SYDNEY BOYS HIGH SCHOOL

HSC TRIAL EXAMINATION 2006

PHYSICS

General Instructions

Reading Time 5 minutes
Working Time 3 hours
Write using blue or black pen
Draw diagrams using pencil.
Board- approved calculators may be used.
A data sheet, formulae sheets and
Periodic Table are provided with this
paper.

Marks may be allocated to working Show all working

Total marks - 100

Section I Pages 2 – 16 **Total marks 75**

This section has two parts, Part A and Part B.

Part A – 15 marks

- Questions 1 − 15
- Allow about 30 minutes for this part

Part B - 60 marks

- Attempt Questions 16 30
- Allow about hour and 45 minutes for this part.

Section II Page 15 **Total marks 25**

1. There are a number of reasons which contribute to variations in the value of the acceleration due to gravity at specific locations on the surface of the Earth.

Which of the following pairs of reasons would **not** be responsible for such variations?

- (A) Crustal variations and the shape of the Earth.
- (B) The shape of the Earth and the height above sea level.
- (C) Height above sea level and the Earth's spin.
- (D) Crustal variations and the Earth's orbit around the Sun.
- **2.**The Earth, of radius and mass, 6.38×10^6 m and 5.98×10^{24} kg respectively, has an artificial satellite. The satellite orbits at an altitude of 300 km, has a mass of 200kg and travels with a velocity of 20 000km h⁻¹ The gravitational force acting on the satellite is;
 - (A) $1.8 \times 10^{-3} \text{ N}$
 - (B) $2.3 \times 10^{-1} \text{ N}$
 - (C) $1.8 \times 10^3 \text{ N}$
 - (D) $2.3 \times 10^3 \text{ N}$
- **3.** The diagram shows four positions of a car on a roller coaster ride.

At which point during this ride would the occupant experience maximum 'g force'?

- (A) P
- (B) Q
- (C) R
- (D) S
- **4.** The table contains information related to two planets orbiting a distant star.

Planets	Mass	Orbital	Radius of	Length of	Orbital
	(kg)	radius (m)	planets (m)	day (s)	period (s)
Alif	1.21×10^{25}	4.00×10^{11}	8.0×10^6	9.5×10^4	8.75×10^7
Ba	1.50×10^{24}	8.00×10^{11}	4.0×10^6	4.7×10^4	

The orbital period of the planet Ba can be determined by using data selected from this table.

What is the orbital period of the planet Ba?

- (A) $3.10 \times 10^7 \text{s}$
- (B) $5.51 \times 10^7 \text{s}$
- (C) $1.39 \times 10^8 \text{s}$
- (D) $2.47 \times 10^8 \text{s}$

5. A radioactive particle used in a linear accelerator. Measured at rest relative to the laboratory it has a half life of 2.5 us. When measured at constant speed by an observer in the laboratory, its half life has increased to 10 us.

What is the speed of the particle relative to the laboratory?

- (A) $1.68 \times 10^8 \text{ ms}^{-1}$
- (B) $2.10 \times 10^8 \text{ ms}^{-1}$
- (C) 290 000 000 ms ⁻¹
- (D) $2.60 \times 10^8 \text{ ms}^{-1}$
- **6.** Identify which of the following is **not** a component of a DC generator.
 - (A) brushes
 - (B) coil
 - (C) magnetic field
 - (D) slip-rings
- **7.** Two long parallel wires are carrying electrical currents. The direction of the current in one of the wires is reversed. How does this affect the force between the wires?
 - (A) The force does not change.
 - (B) The force changes direction.
 - (C) The force increases.
 - (D) The force decreases.
- 8. The following diagram shows a coil of wire between two magnets.

