General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- Use the multiple-choice answer sheet provided

Total marks - 100

Section I

75 marks
This section has two parts, Part A and Part B
Part A - 20 marks

- Attempt Questions 1-20
- Allow about 35 minutes for this part

Part B-55 marks

- Attempt Questions 21-30
- Allow about 1 hour and 40 minutes for this part

Section II Pages 25-30

25 marks

- Medical Physics Question 31
- Allow about 45 minutes for this section

2014 HSC TRIAL EXAMINATION PHYSICS

Part A-20 marks

Attempt Questions 1-20

Allow about 35 minutes for this part
Use the multiple-choice answer sheet provided for Questions 1-20

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample
$2+4=(\mathrm{A}) 2$
(B) 6
(C) 8
(D) 9
A
B
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B
C
D

If you have changed your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:

1

The gravitational acceleration on the Earth's surface is approximately $9.8 \mathrm{~m} \mathrm{~s}^{-2}$. In order for any planet to have a gravitational acceleration greater than that of Earth, which of the following properties would it be necessary for that planet to have?
(A) A mass greater than that of the Earth
(B) A radius larger than that of the Earth
(C) Both larger mass and greater radius than those of the Earth
(D) None of the above properties are necessarily true for such a planet.

(A) $\quad \mathrm{V}_{\mathrm{esc}}=1700 \mathrm{~m} \mathrm{~s}^{-1}$
(B) $\quad \mathrm{V}_{\mathrm{esc}}=2400 \mathrm{~m} \mathrm{~s}^{-1}$
(C) $\quad \mathrm{V}_{\text {esc }}=53 \mathrm{~km} \mathrm{~s}^{-1}$
(D) $\quad \mathrm{V}_{\mathrm{esc}}=75 \mathrm{~km} \mathrm{~s}^{-1}$.

Courtesy of Tom Gordon, Outreach Officer, School of Physics, Sydney University and the "Kickstart" team of demonstrators.

Track made of a ring of powerful magnets

The Kickstart team has set up a novel example of the phenomenon of levitation. A circular track of strong magnets allows a superconductor in a liquid air bath inside a polystyrene box not just to float, also to undergo uniform circular motion when pushed.

The superconductor is found to complete 3 revolutions in 8.0 seconds. The mass of the superconductor is 0.16 kg .
For this example, determine which of the following gives the most correct values of the orbital speed of the object, and the centripetal force acting on it.

	Orbital speed	Centripetal force
(A)	$0.59 \mathrm{~m} \mathrm{~s}^{-1}$	0.22 N
(B)	$0.59 \mathrm{~m} \mathrm{~s}^{-1}$	11 N
(C)	$4.2 \mathrm{~m} \mathrm{~s}^{-1}$	0.7 N
(D)	$4.2 \mathrm{~m} \mathrm{~s}^{-1}$	11 N

Consider the graph. The quantities represented by \boldsymbol{x} and \boldsymbol{y} are not provided.
For which of the following formulae could this graph be suitable, if the axes \boldsymbol{x} and \boldsymbol{y} are renamed as indicated?
(A)

\boldsymbol{x}	\boldsymbol{y}	Formula
E_{K}	v	$E_{K}=\frac{1}{2} m v^{2}$
T	r	$\frac{r^{3}}{T^{2}}=\frac{G m}{4 \pi^{2}}$
L_{v}	v	$L_{v}=L_{0} \sqrt{1-v^{2} / c^{2}}$
m_{v}	v	$m_{v}=\frac{m_{0}}{\sqrt{\left(1-v^{2} / c^{2}\right)}}$

The Earth's radius at the equator is close to 6380 km , and its rotational period can be assumed to be exactly 24 hours.

If a new satellite launching station were established at Woomera in South Australia, which of the following would best describe the launch velocity advantage.

	Launch velocity advantage	Launch direction
(A)	Less than $464 \mathrm{~m} \mathrm{~s}^{-1}$	East \rightarrow west
(B)	More than $464 \mathrm{~m} \mathrm{~s}^{-1}$	East \rightarrow West
(C)	More than $464 \mathrm{~m} \mathrm{~s}^{-1}$	West \rightarrow east
(D)	Less than $464 \mathrm{~m} \mathrm{~s}^{-1}$	West \rightarrow east

The Michelson-Morley experiment was carried out many times in different localities and at different times of the day and year, it always produced a null result, although it was accurate, reliable and valid for its hypothesis.

