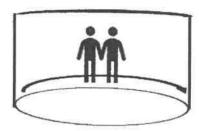
Section I

20 marks Attempt Questions 1–20 Allow about 35 minutes for this section

Use the Section I answer sheet for Questions 1-20.

- 1. Which one of the following is NOT one of Kepler's Laws?
 - A) The planets move in elliptical orbits with the Sun at one focus.
 - B) The line connecting a planet to the Sun sweeps out equal areas in equal intervals of time.
 - C) For every planet, the ratio of the cube of the average orbital radius, r, to the square of the period of revolution, T, is the same constant, k, as in the equation $r^3/T^2 = k$.
 - D) The weight of an object on the Earth's surface is due to the gravitational attraction of Earth
- 2. A far-off star has been found to have three planets orbiting it. Information concerning these planets is shown below.

Planet	Radius in metres	Period is seconds
PK1	?	4.2 x 10 ⁴
PK2	9.84 x 10 ⁸	8.4 x 10 ⁴
PK3	1.56 x 10 ⁹	1.68 x 10 ⁵

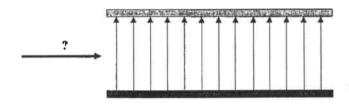

Scientists had to determine the nearest planet's orbital radii mathematically.

What would the calculated radii of PK1 he?

- A) $2.46 \times 10^7 \text{ m}$
- B) $4.92 \times 10^7 \text{ m}$
- C) 4.92 x 10⁸ m
- D) $6.20 \times 10^8 \text{ m}$
- 3. The reason that some electrical appliances used in the home have transformers is because they
 - A) require a source of energy that is DC rather than AC.
 - B) require and alternating current at a frequency other than 50 Hz.
 - C) consume less energy than a similar device without a transformer.
 - D) require a lower voltage than the input voltage from a power point.

Use the following information to answer questions 4 and 5.

In 1979, Mr Blunden went on the ride, The Rotor, at Luna Park and felt very ill afterwards. The Rotor consists of a drum rotating at an increasing rate, until Mr Blunden and his friends remained suspended when the floor dropped away.



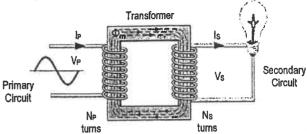
- 4. Which statement best explains why Mr Blunden and his friends were suspended?
 - A) The gravitational force balances both the centripetal force and horizontal forces.
 - B) The unbalanced centripetal force from the wall pushed Mr Blunden and his friends to the wall causes them to retain their position.
 - C) The horizontal frictional force, plus the gravitational force combine to hold them in place.
 - D) The centripetal force, due to the drum's rotation, and the reaction force of the wall, are in balance.
- Before the floor is lowered, the drum needs to rotate at velocity, v. This produces a centripetal force, F. After the floor is raised, the velocity is decreased.

What will the centripetal force be when the velocity reduces to v/2?

- A) F/2
- B) F/4
- C) 2F
- D) 4F

- 6. Two satellites (Annie and Claudia) are in circular orbits around the Earth. Claudia is R metres from the centre of the Earth and has an orbital velocity of V. Annie is 2R metres from the centre of the Earth. What is Annie's orbital velocity?
 - A) V/2
 - B) 2 x V
 - C) V/1.4
 - D) 1.4 x V
- 7. Consider the electric field between two charged parallel plates.

The shape of the resulting motion of an electron in this field and the reason for its motion is:

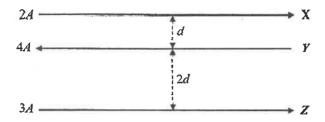

	Path shape	Reason	
A)	Parabolic	Both vertical and horizontal forces are constant	
B)	Parabolic	Only the vertical force is constant	29
B) C)	Circular	Both vertical and horizontal forces are constant	
D)	Circular	Only the vertical force is constant	

8. Two parallel plates are 2 mm apart and have a potential difference of 100 V between them. An electron is placed halfway between the plates.

What is the magnitude of the force on the electron?