When a current passes through the coil in the direction shown, which is now free to move, the coil will:

- (A) start rotating clockwise (viewed from the front)
- (B) not move
- (C) move vertically
- (D) start rotating anticlockwise (viewed from front)
- **9.** A piece of wire 1.0cm long is at right angles to a magnetic field whose magnetic flux density is 1.5T. A current of 2.0 A flows in the wire. What is the magnitude of the force on the wire?
 - (A) 3.0 N
 - (B) 0.3 N
 - (C) 0.03 N
 - (D) zero

10. A transformer is needed to convert an input voltage of 6000V to an output voltage of 240V. The **type of transformer** and the **ratio** of the number of turns in its secondary coil to the number of turns in its primary coil are

- (A) step up, 25:1
- (B) step up, 1:25
- (C) step down, 25:1
- (D) step down, 1:25

11. The following diagram shows a simple cathode ray tube from an oscilloscope.

The parts labelled Y have the function of

- (A) producing electrons.
- (B) showing the position of the beam.
- (C) deflecting the beam horizontally.
- (D) accelerating the electrons.

12. The following diagram shows the electric fields near a point charge and between parallel plates.

At which point is the magnitude of the electric field greatest?

- (A) A
- (B) B
- (C) C
- (D) D

Student	Number.			

13. Which of the following statements is correct?

- (A) Einstein was the first person to observe the photoelectric effect.
- (B) Planck hypothesised that energy was exchanged, in quanta amounts, by the atomic oscillators of a black body.
- (C) Hertz performed experiments to measure the speed of light, using radio waves.
- (D) Einstein predicted that for a black body, as the wavelength shortens, the radiation intensity will increase.

14. Solid state devices replaced thermionic devices because thermionic devices;

- (A) were much smaller and required less current in their circuits.
- (B) had a much longer life as they did not become warm at all.
- (C) were less reliable and were easily broken.
- (D) allowed the cathode coating to evaporate, helping current flow.

15. In metal conductors, the resistance

- (A) increases as the amount of impurities increase.
- (B) increases as the lattice vibrations decrease.
- (C) decreases as more electrons are scattered by lattice vibrations.
- (D) decreases as the temperature of the metal increases.

16.

An enemy ship was sailing 2km from the coast. A cannon on a 100 metre-high cliff fired a projectile at an angle of 20^{0} to the horizontal, at a speed of 150 m/s.

a) Determine the vertical and horizontal components of the initial velocity.	2
b) Calculate the <u>time</u> taken for the cannon ball to reach the maximum height and the maximum <u>h</u> of the cannon ball above the water.	
	3

(c) Calculate

(i) the range of the cannon ball

Student Number	
(ii) how far from the ship the cannon ball landed	1
(d) Describe an adjustment of the cannon that is necessary for a cannon ball to hit the ship.	1
17. Explain why all low earth orbit satellites will eventually fall to the Earth's surface.	2
18. A boy standing on train station platform observes a NLST (near light-speed transport) train through the station. He observes the clocks on the train to be running slower than normal. How girl on the train observes the boy's watch, and notices that his watch is running slower than the on the train.	vever, a
Account for the above situation with reference to the principle of relativity.	3

19. Michelson and Morley set up an experiment to measure the velocity of Earth relative to the aether.

Mark

(a) Outline TWO features of the aether model for the transmission of light. 2
(b) Recount the Michelson and Morley experiment, which attempted to measure the relative velocity of Earth through the aether, and describe the results they anticipated.

20. In your course you performed an investigation to demonstrate the production of an alternating current.

Mark

Student Number.....

Student Number	• • •
(a) Describe an experiment you did to produce alternating current, with particular reference to how you verified that alternating current was actually produced.	3
(b) Describe two advantages of using AC generators for large-scale electrical power production.	2
21. The photograph shows a small electrical motor from an electric drill.	3
(a) Name the labelled parts A, B, and C and	
(b) Describe the function Of each	

22. The diagram shows part of an experiment designed to measure the force between two parallel current-carrying conductors.

The experimental results are tabulated below.

<i>I</i> ₂ (A)	Force (× 10^{-6} N)
. 0	0
2.0	7
3.0	11
4.0	14
5.0	18

(a) Plot the data and draw the line of best fit.

(b) Calculate the gradient of the line of best lit for the graph.	,
(c) Write an expression for the magnetic force constant k in the terms of the gradient and other variables.	2
(d) Use this expression and the gradient calculated in part (b) to determine the value of the magnetic force constant k .	1

23. In a particular experiment a long length of copper wire of very resistance is rotated by two students. The ends of the wire are connected to a galvanometer G, and a current is detected.