Which of the following alternatives best describes what is meant by a null result?
(A) The dependent variable does not change when the independent variable changes
(B) The dependent variable changes in a non-linear way relative to the independent variable
(C) The dependent variable changes in a non-consistent way as the independent variable is changed
(D) The dependent variable changes in a way contrary to what the experiment had predicted as the independent variable is changed.

7

Alien craft - not to scale

The diagram shows an alien galactic voyager craft approaching the Moon at 0.99 c . Earth observers note that the craft starts exactly 18 light hours distance from the Moon. From the Aliens perspective it takes less than 18 hours to reach the Moon.
How could the aliens explain why the trip took less than 18 hours to complete the trip to the Moon?
(A) The distance between the Aliens and the Moon contracts at relativistic speeds
(B) The aliens' frame of reference must be accelerating, and therefore is not inertial
(C) This is the same as the Twin Paradox where the actual travellers' view is wrong
(D) According to relativity, the mass of the craft increases greatly, and this affects the space-time constant.

8 Two copper rings lie in the same plane as shown in the diagram below. A large constant current initially flows in the outer ring. The current in the outer ring is then reduced to zero.

Which option best describes the current in the inner ring.

	Initial current	Current as outer ring current is reduced.
A	Zero	Anticlockwise
B	Zero	Clockwise
C	Clockwise	Anticlockwise
D	Anticlockwise	Clockwise

9. All of the following are essential features of a functioning DC electric motor except for which non-essential feature?
(A) Slip-rings to allow current to enter
(B) A coil free to rotate that turns the armature
(C) A fairly strong magnetic field to create the motor effect
(D) An external source of potential difference to provide the current and energy.

The south pole of a bar magnet is brought close to the western side of a wire carrying DC current due north, as shown.
What is the direction of the force on the wire?
(A) Left
(B) Right
(C) Into the page
(D) Out of the page

11

The primary coil of this transformer has 100 loops and the secondary coil 400 loops.
When the switch is closed DC electric current passes through the primary coil as shown. Which statement correctly describes the voltage that would be measured across the terminals of the secondary coil.
(A) A continuous AC voltage.
(B) An AC voltage that would be present for a very short period of time.
(C) A continuous DC voltage.
(D) A DC voltage that would be present for a very short period of time.
12. Three identical conductors shown below have been measured to have the following currents .

Conductor	Current (A)
W_{1}	9
$\mathrm{~W}_{2}$	6
$\mathrm{~W}_{3}$	3

Conductor W_{2} is an equal distance from W_{1} and W_{3}. What is the initial net force acting on W_{3}.
(A) Zero.
(B) Non-zero and to the right.
(C) Non-zero and to the left.
(D) Non-zero and out of the page.
13. The following model is used to demonstrate the principal of an AC induction motor.

Which of the following correctly relates the part of the model to the part of the AC induction motor.

	Part of model	AC induction motor part
(A)	Rotating magnet	Squirrel cage rotor
(B)	Rotating magnet	Stator coils
(C)	Disc	Magnetic core
(D)	Disc	Rotor coils

A very strong permanent magnet is attached to a string, forming a simple pendulum when suspended from a clamp attached to a retort stand.
The magnet is then pulled back, and allowed to swing between the sides of a U-shaped channel made of aluminium.
The pendulum comes to a stop very quickly. What is the main reason it stops so abruptly?
(A) The magnet is attracted by the metal of the channel, and sticks to it.
(B) Induced currents in the metal produce magnetic fields repelling the magnet.
(C) Induced currents in the metal produce magnetic fields that both attract and repel the magnet.
(D) The magnet is repelled by the metal of the channel and spins before sticking to it.