- A) $8.0 \times 10^{-18} \text{ N}$
- B) 1.6 x 10⁻¹⁷ N
- C) 8.0 x 10⁻¹⁵ N
- D) 1.6 x 10⁻¹⁴ N

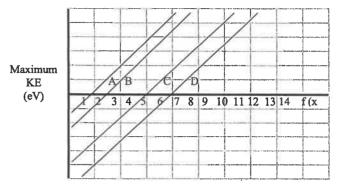
 Consider the following ideal transformer with 1 000 turns in the primary coil and 1 125 turns in the secondary coil.


If the input voltage is 240 V and current 5A, what is the voltage across the globe and the current through it? Ignore the resistance of the light globe.

- A) 213.3 V, 5.6 A
- B) 213.3 V, 4.4 A
- C) 270 V, 5.6 A
- D) 270 V, 4.4 A
- 10. However, no transformer is ever ideal because of:
 - A) Incomplete flux linkage between the primary and secondary coils.
 - B) Resistive heating in the soft iron core.
 - C) The production of sound.
 - D) All of the above.
- 11. A laser with unknown wavelength is bought from a market stall. It is pointed through a card that has a small pair of slits cut 90µm. A wall is 6 m from the card. When the laser is shone through the slits, bright spots appear on the wall and are measured to be 3 mm apart.

The wavelength of the laser is

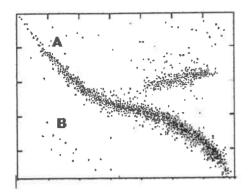
- A) 427 nm
- B) 429 nm
- C) 450 nm
- D) 459 nm


12. Three current-carrying wires are set up as shown below. The force on wire Y due to the other two wires is F.

What will happen to the force on Y if the currents in X and Z are both doubled, but the distances remain constant?

- A) It will become F/2.
- B) It will be the same value, but in the opposite direction.
- C) It will become 2F.
- D) It will become 4F.
- 13. Which statement does not relate to evidence that validated Einstein's thought experiments for time dilation and length contraction?
 - A) Evidence from particle accelerators
 - B) The results of the Hafele-Keating experiment
 - C) Early experiments with cathode rays operating in a vacuum
 - D) Observations of the life of muons that enter the Earth's atmosphere
- 14. What did James Clerk Maxwell discover through the unification of the theories of electricity and magnetism?
 - A) Light is a mechanical wave.
 - B) Light is composed of corpuscular particles.
 - C) Light is a form of electromagnetic wave.
 - D) Light travels slower in denser materials.

15. The graph below shows the relationship between the frequency and kinetic energy of electrons emitted by four different metals (A, B, C and D) when they were exposed to light.


What is the wavelength of a photon of light that supplied the threshold frequency for Metal D?

- A) $3.75 \times 10^{-7} \text{ m}$
- B) $8.00 \times 10^{-14} \text{ m}$
- C) $2.66 \times 10^{-7} \text{ m}$
- D) $1.8 \times 10^{-14} \text{ m}$
- The star Rigel emits a continuous electromagnetic spectrum with a peak wavelength of approximately 550 nm.

The surface temperature of Rigel is approximately

- A) 5 269 K
- B) 5 169 K
- C) 5 269 K
- D) 6 000 K

17. Below is a Hertzsprung-Russel diagram.

Which group correctly compares the luminosity and surface temperature of stars plotted at positions A and B?

	Star	s at A	Stars at B		
	Luminosity	Temperature	Luminosity	Temperature	
A.	Low	Low	High	High	
B.	Low	High	Low	Low	
C.	High	Low	Low	Low	
D.	High	High	Low	High	

18. The signal from a microwave transmitter can be thought of as a beam of photons.

If the photons from the transmitter have a wavelength of 3.5×10^{-2} m, what is the approximate energy of each photon?