Student	Number.		
Student	Number.	 	

Explain the effect of increasing the speed of rotation on the current measured by the galvanometer	er 4
	•
	•
	•
	•
	•
	•
24. Using silicon as an example of a semiconductor, describe how it carries a current and how doping effects the process.	2
25. During your course you carried out an investigation to model behaviour of semiconductors, including the concept of holes.	Marks 3

Outline what you did in your investigation. Explain how the model showed conduction in semiconductors.
26. In early studies, the observed characteristics of cathode rays led to the belief that they were electromagnetic waves.
Describe the wave-like properties of cathode rays and explain how other evidence shows them to be particles.
27. A physics student was conducting an investigation on the photoelectric effect. The student used an infrared laser with a wavelength of 1.55×10^{-6} m for this investigation.
(a) Calculate the energy of a photon from this laser. 2
(b) When the laser light was shone onto a photo-cell, no current was detected. The student increased the intensity of the light but still detected no current.

Explain this observation.

Student Number	
28. (a) Calculate the frequency of a photon of blue light of wavelength 460nm.	1
(b) Identify Planck's hypothesis that allowed him to successfully account for the black body radiation curve.	1
29. Outline how Hertz measured the speed of radio waves.	3
30. Describe how superconductors and magnetic levitation have played a part in the development of the maglev train.	2
SECTION II- Option	

From Quanta to Quarks. (25 Marks)

Marks

Student Number	

(a) Discuss Rutherford's model of the nuclear atom with orbiting electrons	4
(b) In refining the model of the atom, Bohr began with three postulates. State 2 of Bohr's postulates.	2
(c) Identify experimental evidence that supported <u>one</u> of Bohr's postulates and explain how it provided this support.	2
(d) Define the term transmutation.	1
	Marks
(e) As a result of the studying the electrons emitted during beta decay, Pauli suggested the existence of a then unknown particle. Discuss Pauli's suggestion, and relate this to the energ	4

of the emitted electrons.	
(f) Calculate the mass of a particle that has a De Broglie wavelength of 2.5×10^{-12} m when moving with speed of 200ms^{-1} .	g 1
(g) Calculate the energy of the lowest frequency photon emitted in the Balmer series?	2
(h) Write the transmutation equation for the beta decay of Bi ²¹⁰ _{83.}	2
Marl	ks
171411	

(i) Explain the significance of the conservation laws, in Chadwick's discovery of the neutron. 4

	Student Number	
••••••		
(j) Justify the existence of the strong nuclear force.		3
	• • • • • • • • • • • • • • • • • • • •	

END OF EXAMINATION

Data sheet

Charge on the electron, q_e	$-1.602 \times 10^{-19} \mathrm{C}$
-------------------------------	-------------------------------------

Mass of electron,
$$m_e$$
 9.109 × 10⁻³¹ kg

Mass of neutron,
$$m_n$$
 1.675 × 10⁻²⁷ kg

Mass of proton,
$$m_p$$
 1.673 × 10⁻²⁷ kg

Speed of sound in air
$$340 \text{ m s}^{-1}$$

Earth's gravitational acceleration,
$$g$$
 9.8 m s⁻²

Speed of light,
$$c$$
 3.00 × 10⁸ m s⁻¹

Magnetic force constant,
$$\left(k = \frac{\mu_0}{2\pi}\right)$$
 $2 \times 10^{-7} \text{ N A}^{-2}$

Universal gravitational constant,
$$G$$
 6.67 × 10⁻¹¹ N m² kg⁻²

Mass of Earth
$$6.0 \times 10^{24} \,\mathrm{kg}$$

Planck constant,
$$h$$
 6.626 × 10⁻³⁴ J s

Rydberg constant,
$$R_{\text{hydrogen}}$$
 1.097 × 10⁷ m⁻¹

Atomic mass unit, *u* 1.661 ×
$$10^{-27}$$
 kg 931.5 MeV/ c^2

$$1 \text{ eV}$$
 $1.602 \times 10^{-19} \text{ J}$

Density of water,
$$\rho$$
 1.00 × 10³ kg m⁻³

Specific heat capacity of water
$$4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$$