An aircraft is flying due south at cruising speed above a point where Earth's magnetic field is directed vertically downwards. An emf is induced between the tips of the plane's wings.
To which of the wingtips, L or R, do electrons move, and which wingtip becomes positively charged?
(A) Electrons move towards wingtip R , so it becomes positively charged
(B) Electrons move towards wingtip L , so it becomes positively charged
(C) Electrons move towards wingtip R , so wingtip L becomes positively charged
(D) Electrons move towards wingtip L, so wingtip R becomes positively charged.

Many experiments involving cathode-rays were carried out in the later part of the $19^{\text {th }}$ century by Julius Plucker, William Crookes and others, the aim being to discover their properties in order to determine their nature. Some of these experiments led to the following results:
(I) The tube with a fluorescent plate demonstrated that cathode-rays are deflected by a magnetic field.
(II) The Maltese Cross tube established that cathode-rays move in straight lines, and form "shadows" behind barriers.
(III) The Geissler tube confirmed that cathode-rays cause fluorescence on the glass behind the anode.
(IV) The paddle-wheel tube showed that cathode-rays possess momentum and kinetic energy.
(V) A cathode-ray tube with photographic film in darkness verified that cathode-rays expose photographic film.

Which of the following identifies the properties of cathode-rays that exclusively give support to the view that cathode rays are charged particles?
(A) (I) and (IV) only
(B) (III) and (V) only
(C) (I), (II) and (IV) only
(D) (II), (III) and (V) only.

17 MWWWWM

This diagram represents a photon of electromagnetic radiation that strikes a metal having a work function $\Psi=3.85 \times 10^{-19} \mathrm{~J}$. Which of the following identifies the frequency of the photon, the energy it possesses, and whether it releases a photoelectron?
(A)
(B)
(C)
(D)

Frequency $[\mathrm{Hz}]$	Photon energy $[J]$	Releases photoelectron?
5.0×10^{13}	3.3×10^{-20}	yes
5.0×10^{13}	3.3×10^{-20}	no
6.0×10^{14}	4.0×10^{-19}	no
6.0×10^{14}	4.0×10^{-19}	yes

18 What was the main reason why Germanium was used in the earliest transistors?
(A) Silicon is a rare element which had not been mined yet.
(B) Silicon was difficult to produce with a suitable purity.
(C) Germanium was more abundant and cheaper to produce.
(D) Germanium was a more suitable choice for doping with other elements.

19 Two oppositely charged metal plates are separated by 5 cm and the voltage between them is 200 V .

Calculate the force that would act on a 1C charge placed at the position, P , between the plates.
(A) 10 N
(B) 40 N
(C) 4000 N
(D) 10000 N

20 In class you carried out an investigation to observe striation patterns in discharge tubes at different pressures. Which option correctly identifies the variables in this investigation?

	Dependent	Independent	Controlled
A	Gas Pressure	Striation pattern	Voltage
B	Striation pattern	Voltage	Gas Pressure
C	Voltage	Striation pattern	Gas Pressure
D	Striation pattern	Gas Pressure	Voltage

Centre Number

Student Number

Part B-55 marks

Attempt Questions 21-30
Allow about 1 hour and 40 minutes for this part
Answer the questions in the spaces provided.
Show all relevant working in questions involving calculations.

Question 21

Spacecraft can either burn up or veer off course during re-entry from orbit. This is avoided by ensuring :

- The craft is the correct shape
- The craft re-enters at just the right angle
- The craft is covered in an insulating material.

Using relevant physical principles explain each of these points.
(6 marks)
\qquad

Question 22

Robert made a device that launches a projectile at $16 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle 60° above the horizontal, as shown in the diagram. The projectile is a sphere wrapped in a parachute. At exactly 1.5 s after being launched a parachute opens instantly, causing the sphere to lose all horizontal velocity and fall vertically down with a constant velocity until it reaches the ground. Its speed as it falls is identical to its vertical velocity when the parachute opened.
(a) What is its vertical displacement when the parachute opens? (2 marks)
\qquad
\qquad
\qquad
\qquad
(b) How long after the parachute opens does it take the projectile to drop back to the same level from which it was launched?(2 marks)
\qquad
\qquad
\qquad
\qquad
(c) What is its horizontal displacement when it drops back to that same point? (1 mark)
\qquad
\qquad

