\qquad

Caringbah High School
 Physics: HSC Course Trial 2013

Write all your answers in this answer booklet.
Use pen for written responses and pencil for diagrams and graphs.
Total Marks: 100
Exam Length: 3 hours + 5 minutes reading time
SECTION I
PART A: Multiple Choice Questions (20 marks)
PART B: Longer Response Questions (68 marks)
SECTION II
Option Question (12 marks)

- USE THE SEPARATE OPTION BOOKLET FOR YOUR ANSWERS

OUTCOME	MARK
Knowledge and Understanding	
Q 1-22, 25,26,29,31-36,38	
Practical investigations	
Q 23,37,38	$/ 12$
Problem solving	
Q, 27, 28, 30	$/ 11$

PART A: Circle the letter of the BEST answer on the grid (20 marks)

1. It is not usually possible to communicate with spacecraft as they are reentering earth's atmosphere because
A. the astronauts are too busy
B. the spacecraft gets too hot as it reenters
C. ionised air blocks any radio signal.
D. any radio aerial would get ripped off.
2. In an electric motor the purpose of the split ring commutator is to:
A. change the AC supply to a $D C$ supply
B. reverse the flow of current though the coil
C. provide a complete circuit for current to reach the coil
D. anchors the ends of the coil.
3. A positron is the antiparticle of an electron. It has the same mass but opposite charge. When antiparticles collide they completely annihilate one another and their mass is converted to energy. The total energy released when a positron and electron collide is-
A. $\quad 1.64 \times 10^{-13} \mathrm{~J}$
B. $\quad 0.82 \times 10^{-13} \mathrm{~J}$
C. $\quad 0.0144 \mathrm{~J}$
D. 0.0288 J
4. Which one of the following statements is the best statement about inertial frames of reference?
A. Inertial frames must be stationary.
B. Inertial frames must be accelerating.
C. The laws of physics have the same form in all inertial frames.
D. Inertial frames cannot be moving at close to the speed of light.
5. Two beams of electrons are close to one another and are travelling in the same direction. In this situation
A. there would be a resultant magnetic force of repulsion between the two beams.
B. the two beams would have no effect upon each other.
C. the two beams will decelerate to a final speed of zero.
D. there would be a resultant magnetic force of attraction between the two beams.
6. Which statement is true for a step-down transformer?
A. It reduces current and voltage.
B. It has more turns in the primary than in the secondary.
C. It has less turns in the primary than in the secondary.
D. It has a non-laminated iron core.
7. Energy is lost in transmission lines. How can this loss be reduced?
A. Use thinner wires in the transmission line.
B. Increase the current in the transmission line.
C. Decrease the current in the transmission line.
D. Heat the wire
8. This table provides information about the planets Earth and Uranus.

Planet	Mass ($\times 10^{24} \mathrm{~kg}$)	Radius (km)
Earth	6.0	6.4×10^{3}
Uranus	86	2.4×10^{4}

An astronaut has a weight of 800 N at the Earth's surface.
Using the information in the table, what is the astronaut's weight on the surface of Uranus?
A. 800 N
B. $\quad 813 \mathrm{~N}$
C. $\quad 786 \mathrm{~N}$
D. $\quad 980 \mathrm{~N}$
9. A wire of length 10 cm is at 90° to a magnetic field B of strength $10^{-2} \mathrm{~T}$. A current of 2 A flows in the wire.

What is the force on the wire caused by the field?
A. $2 \times 10^{-1} \mathrm{~N}$, parallel to B
B. $2 \times 10^{-1} \mathrm{~N}$, perpendicular to B
C. $\quad 2 \times 10^{-3} \mathrm{~N}$, parallel to B
D. $2 \times 10^{-3} \mathrm{~N}$, perpendicular to B
10. Diagrams (1) and (2) below show two possible arrangements of atoms in a substance with a silicon lattice structure. Diagrams (3) and (4) show two possible band structures for the energy relationships between the atoms of the same substance.