Formulae sheet

$$v = f\lambda$$

$$I \propto \frac{1}{d^2}$$

$$\frac{v_1}{v_2} = \frac{\sin i}{\sin r}$$

$$E = \frac{F}{q}$$

$$R = \frac{V}{I}$$

$$P = VI$$

Energy =
$$VIt$$

$$v_{\rm av} = \frac{\Delta r}{\Delta t}$$

$$a_{\text{av}} = \frac{\Delta v}{\Delta t}$$
 therefore $a_{\text{av}} = \frac{v - u}{t}$

$$\Sigma F = ma$$

$$F = \frac{mv^2}{r}$$

$$E_{\mathbf{k}} = \frac{1}{2}mv^2$$

$$W = Fs$$

$$p = mv$$

Impulse =
$$Ft$$

$$E_{\rm p} = -G \frac{m_1 m_2}{r}$$

$$F = mg$$

$$v_x^2 = u_x^2$$

$$v = u + ai$$

$$v_y^2 = u_y^2 + 2a_y \Delta y$$

$$\Delta x = u_x t$$

$$\Delta y = u_y t + \frac{1}{2} a_y t^2$$

$$\frac{r^3}{T^2} = \frac{GM}{4\pi^2}$$

$$F = \frac{Gm_1m_2}{d^2}$$

$$E = mc^2$$

$$l_{\nu} = l_0 \sqrt{1 - \frac{v^2}{c^2}}$$

$$t_{v} = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$m_{\nu} = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Formulae sheet