Question 23

(a) Given that the mass of the Earth is $6.0 \times 10^{24} \mathrm{~kg}$, determine the radius of orbit of Earth's first artificial satellite (assuming it to be circular, although it was not). (3 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) One of the reasons why Sputniks orbit was not circular was that it experienced another force except for gravity. Explain why this force contributed to the noncircular orbit of the satellite.(3 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 24

Albert Einstein was responsible for many significant changes in scientific thinking related to motion and light. Assess this statement with reference to Einstein's work. (7 marks)
\qquad

Question 25

Students have been asked to test Ampere's Law. They place a $40-\mathrm{cm}$ length of stiff copper wire on the top of an accurate electronic balance and connect it to the output of a device called a potentiometer so that they can vary the DC current flowing through it. The current is directed due north. A horizontal uniform magnetic field is set up between two powerful rare earth magnets on either side of the wire.
The readings the students obtain as the current is varied are shown in the table below.

Current (A)	0.25	0.75	1.00	1.50	2.00
Reading (kg)	0.0039	0.0071	0.0090	0.0120	0.0153

(a) Use the axes provided below to design an appropriate graph of the relationship between the current through the wire and the readings on the balance, including a line of best fit. (4 marks)

(b) Using the graph determine the mass of the $40-\mathrm{cm}$ length of wire. (2 marks)
\qquad
\qquad
\qquad

Question 26

Consider the following data concerning the (pure) metals aluminium and copper:

Metal	Resistivity $\left(20^{\circ} \mathrm{C}\right)$	Density	Stress \div strain
Aluminium	$2.65 \times 10^{8} \Omega \mathrm{~m}$	$2.70 \mathrm{~kg} \mathrm{~m}^{-3}$	70 GPa
Copper	$1.68 \times 10^{8} \Omega \mathrm{~m}$	$8.92 \mathrm{~kg} \mathrm{~m}^{-3}$	130 GPa

Points to consider:

* the higher a metal's resistivity the larger the resistance of otherwise identical cable;
* the greater its density the heavier an identical length of cable will be to work with;
* the higher the stress : strain ratio the more the cable sags when strung between pylons.

Discuss why copper wire is commonly used for domestic, commercial and industrial electric circuitry, whereas aluminium is used for cross-country power cables. (6 marks)
\qquad

Question 27

A laptop computer requires an input of 19.6 volts DC, which is provided by its power adaptor. In Australia the input to these is normally the 240 V AC supply.
(a) What is the ratio of the number loops on the primary coil of the adaptor for this laptop to the number of loops on its secondary coil?(1 mark)
\qquad
\qquad
(b) Explain how transformers such as this are designed to reduce the amount of heat losses that occur within them. (2 marks)
\qquad
\qquad
\qquad
\qquad

Question 28

Using the band theory model describe how conduction occurs in an intrinsic semiconductor and an n-type semiconductor. (7 marks)
\qquad

Question 29

Heinrich Hertz used the following apparatus to calculate the speed of radio waves.

(a) Outline the significance of the speed calculated by Hertz. (2 marks)
\qquad
\qquad
\qquad
\qquad
(b) In order to calculate the speed, he first needed to work out the wavelength of the radio waves. Explain how he was able to do this.(3 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 30

The above graph shows a black body radiation curve for an object at 500 K . The analysis of such curves caused much controversy towards the end of the $19^{\text {th }}$ century, because the theoretical relationship did not match the experimental one.
(a) Identify appropriate labels for the axes of the graph: (1 mark)

```
x-axis }y\mathrm{ -axis
```

(b) Describe why this graph was so controversial near the end of the $19^{\text {th }}$ century. (2 marks)
\qquad
\qquad
\qquad
\qquad
(c) On the black body graph above draw a second curve for an object at 1000 K . (1 mark)

Physics
 Section II

25 marks
Attempt the Medical Physics elective
Allow about $\mathbf{4 5}$ minutes for this section
Answer the question in a SEPARATE writing booklet.
Show all relevant working in questions involving calculations.

Question 31 - Medical Physics (25 marks)

(a) The following images show two different scans of the human abdomen.