- A) 5.68 x 10⁻²⁴ J
- B) 1.89 x 10⁻³² J
- C) 2.32 x 10⁻³⁵ J
- D) 7.73 x 10⁻⁴⁴ J

19. In which type of star is the CNO cycle the predominant nuclear reaction?

- A) Red giant
- B) Red giant
- C) Low main sequence
- D) High main sequence

- 20. Which of the following contains all the quantities that are required to determine escape velocity?
 - A) Mass of the rocket and the planet
 - B) Mass of the rocket and the planet, and the radius
 - C) Mass of the planet, radius and universal gravitational constant
 - D) Mass of the rocket and the planet and universal gravitational constant

				0
· Luestion	21	(6	marks)	LP

Duran

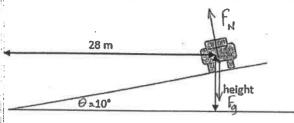
Max and Caleb conducted an experiment to analyse the motion of projectiles. They used their phones to film a ball rolling off a desk with various horizontal launch velocities. They used a large, scaled grid for the background.

The picture below shows the consecutive photographic 'stills' they produced for their first launch velocity. The time between each frame is 0.05 seconds.

The Seven Stills of the First Launch Velocity

御	t=0	1 6	t=0,05s		t=0,1	Qs 0	li de la companya de
端	¥)	THEAT		TO THE	@ T		
製		例		WA		+	
1680		1563		100			
RM.		500				+	
100				1500		+	()
他到		126		100		+	Ų
が続け		- 1					0
屬		NAME OF THE PERSON NAME OF THE P		MAN N	+++	+	E 0 E V()
567		NO.		100	+++	+	2000
	t=0.15s		t=0.20s	1 1002	t=0.2	58 .	16 P or C 17 P 18 P 19 P
柳				195	HT		
100	d3	. 1000		144	\vdash	+	(19) (10) =
- A		- MARIE		la le		1	2000 € 2000 €
400		腳	(9)	100	\Box	1.11	= 2 5 5 5
ac		開		100		1-1-1	_
166A		199		80		600	1(4)
250		1000		18055		1	CEVDD
碗机		Major I		/ANA		+	
180		Figh.		1503	\Box	+	0-00-0
	t=0,30s			1 12300			
- F		Food o	rid concounts	a 5 am = 5			
		Each 8	rid represents	2) CIL X)	cin area.		B DDDD C
福		The fir	sť still shows	the ball no	it lanuar d	a doub	こしゃっしょ
棚丁		1 ****	or own mows	un van 35	al adales i	ID GENE.	2
機能		The lat	st still shows t	he hall ine	as it touc	hes	
Tion .		the flo		vine just		1344	
建		1 100					
193						- 1	
THE I		1				- 1	

a)	Calculate the ba				•		2
	honzontal	velocity 1	h =	du/E			*:
	dx = 6	× 0.05	м:	0.3m	t = 6x	0.05	= 0.35
	Vx =	0.3m/	0.34	-	10 m's7	***********	***************************************
	i	. 7	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	***************************************	************	*************


!	!!	
b) Calculate	the range of the ball if it is launched at 3 ms ⁻¹ horizontally. 0.35 $Vx = 3 m s^{-1}$	2
iller R.	= Vxt = 3 ms x 0.35	
	= 0.9 M.	
R _* s=ut	= will accept the Question 21 continues over method if you have used it correctly.	page