Which pair of diagrams correctly represents P-type semiconductors?
A. 1 and 3
B. 1 and 4
C. 2 and 3
D. 2 and 4
11. Which of these groups of substances conducts electricity by the free movement of individual electrons through a crystal lattice?
A. low pressure gases
B. metallic conductors
C. semiconductors
D. superconductors
12. An ideal transformer has the following characteristics.

Coils in primary	100
Coils in secondary	20
Voltage produced in secondary	2 V

What is the voltage applied to the primary?
A. $\quad 0.1 \mathrm{~V}$
B. $\quad 0.4 \mathrm{~V}$
C. $\quad 2.5 \mathrm{~V}$
D. $\quad 10 \mathrm{~V}$
13. The diagram shows the paths taken by four charged particles, $(P, Q, R$ and $S)$, fired with identical speeds into a region of uniform magnetic field directed normally to the page.

Which statement about these particles could possibly account for these paths?
A. $\quad P$ and Q carry opposite and equal charges and Q has more mass than P
B. $\quad Q$ and R have the same mass, carry opposite charges and R has a larger charge than Q.
C. $\quad R$ and P have the same mass, carry opposite charges and R has a smaller charge than P.
D. $\quad R$ and S carry identical charges and R has a larger mass than S.
14. Why was germanium widely used as a semi-conducting material when scientists knew that silicon was more useful?
A. It could be more easily doped with impurities.
B. It was more readily available.
C. It was far less expensive to obtain.
D. It could be produced with the necessary purity.
15. Which property of cathode rays is demonstrated in a discharge tube with a "maltese cross"?
A. wave nature
B. momentum
C. negative charge
D. straight line propagation
16. A student observes the different striation patterns in a set of discharge tubes. The pressures in the tubes are different but are not in any particular order. He records the following observations:

Tube 1: There is no glow, only the glass at the anode end of the tube glows green.
Tube 2: The column is broken up into striations, separated from the glow at the cathode by a dark space.

Tube 3: The tube is filled with a purple glow and thin red-purple streamers appear.
What is the order of the discharge tubes from greatest to least pressure?
A. Tube 1, Tube 2, Tube 3.
B. Tube 1, Tube 3, Tube 2.
C. Tube 2, Tube 1, Tube 3.
D. Tube 3, Tube 2, Tube 1.
17. The wavelength of the radio waves being broadcast from radio station 2 MMM in Sydney is 2.86 m . What is the energy of a photon of that wave?
A. $\quad 6.95 \times 10^{-26} \mathrm{~J}$
B. $\quad 1.895 \times 10^{-33} \mathrm{~J}$
C. $\quad 1.988 \times 10^{-25} \mathrm{~J}$
D. $\quad 2.32 \times 10^{-34} \mathrm{~J}$
18. Galileo was able to deduce a relationship to explain parabolic projectile motion.

Which of the following statements is in agreement with Galileo's findings on projectile motion?
A. All masses fall to the ground at a constant velocity.
B. The rate at which an object dropped is dependent upon its mass.
C. The square of the distance an object travels from rest is proportional to the time elapsed.
D. The rate at which an object dropped is independent of its horizontal velocity.
19. For a satellite in a low Earth orbit, the altitude above the earth is small in comparison with the Earth's radius.

Compared to a geostationary satellite a low Earth satellite will have a period of orbit which is
A. the same
B. slower
C. faster
D. twice as slow
20. A number of long range space probes have been sent to the outer planets of our solar system on fly by missions. The main reasons for using the sling shot effect were
A. To reduce the cost of launching a heavy probe and ensure that the mission was completed quickly.
B. To ensure the mission was completed quickly and to maintain the quality of transmitted information returned.
C. To ensure that the mission was completed quickly and to reduce the need to send astronauts with the dangers involved.
D. To reduce the need to send astronauts with the dangers involved and to maintain the quality of transmitted information returned.