Scan A

Scan B

(i) Compare the image produced by Scan A with Scan B (2 marks)
(ii) Assess this statement:
"Scan B has a higher resolution than scan A. Therefore scan B would be superior for use in obstetrics" (3 marks)
(b) The table below provides some characteristics of various body tissues:

Body tissue	speed of sound	density
air	$330 \mathrm{~m} \mathrm{~s}^{-1}$	$1.3 \mathrm{~kg} \mathrm{~m}^{-3}$
soft tissue, e.g. skin	$1540 \mathrm{~m} \mathrm{~s}^{-1}$	$1040 \mathrm{~kg} \mathrm{~m}^{-3}$
muscle	$1590 \mathrm{~m} \mathrm{~s}^{-1}$	$1075 \mathrm{~kg} \mathrm{~m}^{-3}$
normal healthy bone	$4080 \mathrm{~m} \mathrm{~s}^{-1}$	$1908 \mathrm{~kg} \mathrm{~m}^{-3}$

Following extended periods in space-stations some astronauts were found to have suffered a reduction in their bone density because of the "microgravity" conditions within which they lived.
(i) Determine the acoustic impedance of bone tissue.
(2 marks)
(ii) An ultrasound scan from muscle to the femur (long leg bone) of one cosmonaut was taken, and the ratio of reflected to initial intensity was measured to be 0.387 . (Muscle has an acoustic impedance of 1.7
Rayls)
Compare this value to that of a normal healthy bone. (3 marks)
(c)

(i) Describe the production of the ultrasound images above. (2 marks)
(ii) Evaluate the use of the above image for diagnosing a hole in the heart wall. (2 marks)
(d) An ultrasound was taken of a person's calf muscle. Sound travels at $1580 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ through muscle tissue.

(i) Construct a graph in your booklet as shown on the next page. Draw the A-scan that you would expect as the ultrasound passes from fat into muscle if the ultrasound pulse was sent at $\mathrm{t}=0 \mathrm{~s}$. (4 marks)

(f) Assess the impacts of the use of X-rays in medical imaging on society. (7 marks)

End of Question 32

BLANK PAGE

DATA SHEET

Charge on electron, q_{e}	$-1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, m_{e}	$9.109 \times 10^{-31} \mathrm{~kg}$
Mass of neutron, m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Mass of proton, m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Speed of sound in air	$340 \mathrm{~m} \mathrm{~s}^{-1}$
Earth's gravitational acceleration, g	$9.8 \mathrm{~m} \mathrm{~s}^{-2}$
Speed of light, c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Magnetic force constant, $\left(k \equiv \frac{\mu_{0}}{2 \pi}\right)$	$2.0 \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}$
Universal gravitational constant, G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Mass of Earth	$6.0 \times 10^{24} \mathrm{~kg}$
Planck constant, h	$6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Rydberg constant, R (hydrogen)	$1.097 \times 10^{7} \mathrm{~m}^{-1}$
Atomic mass unit, u	$1.661 \times 10^{-27} \mathrm{~kg}$
	$931.5 \mathrm{MeV} / \mathrm{c}^{2}$
1 eV	$1.602 \times 10^{-19} \mathrm{~J}$
Density of water, ρ	$1.00 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
Specific heat capacity of water	$4.18 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

FORMULAE SHEET

$$
\begin{aligned}
& v=f \lambda \\
& E_{p}=-G \frac{m_{1} m_{2}}{r} \\
& I \propto \frac{1}{d^{2}} \\
& \frac{v_{1}}{v_{2}}=\frac{\sin i}{\sin r} \\
& E=\frac{F}{q} \\
& R=\frac{V}{I} \\
& P=V I \\
& \text { Energy }=\text { VIt } \\
& v_{\mathrm{av}}=\frac{\Delta r}{\Delta t} \\
& F=\frac{G m_{1} m_{2}}{d^{2}} \\
& a_{\mathrm{av}}=\frac{\Delta v}{\Delta t} \text { therefore } a_{\mathrm{av}}=\frac{v-u}{t} \\
& E=m c^{2} \\
& \Sigma F=m a \\
& l_{v}=l_{0} \sqrt{1-\frac{v^{2}}{c^{2}}} \\
& F=\frac{m v^{2}}{r} \\
& E_{k}=\frac{1}{2} m v^{2} \\
& t_{v}=\frac{t_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& W=F s \\
& p=m v \\
& m_{v}=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& \text { Impulse }=F t
\end{aligned}
$$