nestion 21 continued	,
Outline a source of error that could impact on the accuracy of the Max and Caleb's results.	,
Dhe phone might not be properly calibrated - will give maccurate time or take picture of the ball's movemen	
in accurate time or take picture of the ball's movemen	<i>f</i> .
of walky will not be accepted without a clean	
Justikialion.	
Question 22 (7 marks)	
a) Beginning with Newton's law of gravitation, derive an equation for the orbital velocity, v, of a	
satellite orbiting a planet of mass M at radius r . 2 $M = C \cdot M = C \cdot M \cdot M \cdot V = C \cdot M \cdot M \cdot M \cdot V = C \cdot M \cdot$	
mus Cal.	
1/2	
= 4M/n V= 1/4M/n	
b) Show that the total energy of an orbiting satellite is half of its gravitational potential energy. 2	
K = taw	
K = \frac{1}{2} m. Cou/m = \frac{1}{2} Com/m/r.	
ETLO = U+K = -GMM + + GMM/	
$\frac{E_{\text{Total}}}{E_{\text{Total}}} = \frac{U + K}{E_{\text{Total}}} = \frac{-GM_{\text{MM}}}{E_{\text{Total}}} + \frac{1}{E_{\text{GMM}}} = \frac{GM_{\text{MM}}}{E_{\text{Total}}} = \frac{1}{E_{\text{Total}}} = \frac{1}{E_{\text{Total}}$	
Turry explain, with the aid of a diagram, why the granitational and it is	
· At an infinite distance Exis gero (F=0) Ep	
An object brought from infinite distance Salellite	
@ who a point in the quaitational field 0	90
is negative: Ep = -GMM/r	
A satellite at point x in the	
1) grantation with have	
$E_{b} = -GM_{H}$	
(1) Dregram	
· Explains why Ep is -ve . 0	
· Explains why Ep is -ve . Relates - Ep to orbiting satellite @ . diagram	
· alagram	

estion 23 (4 marks)

LP

Dr Chilwell is driving his car of mass 1,800 kg around a track at 20 ms⁻¹ at a radius of 28 metres.

If there is no friction between his tyres and the track, what speed must Dr Chilwell drive so that his car maintains its current height on the track at that speed?

	mv2/r	= Fnet =	12 tano	*****	-
	rg =				ta d
*******	m V2 /r	= mgto	an O		VA P
1	V2	= rgta	un Ø		N
	V	= (rg ta	n 05 t		Ł
		= (28 x	9.8 x 0.(76)	= ms-1	net
*******	J	- 6-96	ms-		***************************************
1		= 7 (ust)		***************************************
			1/2	*********	7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Ony one correct prelevant formula O

Substitution & working O

Correct answer

Correct unit

Question 24 (3 marks)

Tejas and Anurag carried out an experiment measuring the velocity of an 0.1 kg object in uniform circular motion for six different radii, while keeping the centripetal force constant. Their results are shown in the table below.

Radius of turn (cm)	Velocity (m s-1)
10	1.48
20	2.10
30	2.60
40	2.97
50 //	3.32
60	3,63

Their challenge was to use all of the results to determine the constant centripetal force.

The second to determine the constant centrificat force.	
Explain how you would calculate the centripetal force. Formulae may be used, but calculation required.	ons are not
(1) use Fc = mv/R to get Fc/m = V/R = Constant	
(no mork mils own) or V2 = (Fe/m) R	
D Convert cm → M	
D LBF or Average	
D Discuss outdier from either	***************************************
- LBF - 9 state outlier is for from line.	
or Averge - By finding constant VE/R for each rai	dius
and then averaging - as v3/p is co	nstant,
then these numbers should all agree	enel
autlier is one for from the others	
Vague statements such as ruling out outlied or determine range of errors without expension	551
as determine range of errors without expe	Canation
are not accepted.	

Muons travel through the atmosphere at a speed of 0.998c. The mean lifetime of a stationary muon is

Explain why Caleb was surprised that a significant percentage of the muons, which formed at an altitude of 90 km could reach the surface of the earth.

[3 MARKS] - Full and Corret application / as Below) with of and From of Ref [For]

[2 marks] - Some general attempt including finding 8.
[1 mark] - " " without " 8

7 = (1-0.9982)/2 = 15.8 to=2.245

EFOR! time

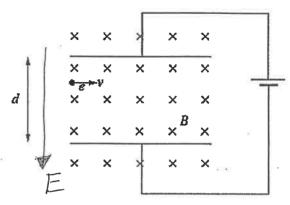
- Classical time to reach Earth = $d/v = \frac{9\times10^4}{3\times10^8} = 300 \mu S \Rightarrow \frac{300}{2.2} = 136$ life times

- Relativity to = 0 to = 15.8 x2.2 = 35/15 => 35 = 8.6 lifetimes (time dilation)

50 Calob Can now see that a lot more muons can reach Earth.

or can find how for muon travels in a liketime.