PART A: Answer the multiple choice questions HERE. Circle the letter of the BEST answer.

1	A	B	C	D	11	A	B	C	D
2	A	B	C	D	12	A	B	C	D
3	A	B	C	D	13	A	B	C	D
4	A	B	C	D	14	A	B	C	D
5	A	B	C	D	15	A	B	C	D
6	A	B	C	D	16	A	B	C	D
7	A	B	C	D	17	A	B	C	D
8	A	B	C	D	18	A	B	C	D
9	A	B	C	D	19	A	B	C	D
10	A	B	C	D	20	A	B	C	D

21. The planet Mars has a mass of $6.24 \times 10^{24} \mathrm{~kg}$ and a radius of $3.40 \times 10^{6} \mathrm{~m}$. Calculate the escape velocity at the surface of Mars.
\qquad
\qquad
\qquad
\qquad
\qquad
22. a. If a space vehicle, sometime after launch, is accelerating vertically at $27.5 \mathrm{~ms}^{-2}$, how many g's would the astronauts inside be experiencing?
\qquad
\qquad
b. How would the astronauts be positioned so as to minimise the chances of them blacking out?
\qquad
\qquad
c. Define the weight of an object.
\qquad
\qquad
d. Justify the statement that an object moving in a circle at constant speed is accelerating.
\qquad
\qquad
e. Predict what would happen to an orbiting satellite if the force of gravity suddenly ceased to act.
\qquad
\qquad
\qquad
23. Explain the difference in function between a split-ring commutator and a slip ring commutator. Describe the situations in which a split-ring commutator and slip ring commutator are used.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
24. An observer, Owen, in a manned space vehicle which is swooping low over the Earth's surface at 0.8 c , sees two simultaneous explosions below him at points A and B . At this instant he is just over a point C, halfway between A and B. Mary Ellen is at rest at B.
a. Will Mary Ellen agree with Owen that the explosions were simultaneous? Discuss.
\qquad
\qquad
\qquad
b. Mary Ellen is now sitting at a railway station whose platform is 100 m long. Owen is now in a train which, at rest, is 150 m long. At what speed must the train be travelling so that Mary Ellen observes the whole length of the train to fit exactly along the platform?
\qquad
\qquad
\qquad
\qquad
\qquad
25.

A coil of wire is placed around an iron bar. The coil is connected to a DC battery.
This is shown in the figure below.

On the diagram above, draw four lines, each with an arrow indicating direction, that show the magnetic field in the region around the iron bar.
26. It can be shown experimentally that a DC electric motor operating at full speed uses less current than an identical motor running at half speed. Explain this observation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
27. A helicopter is to drop a rescue package to a group of hikers. The helicopter is travelling with a speed of $10.0 \mathrm{~m} \mathrm{~s}^{-1}$ at a constant height of 200 m over level ground. The situation is shown in the figure below.

You should ignore air resistance.

a. The pilot wants the package to land beside the hikers. At what horizontal distance, d, from the hikers must the package be released from the helicopter?
\qquad
\qquad
\qquad
\qquad
b. What is the speed with which the package then hits the ground?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
28. The Chinese Space Station (CSS) is currently under construction in Earth orbit. It is incomplete, with a current mass of $3.04 \times 10^{5} \mathrm{~kg}$. The CSS is in a circular orbit of $6.72 \times 10^{6} \mathrm{~m}$ from the centre of Earth.

In the following questions the data below may be needed.
Mass of CSS $3.04 \times 10^{5} \mathrm{~kg}$
Mass of Earth $5.98 \times 10^{24} \mathrm{~kg}$
Radius of Earth $6.37 \times 10^{6} \mathrm{~m}$
Radius of CSS orbit $6.72 \times 10^{6} \mathrm{~m}$
Gravitational constant $6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
a. Calculate the gravitational force on the CSS in its orbit?
\qquad
\qquad
\qquad
\qquad
b. What is the period of orbit of the CSS around Earth?
\qquad
\qquad
\qquad
\qquad
c. When the CSS is completed in 2020, its mass will have increased to $3.70 \times 10^{5} \mathrm{~kg}$. Will the period of orbit of the CSS around Earth then be greater, the same, or less?
29. Assess Einstein's contribution to quantum theory and its relation to black body radiation.