FORMULAE SHEET

$$
\begin{array}{ll}
\frac{F}{l}=k \frac{I_{1} I_{2}}{d} & d=\frac{1}{p} \\
F=B I l \sin \theta & M=m-5 \log \left(\frac{d}{10}\right) \\
\tau=F d & \frac{I_{A}}{I_{B}}=100^{\left(m_{B}-m_{A}\right) / 5} \\
\tau=n B I A \cos \theta & m_{1}+m_{2}=\frac{4 \pi^{2} r^{3}}{G T^{2}} \\
\frac{V_{p}}{V_{s}}=\frac{n_{p}}{n_{s}} & \frac{1}{\lambda}=R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \\
F=q v B \sin \theta & \lambda=\frac{h}{m v} \\
E=\frac{V}{d} & \frac{A_{0}=\frac{V_{\text {out }}}{V_{\text {in }}}}{E=h f} \\
c=f \lambda & \frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}} \\
Z=\rho v & \\
\frac{I_{r}}{I_{0}}=\frac{\left[Z_{2}-Z_{1}\right]^{2}}{\left[Z_{2}+Z_{1}\right]^{2}} & \\
\hline \frac{1}{2} & \\
\hline
\end{array}
$$

PERIODIC TABLE OF THE ELEMENTS

| 57
 La
 138.9
 Lanthaum | 58
 Ce
 140.1
 Cerium | \|c|c $\begin{gathered}59 \\ \text { Pr } \\ \text { Prasedymium }\end{gathered}$ | \|ce60
 Nd
 144.2
 Neodymium | $\begin{array}{\|c\|} \hline 61 \\ \mathrm{Pm} \\ \text { Promethium } \end{array}$ | $\begin{gathered} 62 \\ \mathrm{Sm} \\ 150.4 \\ \text { Samarium } \end{gathered}$ | $\begin{gathered} 63 \\ \text { Eu } \\ \text { 152.0 } \\ \text { Europium } \end{gathered}$ | $\begin{gathered} 64 \\ \mathrm{Gd} \\ 157.3 \\ \text { Gadolinium } \end{gathered}$ | $\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.9 \\ \text { Terbium } \end{gathered}$ | $\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ \text { Dysprosium } \end{gathered}$ | $\begin{gathered} 67 \\ \text { Ho } \\ 164.9 \\ \text { Holmium } \end{gathered}$ | $\begin{gathered} 68 \\ \mathrm{Er} \\ 167.3 \\ \text { Erbium } \end{gathered}$ | $\begin{gathered} 69 \\ \mathrm{Tm} \\ 168.9 \\ \text { Thulium } \end{gathered}$ | $\begin{gathered} 70 \\ \mathrm{Yb} \\ 173.1 \\ \text { Yterbium } \end{gathered}$ | 71 Lu 175.0 Lutectium |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Actinoids | | | | | | | | | | | | | | |
| 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
| Actinum | ${ }_{\text {Thorium }}^{232.0}$ | $\underset{\text { Protactinum }}{2310}$ | ${ }_{\text {Uranium }}$ | Neptunium | Pluonium | Americium | Curium | Berkelium | Califomium | Einsteinium | Fermium | Mendelevium | Nobelium | Lawrencium |
| Elements with atomic numbers 113 and above have been reported but not fully authenticated.Standard atomic weights are abridged to four significant figures.Elements with no reported values in the table have no stable nuclides.The International Union of Pure and Applied Chemistry Periodic Table of the Elements (February 2010 version) is the principal source of data. Some data may have been modified | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |

Marking Guidelines Trial Exam 2014 Year 12 Physics

1.	D	7.	A	13.	B or D	19.	C
2.	A	8.	B	14.	C	20.	D
3.	A	9.	A	15.	C		
4.	B	10.	D	16.	A		
5.	D	11.	D	17.	D		
6.	A	12.	B	18.	B		