- classically distance travelled in 2.2,45 = 2.2x106 x 0.998x3x10 = 660 m.


- Relativity 5= Vt = 6.998 x 3×108 x 35 ×106 = 10,479 m (= 9500 = 8.667)

Character to Earth = 90,000 km = 22,28 = 660 m Muons FOR: Relativistically Length contraction LV=Lo/8 = 90,000 = 5,696 m. : Muon thinks it will take 5,969/660 = 8.6 LT w to reach Earth. Lu/v = 5.676 ×103 = 1,90 ×105 cm.

Note keep in Ms don't one 5 x 10 45 Hen 60 is etc.

Question 26 (5 marks)

Two parallel charged plates are set up at a distance, d, from one another as shown in the diagram below:

The magnetic field strength, B = 0.02 T, the electron's velocity, $v = 3.5 \times 10^6 ms^{-1}$, and the distance between the plates, d = 5mm.

Indicate on the diagram the direction of the electric field that will act on the electron moving between see diagram. these plates.

2

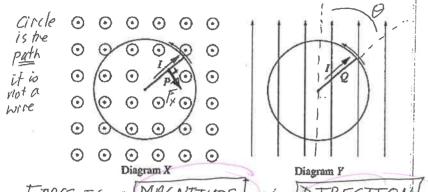
b) Calculate the force on the electron due to the magnetic field.

= 1.602 × 10-19 × 3,5 × 106 × 2 × 10-2 × 500 90 = /1/21 × 10-14 = 11/21 × 10 14 = (1,12 × 10-14) (UP) downwords

Question 26 continued...

c) Calculate the voltage that needs to be supplied to the plates to keep the electron traveling in a straight path, parallel to the plates.

QE = QVB; E = VB; E = V/d- V = dVB = 3 × 10 × 2 × 10 - 2 × 5 × 10 - 3 = 35 CV


(or use previous Ans (b) - BUT use all figures, NOT recorded of.)

(D - Equation

(D - correct answer.

Two straight metal rods, P and Q, have the same length. They are each pivoted at one end and rotate with the same angular velocity so that they sweep out horizontal circular paths as shown in Diagrams X and Y. A constant current, I, is flowing along each rod, as shown.

In diagram X, a constant magnetic field is applied at right angles to the plane of the circular path. In diagram Y, a uniform magnetic field of the same magnitude is applied in the plane of the circular path.

FORCE IS a MAGNITUDE and a DIRECTION Compare the forces acting on the wires in Diagram X and Diagram Y and explain why that is the case. 3

(D'E' - Explains Motor Effect F = BILSING (common)

O'D' Direction of force (need both correct)

Fx is 'in the plane' of the motion, see diagram.

Fy is 'Out of the plane' of motion, perpendicular to the plane,

> Out of page 0 = representation 0 to 1800

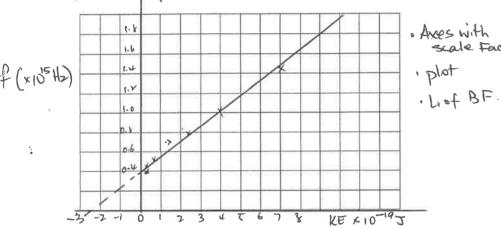
-> Into page 0 = 180 - 3600

(0 = 90° and -90° then Fy = 0) (owhen It to earhotter)

() 'm' magnitude of Force (need both correct) 7/Fx/ = constint BIL 16 (as soit = 1)

> | Fy | = BILSino, it varys sinuscidally with &.

Note Lenz's Law is not need/applicable to this question.