\qquad
30. Some students are studying the emf induced by a magnetic field in a coil of wire. Their experimental apparatus consists of a coil of 100 turns of wire in a magnetic field of $2.0 \times 10^{-2} \mathrm{~T}$ as shown in the figure below.

With the coil vertical as shown in Figure 2, the flux through the coil is $8 \times 10^{-6} \mathrm{~Wb}$. What is the area of the coil?
\qquad
32. Transformers allow for the conversion of high voltages to low voltages and vice versa. Power stations generate electricity at 25000 volts before large transformers step this up to 500000 volts.
a. Explain why power stations transfer electrical energy at very high voltages.
\qquad
\qquad
\qquad
…...
b. In the above step up transformer, what is the ratio of the number of turns in the secondary coil to the number of turns in the primary coil?
\qquad
\qquad
c. If power stations generate electricity with current of 1000 amperes, calculate the current after the voltage has been stepped up to 500000 volts.
\qquad
\qquad
\qquad
\qquad
d. Outline how energy losses within the transformer are reduced to a minimum.
\qquad
\qquad
33. Discuss how shortcomings in available communication technology lead to the invention of the transistor.
\qquad
34. In the diagram below a thin loop of copper wire is sitting stationary in a un
directed down into the plane of the page. The magnetic field is supplied by
the north pole sitting above the plane of the page and the south pole sitti
a. Describe how a potential difference could be generated within the loop without touching or moving the copper loop.
\qquad
\qquad
\qquad
\qquad
b. Assume the potential difference across the loop produces a clockwise current viewed from above the plane of the page. Explain how such a current direction could be achieved.
35. Discuss the advantages of using superconductors and identify ONE limitation to their use.
36. An evacuated tube is set up as shown below to demonstrate the photoelectric effect.

a. When blue light strikes the metal plate a current is detected on the ammeter but when only red light is shone on the plate the current reads zero. Explain these observations
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Explain what would happen to the reading on the ammeter if the intensity of the blue light was increased.
\qquad
\qquad
\qquad
\qquad
\qquad
37. You have performed an experiment to demonstrate magnetic levitation.
a. describe the procedure including any safety measures that were taken.
\qquad
\qquad
\qquad
\qquad
b. Explain your observations.
\qquad
\qquad
\qquad
\qquad
38. The following data was obtained from a YBCO superconductor

TEMPERATURE (K)	RESISTANCE $(\mathrm{m} \Omega)$
118.2	13.37
106.9	10.90
97.9	9.51
92.3	8.29
90.8	0.0001
90.7	0.00001

a. Using the information in the table plot a graph of resistance versus temperature

b. With reference to your graph, estimate the critical temperature for this superconductor. Explain your answer.

Section II: Question 38. Quanta to Quarks (12 marks)

Answer these questions in a separate answer booklet.
39. a. Explain how Neils Bohr was able to adapt the concept of the quantization of energy to improve upon the Rutherford model of the atom.
b. Explain how Neils Bohr's postulates were utilised to explain the line emission spectra of hydrogen.
c. Calculate the wavelength of the photon of light released when an electron falls from the $\mathrm{n}=3$ level to the $\mathrm{n}=2$ level.
d. A sketch of a cathode ray tube (CRT) is shown in the figure below. In this device, electrons of mass $9.10 \times 10^{-31} \mathrm{~kg}$ are accelerated to a velocity of $2.0 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$.

Calculate the de Broglie wavelength of the electrons. You must show your working.
e. Explain how the Davisson and Germer experiment confirmed de Broglie's proposal about the nature of electrons.