Part B.
$\left.\begin{array}{|l|c|}\hline \text { 21. Marking criteria } & \text { Marks } \\ \hline \begin{array}{l}\text { Clear explanation of features related to points: Features designed to control rate } \\ \text { of KE converted to friction (leading to heat) or re-radiation of heat produced from } \\ \text { K energy conversion (slowing the space craft down) } \\ \text { Shape: blunt face to re-entry, large SA over which heat from friction can be } \\ \text { distributed, creation of compressed air shockwave in front of the craft acting as } \\ \text { an insulating buffer. }\end{array} & 4 \\ \text { Correct entry angle - concept of a window } 5.2 \text { to 7.2 degrees to horizontal. } \\ \text { Too great an angle leads to friction too great as craft decelerates too fast leading } \\ \text { to high friction overheating of craft, too low angle means craft downward impulse } \\ \text { too small to allow penetration of the increasingly dense atmosphere causing veer } \\ \text { off into space, a reflection. } \\ \text { Insulation: Conduction of heat generated by friction into the craft prevented, re- } \\ \text { radiation of heat from hot insulation. } \\ \text { Note: No mention was made that this craft was manned, therefore answers } \\ \text { should not assume so, nor discuss specific effects on people. }\end{array}\right]$

22 (b). Marking criteria	Marks
Correct substation and method to determine the time	2
Correct method established but incorrect substitution	1

$\mathbf{2 2}$ (c) . Marking criteria	Marks
Correct calculation of horizontal displacement (CTE allowed)	1

23 (a). Marking criteria	Marks
Correct calculation of the radius of orbit.	3
Correctly determining r^{3}, but not r or Incorrectly substituting $\mathrm{T}=96$ into the correct equation, producing an answer	2
Correct calculation of $\mathrm{T}=96 \times 60$ seconds	1

23 (b)

Marking criteria	Marks
Clear explanation of why slowing velocity due to identified friction with the atmosphere reduced velocity preventing a circular orbit/creating a spiral orbit towards the Earth with best answers referring to centripetal force equation	3
Explanation identifying some aspects of the friction force contributing to noncircular orbit but lacking clarity	2
One significant aspect of the motion identified and related to why the orbit was non circular.	1

24

Marking criteria
High level answer showing logical progression of three significant changes in scientific thinking about motion and light supporting a judgement about statement. Answers included:
The shift from quantities (time, mass and length) as constant under Newtonian physics to relative quantities.
The change in thinking of velocity of light being measured relative to the aether to velocity of light being constant to all observers in all FOR.
The change from light being thought of as a continuously emitted wave where energy can take on any quantity, to light being emitted in discrete packets (as quanta)
Answer showing logical progression of two significant changes in scientific thinking about motion and light OR Main ideas shown for three significant changes in scientific thinking about motion and light but lacking connection to clearly show transition in scientific thinking.
Answer supports a judgement about statement.
Basic description of Einstein's work regarding motion and light showing some understanding of ways it has affected scientific thinking.
Basic description of Einstein's work regarding motion or light showing basic understanding of how it has affected scientific thinking.
25a

Marking criteria	Marks
Correct graph drawn with correct axis labels, scales, points plotted accurately and an accurate line of best fit.	4
Three correct aspects of graph	3
Two correct aspects of graph	2
One correct aspects of graph	1

25b

Marking criteria	Marks
Correct extrapolation of graph to find correct mass of wire (as 0.0025 kg) with	2

correct units.
Correct extrapolation of graph to find correct mass of wire (as 0.0025)
26

Marking criteria
Clear and well structured discussion relating each physical property in the table

| Discussion relating four physical properties in the table to a specific relevant | $3-4$ |
| :--- | :--- | :--- | advantage or disadvantage which allows for the use of the metal for its stated purpose.

Discussion relating two physical properties in the table use to discuss a specific advantage or disadvantage at a basic level which allows for the use of the metal for its stated purpose.
27a
27a

Marking criteria	Marks
Correct ratio calculated as 600:49 (or some reasonable variation)	1
27b	Marks
Marking criteria	2
Clear explanation of how the iron core of the transformer is laminated to reduce the size of eddy currents formed and resultant resistive heat loss.	1
Clearly describes the iron core of the transformer as laminated.	