Alenz's law isn 4 a proof 1: 10 ms. 06

Question 28 (4 marks)
George placed a strong magnet above a circular copper disc, as shown in the diagram below. The disc is free to rotate, but not free to tilt or fall off the point.
4 marks. Clear understooding of order of events
Le nz, conduction
3 mouls as 4, but some muddle / unclear Disk
2 mals as 3 but worse
I mark something Ausensible
* Lose marks for incorrect/contradictory startements.
Explain clearly what happens as the magnet rotates above the thin copper disc and why this occurs.
- Cu Disk is a conductor (electrical)
- Moving Magnet's field gives AP/dt increasing in front of magnet
All decreasing behind magnet
(AT/dt = O beneath magnet)
- Ad/At occurs on sections of the disk (just in front & behind)
- AQ/dt presides & EMF in disk (Faraday's Law)
- EMF induces eddy currents)
- Circulating eddy current produces magnet poles (see diagram)
- Bullenz's Law the current will produce poles to oppose
the reasonant of the disk in N in front & 5 behind/seediagram
- But magnet is being Forced to move, Noush Mand
Al Al let a land like is treet to movie it will
rotate in the same direction of the magnet - /1 mork
ill but come justidications
note 1 1/1 > Emf ; Net current; EMF drives current in conductor
note Add > EMT; Not current; Ell current of not offer sufferent - explain

· "Lenz's Law 'expreses' to ensure conservation denergy" is not good rather y it promoted then that would violate come of energy the it dran's oppose it would into take laws of cons. of every Balaji conducted a photoelectric effect experiment in class to measure the work function of a photo emitter. His results are shown in the following table.

Wavelength of light (nm)	Frequency of light (x 10 ¹⁵ Hz)	Energy carried by each photon (eV)	Kinetic energy of emitted electrons (x 10 ⁻¹⁹ J)
200	1.49	6.21	7.30
300	1.00	4.09	3.97
400	0.76	3.10	2.33
500	0.59	2.50	1.34
600	0.50	2.02	0.66
700	0.43	1.77	0.23

Graph the kinetic energy on the x axis against the frequency of light on the y axis. Include a line of best

b) Use your graph from part a) to determine the work function of the emitter. Express your answer in eV.

Work function = 2.75×10-19 T EXTRAPOLATE 2

Convert J to eV. $\Rightarrow 2.75 \times 10^{-19} = 1.72 \, eV$ or Symbol

CRAPH MUST be 1.6 × 10-19

(CRAPH MUST be 1.6 × 10-19

(CR

Ouestion 30 (7 marks)

a)	Rutherford's Marsden.	model	of	the	atom	was	based	on	results	of	experiments	carried	out	Ъу	Geiger	an
	IVICE SUCIL.															

Outline Geiger and Marsden's experiment and discuss how their results led to Rutherford's model of

EXPT - O > almost no deflection

b) Draw labelled diagrams of Rutherford's model of the atom following these experiments and a labelled diagram of the model that it replaced,

Rutherford's model	Previous model's name: Thomson
Labelled possitive involves, orbiting electrons	embedd electri distribut

c) Outline Chadwick's contribution to our understanding of the nature of the atom,	1
- discovered neutros Contributed to	our
understanding by explaining-stabili	

Question 31 (5 marks)

Throughout history, light has been a mystery that people have tried to explain. During the 1700s, the two prominent scientists, Newton and Huygens, feuded over their different hypotheses of the nature of light.

Compare Newton's and Huygens' models of light, stating the	major difference between them.
Huggen (wave modely)	Newton (Copyesculous)
MAJOR DIFFERANCE = WAVE =	= PARTICLE -
REFLECTION	
REFRACTION SLOW DOWN	✓ SPED UP
INTERFERENCE .	×
PIFFRACION	×
MPTOR DIFFERENCE CORRECTLY STATES COMPARISON - related to 1	ypotheses (TESTABLE) - ()
State whose model was found to be correct and what evidence	e supported it. 2
In Context of Question: Huygen	
0	LIGHT THROUGH DENCER
	MEDIUMS SCOW DOW.
other Answerl LLEPTED.	_

Question 32 (3 marks)

a) Neil replicates Young's double slit experiment where interference fringes are formed on a screen.

With the aid of an equation, describe and explain the effect on the spacing on the screen between the interference fringes if Neil increases the separation between the slits.

