a method for measuring soil manganese concentrations both farms using AAS. Explains two or more features of AAS e.g. specificity of absorption, sensitivity. Explains two procedures involved e.g. sample preparation details, instrumental details.
• Di	 Must include the production of a standard curve or comparison with standard manganese solutions escribes a method for measuring soil pH at both farms e.g. using a pH probe or indicators scusses the how the results will determine whether the pothesis will be valid or invalid.
5 marks: • M	isses one of the points required for 6 marks (often production of tandard curve or hypothesis discussion).
OR	scusses AAS in required detail but does not mention pH. isses two of the points required for 6 marks.
	ty three points required for 6 marks
	iy two points required for 6 marks
	ny one point required for 6 marks

Notes:

• An acid-base titration cannot be used to identify the pH of a sample. It will only give you the total acid/base content.

Question 33 (4 marks)

The following is a graph of percentage conversion of nitrogen and hydrogen to ammonia against temperature, for pressures between 25 and 400 atm.

(a) On the graph, clearly label the line corresponding to a pressure of 400 atm.

Answer: the top curve.

(b) With reference to the graph, explain the choice of temperature for the commercial production of ammonia.

• Identifies a temperature of 400-600 °C.
• Explains the compromise between yield and reaction rate.
 Refers to data from the graph
• As for 3 marks but missing identification of temperature or
reference to the graph
• Identifies a temperature of 400-600 °C or identifies compromise
between yield and reaction rate.

Notes:

• Some boys used the graph to predict (incorrectly) that the temperature chosen should be 200 - 300 °C.

Marks

2016 Trial Examination

MTK - CRIB

Marks

Question 34 (7 marks)

(a) The Water-gas shift reaction (WGSR) is an important industrial reaction and can be written as per below.

$$CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)}$$

At 588 K, the equilibrium constant is 31.4.

(i) Write the expression for the equilibrium constant.

	MARKING GUIDELINES	
Γ	Criteria	Marks
-	Correctly writes the equilibrium constant expression	1

 $K = [CO_2][H_2] / [CO][H_2O]$

Generally done well, but a few boys used '+' instead of 'x'

(ii) The equilibrium constant decreases with an increase in temperature for this reaction. Is the forward reaction exothermic or endothermic? Justify your answer.

2

3

1

Marks	Marking guidelines
2	• Explains why forward reaction is exothermic based on changes to K and LCP
1	Identifies forward reaction is exothermic

(iii) 2.50 moles each of both $CO_{(g)}$ and $H_2O_{(g)}$ and 5.00 moles each of $CO_{2(g)}$ and $H_{2(g)}$ are added at 588 K to a 10 L vessel. Calculate the concentration of $H_{2(g)}$ at equilibrium.

 Marks
 Marking guidelines

 3
 • Correctly calculates equilibrium concentration of hydrogen gas to be 0.636 M.

 2
 • As per 3 marks, less one step in calculation

 1
 • Identifies all equilibrium concentrations are unknown, uses unknown, x correctly, and substitutes into K expression that can be solved.

ø

Sample working

	$CO_{(g)}$	$H_2O_{(g)}$	$CO_{2(g)}$	$H_{2(g)}$	
Initial	2.5/10	2.5/10	5/10	5/10	
Change	-X	-X	$+_{\rm X}$	$+_{\rm X}$	
Equilibrium	0.25-x	0.25-x	0.5+x	0.5+x	

$$31.4 = (0.25-x)^2 / (0.5+x)^2$$

$$\sqrt{31.4} = (0.25-x) / (0.5+x)$$

$$\sqrt{31.4} (0.5+x) = (0.25-x)$$

$$x = 0.136 \text{ M}$$

Final concentration = 0.5 + 0.136 = 0.636 M

Many boys failed to link that there is a 1:1:1:1 relationship between all reactants and products. Some boys forgot the last step.

Many boys solved complicated quadratic when taking square root was SO much easier.

(b) Molten sulfur is often transported to sulfuric acid plants by truck. Describe the chemistry and justify the conditions used during the industrial production of sulfuric acid from molten sulfur.

7

Marks	Marking guidelines
7	 Response gives a detailed description of the production of sulfuric acid from molten sulfur. Comprehensively justifies the conditions used in all four steps based on firm chemical principles including LCP, reaction rate, safety and cost considerations. Clear, concise response with a logical progression of linked ideas.
	Three relevant, linked balanced chemical equations
6	• Missing one point from 7 marks or one incorrect piece of information.
4-5	 Describes all four steps in the production of sulfuric acid from molten sulfur, including chemical equations. Lists conditions necessary to achieve each step
2-3	• Describes 2-3 relevant steps in the production of sulfuric acid from molten sulfur.
1	• Identifies any step in the production of sulfuric acid from molten sulfur.

Notes:

- The question explicitly said 'from molten sulfur' yet many boys described the Frasch process. This was ignored.
- Nothing in question asks about transport of sulfuric acid which boys wasted time writing about. This was also ignored.
- Too many boys simply gave rote-learnt answer about conditions with NO justification. Maximum marks for this was 4.
- Too many boys could not correctly recall the process at all.

MTK - CRIB

(c) Compare the structure of soap with that of one specific type of detergent.