Marking criteria	Marks

Clear well structured answer which comprehensively describes conduction in both using relevant band diagrams. Answer must include a description of the following for each semiconductor:

- formation of charge carriers - conducting electrons (CB) and positive holes (VB) and relative amounts of each (Note: better answers recognised this process in both types of semiconductor)
- formation of dopant (donor) level and its effect on formation of charge carriers (Note: donor level does NOT affect valence electrons)
- relative amounts of energy required for conduction in each type of semiconductor related to the band theory (Note: the forbidden energy gap does NOT get smaller)
- movement of electrons (to the + terminal) and positive holes (to the - terminal) when a potential difference is applied (Note: This point describes conduction!)
Clear answer which more generally describes conduction in both using relevant band diagrams. Most of the above points must be included.
Basic description of the mechanism required for semiconductors to conduc
electricity eg. Heat energy causes excitation of electrons in valence band to conduction band. With one to two other significant statements.
Basic description of the mechanism required for semiconductors to conduct
electricity or one other significant statement.
29a

Marking criteria	Marks	
	2	
	1	
29b	Marks	
Marking criteria	$2-3$	
	1	
30a	Marks	
Marking criteria	1	
x-axis - wavelength, y-axis - intensity		

x-axis

Marking criteria	Marks
Clear description of how blackbody graphs did not fit with the classical wave model of light including description of specific predictions made by wave model which were contrary to experimental data OR discussion of the conflicting viewpoint of Planck using mathematical equations assuming EM quantisation.	2
Clear statement of how blackbody graphs did not fit with the classical wave model of light.	1
Macking criteria Marks Correct curve drawn where curve is above the 500K curve at ALL points on the graph (must NOT cross other curve). Peak in graph clearly closer to y-axis than 500K curve. 1	

31a	
Marking criteria	Marks
Two similarities or differences between the images pictured(not the techniques used) eg. Both images are greyscale or image A has more noise than image B	2
One similarity or difference between the images	1

One similarity or difference between the images
31b

Marking criteria	Marks
Negative judgement related to clear reasoning as to why CAT scans are not suitable for obstetrics.	3
Negative judgement with limited or unclear reasoning as to why CAT scans are not suitable.	$1-2$

31bi

Marking criteria	Marks
Correct calculation with units	2
Correct calculation without units	1
31 bii	

31bii

Marking criteria

Correct calculation of the reflected ratio AND a comparison with the ratio with the cosmonaut	3
Correct calculation of the reflected ratio without a comparison OR Calculation of acoustic impedance of bone with comparison (not what was asked in question)	2
Correct method of calculation with an error.	1

Marking criteria	Marks
An understanding of the Doppler effect shown and related to how the image is produced.	2
Either an understanding of the Doppler effect shown or some aspects of how the scan is produced.	1

31cii

Marking criteria	Marks
Positive judgement AND clearly relates aspect of the image (orange areas between heart chambers of diseased patient) to the diagnosis	2
Demonstrates some understanding of how the image pictured is used.	1

NOTE : Many students did not refer to the image shown and only to Doppler ultrasound.
This clearly does not answer the question and was awarded zero.
31d

Marking criteria	Marks
Correct calculation of the reflected intensity, time for the pulse to return and placement of a peak on the a-scan graph.	4
Correct calculation of reflected intensity AND either show how the graph should look or calculates the correct time for the sound wave to return.	3
Some aspects of the process calculated or demonstrated correctly.	$1-2$

$31 f$

Marking criteria	Marks
A judgement of the impacts AND clearly links the use of x-ray imaging and CT scans on two or more significant impacts on society AND uses a coherent progression and appropriate scientific terminology.	$6-7$
A judgement of the impacts AND answer clearly links the use of x-ray imaging on two or more significant impacts on society OR Assesses the impacts of both x-ray imaging and CT scans with weak links to impacts on society	$4-5$
Demonstrates a knowledge of how x-rays or CT scans are used and shows how they impact on individuals.	$2-3$
Outlines some relevant information regarding either x-rays or CT scans.	1

Note : Higher mark values could only be accessed by assessing impacts of both xrays and CT (which both use x-rays).