①	Appropr	iale e	quation	d S'0	= M	λor	a usniah	·
0	1 81.7	Senera	ton	distance	6/10	fringes	V (since	. 1
٠			133 		(0			••••
******	• • • • • • • • • • • • • • • • • • • •				/\b.\?			

b) State one important change that would occur to the pattern on the screen if one of the slits was covered.

I am legi	+ 0 = 0	,						1
· antal ma	x shift	position _	d any	thing	else 1	east.		
· no enuel								
C.		1 1				· L	r	

Question 33 (4 marks)

a)	A massive star is losing mass at a rate of 5.6 x 10 ⁹ kgs ⁻¹	
	How much energy is being produced per second?	2:
	0 - E = mc2	
	= 5.6×109 (3×108)2	••
	= 5.04×1026 J. NB accepted Js-1 but n	
	O 'Wo	
		••
b)	The Sun is a typical main sequence star. Briefly outline the life cycle of a star such as the Sun, from the moment that it enters the main sequence.	m 2
	8	••
	① Main sequence → Red Grant → White Diverf	••
	(expansion) (contraction)	••
		••
	O Additional relevant into that adds a more detailed	يدلا
	descontin	

The diagram below shows the spectrum of light received from the star, Alpha Maleius.

Violet	24250740	Red	الم _	lives	correct
			36		

a) Astrophysicists on Earth deduced that the star is moving towards Earth.

Explain how this spectrum was formed and how the astrophysicists were able to determine that the star was moving towards Earth.

O How an absorption spectra is formed.
- certain 1 (o-f) absorbed > e-1, the V, the
entes particular fregueraies of EMR
OID as absorption spectrum
0 blue shift = mounty towards E.
0 0.12

b) In the box above, draw where the four spectral lines would be if the star is observed from a planet slowly orbiting that star.

Coo above

Question 35 (6 marks)

A dropper bottle was used to release a single drop of water between two vertical charged parallel plates. The drop of water fell straight down at an initial velocity of 0.30 ms⁻¹. The average drop of water has a mass of 2.2 x 10⁻² kg and a charge of -1.9 μC. The field between the plates is 7 000 Vm⁻¹. The apparatus is shown below. Ignore acceleration due to gravity and air resistance.

water droplet

	î î	
+		_
+		-
+		-
+		_
+		-
+	15	_
+		_
+		-
	J t	

a)	Calculate the acceleration of the water droplet between the plates.	
	F= qE F=ma	
	=-1.9x10-6 x7000 0.0133 = 2.2x10-2 (a)	
	F= 0.0133 N ± a = 0.6 ms ⁻² €	
	O working (D = correct around O difects)	

b) Calculate the velocity of the water droplet 0.5s after it enters the field.

V= u + at . 10=0+0.6(08) Over

T. 44	Tan 0 = opp	OUNAMBI
x ² 0.3	adje	dir
0/	= 03	
63	0.3	
a2+ b= c2	= 45°	
~		

$$03^2 + 0.3^2 = c^2$$

 $c = 0.42ms^{-1}$

Question 36 (9 marks)
Explain fully the structure and operation of a DC motor. In your answer, include ONE labelled diagram of the motor and TWO relevant graphs.
nognats
DIAGRAM [All components present () coil Commontine
(D) (All " labelled O S.R.C.
brushes
· ·
GRAPHS 1= one lowit grown or an attempt
(G) 2=2 RELEVANT graphs = error (s)
3=2 " e correct graphs
ay / Market J
1 / VV etc
t +
OPERATION @ motor effect applied to the motor -s turns ton
1
1) Back EMF produced (inducts)
OsMotor runs at a constant speed (if not)
timiting max
U Speeci.
RELATES TEXT TO DIAGRAM GRAPKS
(P)
Y60 (1)
No 6

\$ think & address Q = 9 marks = 15 min a bit of time planing (structure, what you're going to write) Juhen you turn on to motor, current starts at max .. No back Graph I vs t do the easy ones.

I vs t ones lobrious ones.

F vs t markers one trying give to grant the paper quickly