Marks	Marking guidelines
2	• Clearly explains difference between soap and detergent showing detail knowledge of structure of both OR
	• Provides simplistic difference between structure of soap and detergent AND provides detailed further relevant information on differences.
1	• Identifies simplistic structure of soap and one other detergent.

2016 Trial Examination

Question 34 (25 marks)

(d) Account for the cleaning action of soap.

3 marks:	• Identifies the hydrophilic and hydrophobic nature of soap ions.
	• Explains the interactions of each with non-polar/polar
	molecules and identifies the specific forces involved (e.g.
	dispersion forces, ion-dipole interactions).
	• Identifies that agitation of the mixture is necessary for cleaning.
2 marks:	• Identifies the hydrophilic and hydrophobic nature of soap ions.
	• Explains the interactions of each with polar/non-polar
	molecules
1 marks:	 Identifies the hydrophilic and hydrophobic nature of soap ions.

(e) (i) Identify the feedstock that is common to both the Solvay process and the production of NaOH.

Answer: sodium chloride (or brine).

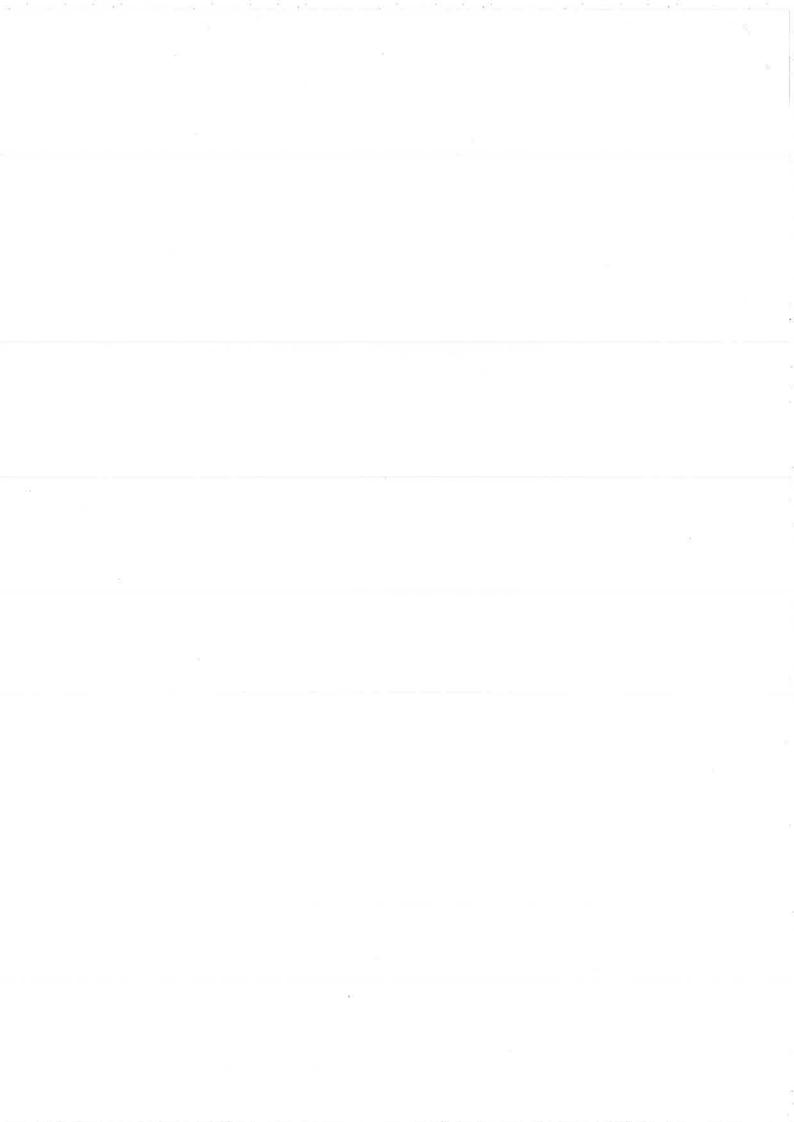
 (ii) Compare the factors affecting the location of a chemical plant to produce NaOH using a mercury cell with the factors affecting the location of a chemical plant to perform the Solvay process.

3 marks:	 Compares 3 factors affecting the location of both plants, including access to raw materials and waste disposal
2 marks:	 As for 3 marks but without explicit comparison OR
	 Compares two factors affecting the location of both plants
1 marks:	 Identifies a factor affecting the location of either plant

(iii) Calculate the mass of the desired product of the Solvay process if
 1.00 tonnes of calcium carbonate is completely used up.

 $CaCO_3(s) + 2 NaCl(aq) \rightarrow Na_2CO_3(s) + CaCl_2(aq)$ $n(CaCO_3) = 1.00 \text{ tonnes } / 100.09 \text{ Mg Mmol}^{-1} = 9.99 \text{ Mmol}$ $n(Na_2CO_3) = 9.99 \text{ Mmol}$ $m(Na_2CO_3) = 9.99 \text{ Mmol} * 105.99 \text{ Mg Mmol}^{-1} = 1.06 \text{ tonnes}$

Notes:


• Many boys made stoichiometry errors when using more than one equation. In this case, using the overall equation is easier.

Marks

3

3

3