$$\frac{F}{l} = k \frac{I_1 I_2}{d}$$

$$d = \frac{1}{p}$$

$$F = BIl\sin\theta$$

$$M = m - 5\log\left(\frac{d}{10}\right)$$

$$\tau = Fd$$

$$\frac{I_{\rm A}}{I_{\rm B}} = 100^{(m_{\rm B} - m_{\rm A})/5}$$

$$\tau = nBIA\cos\theta$$

$$m_1 + m_2 = \frac{4\pi^2 r^3}{GT^2}$$

$$\frac{V_p}{V_s} = \frac{n_p}{n_s}$$

$$F = qvB\sin\theta$$

$$\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

$$E = \frac{V}{d}$$

$$\lambda = \frac{h}{mv}$$

$$E = hf$$

$$c = f\lambda$$

$$A_0 = \frac{V_{\text{out}}}{V_{\text{in}}}$$

$$Z = \rho v$$

$$\frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{R_f}{R_i}$$

$$\frac{I_{\rm r}}{I_{\rm o}} = \frac{[Z_2 - Z_1]^2}{[Z_2 + Z_1]^2}$$

	2 He 4,003	10 Ne Neon	18 Ar 39.95 Argon	36 Kr 83.80 Krypton	54 Xe 131.3 Xenon	86 Rn [222.0] Radon	
		9 F 19.00 Fluorine	17 CI 35.45 Chlorine	35 Br 79.90 Bromine	53 1 126.9 Todine	85 At [210.0] Astatine	
Ś		8 0 16.00 0xygen	16 S 32.07 Sulfur	34 Se 78.96 Selenium	52 Te 127.6 Tellurium	84 Po [209.0] Polonium	
		7 N 14.01 Nitrogen	15 P 30.97 Phosphorous	33 As 74.92 Arsenic	51 Sb 121.8 Antimony	83 Bi 209.0 Bismuth	
		6 C 12.01 Carbon	14 Silicon	32 Ge 72.64 Germanium	50 Sn 118.7 ⊪	82 Pb 207.2 Lead	
		5 B 10.81 Boron	13 AI 26.98 Aluminium	31 Ga 69.72 Gallium	49 In 114.8 Indium	81 TI 204.4 Thallium	
				30 Zn 65.41 Zinc	48 Cd 112.4 Cadmium	80 Hg 200.6 Mercury	
		Symbol of element Name of element		29 Cu 63.55 Copper	47 Ag 107.9 Silver	79 Au 197.0 Gold	109
		Symbol o		28 Ni 58.69 Nickel	46 Pd 106.4 Palladium	78 Pt 195.1 Platinum	110 Ds [271] Damstadtium
	KEY	79 Au 197.0 Gold		27 Co 58.93 Cobalt	45 Rh 102.9 Rhodium	77 Ir 192.2 Iridium	109 Mt [268] Meitnerium
		Atomic number Atomic mass		26 Fe 55.85 Iron	44 Ru 101.1 Ruthenium	76 0s 190.2 0smium	108 Hs [277] Hassium
		Atomic number Atomic mass		25 Mn 54.94 Manganese	43 Tc [98.91] Technetium	75 Re 186.2 Rhenium	107 Bh [264.1] Bohrium
				24 Cr 52.00 Chromium		74 W 183.8 Tungsten	106 Sg [266.1] Seaborgium
ents				23 V 50.94 Vanadium		73 Ta · 180.9 Tantalum	105 Db [262.1] Dubnium
				22 Ti 47.87 Titanium	40 Zr 91.22 Zirconium	72 Hf 178.5 Hafnium	104 Rf [261.1] Rutherfordium
Periodic Table of the Elem			•	21 Sc 44.96 Scandium	39 Y 88.91 Yttrium	57-71 Lanthanides	89-103 Actinides
ic Table		4 Be 9.012 Beryllium	12 Mg 24.31 Magnesium	20 Ca 40.08 Calcium	38 Sr 87,62 Strontium	56 Ba 137.3 Barium	88 Ra [226.0] Radium
Period	1 H. 1.008 Hydrogen	3 Li 6.941 Lithium	11 Na 22.99 Sodium	19 K 39.10 Potassium	37 Rb 85.47 Rubidium	55 Cs 132.9 Caesium	87 Fr [223.0] Francium
	, C						

Lanthanides	57 La 138.9	58 Ce 140.1	59 Pr 140.9	60 Nd 144.9	61 Pm [146.9]	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
	Lanuarium	Cerum	гаѕеодушиш	Neodymium	Prometnium	Samarium	Europium	cadolinium	mnia	nysprosium	ношша	Eroium	mniinu i	rtterbium	Lutetium
	88	90	91	92	93	94	95	96	97	86	66	100	101	102	103
Actinides	Ac	드	Pa	_	ď	P.	Am	Cm	쓢	₽	Es	표	Βq	å	ذ
	[227.0]	232.0	231.0	238.0	[237.0]	[244.1]	[243.1]	[247.1]	[247.1]	[251.1]	[252.1]	[257.1]	[258.1]	[259.1]	[262.1]
	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Ferminm	Mendelevium	Nobelium	_awrencium

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes 237 Np and 99 Tc.

SYDNEY BOYS HIGH SCHOOL HSC PHYSICS TRIAL MULTIPLE CHOICE ANSWER SHEET

Student number

	A	В	С	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

FINAL VERSION

SYDNEY BOYS HIGH SCHOOL HSC PHYSICS TRIAL MULTIPLE CHOICE ANSWER SHEET

Student number

	A	В	C	D
1				×
2			×	
3		*		
4	M		-	×
5	*		×	× // // × // × // × // × // × // × //
6				\times
7		\times		
8	×			
9			*	
10				×
11				×
12			×	
13		X		
14			×	
15	×			

Changes A→D

FINAL VERSION

Section B (60 marks) Show all working **16.**

Marks

An enemy ship was sailing 2km from the coast. A cannon on a 100 metre-high cliff fired a canon ball at an angle of 20^{0} to the horizontal, at speed of 150 m/s.

(a) Determine the vertical and horizontal components of the initial velocity.

 $\mu_{x} = 150 \text{ Cps} 20 = 141 \text{ m/s}$ $\mu_{y} = 150 \text{ Sin } 20 = 51.3 \text{ m/s}$

(b) Calculate the <u>time</u> taken for the cannon ball to reach the maximum height and hence the maximum <u>height</u> of the cannon ball above the water.

Vy=0, a=-9.8, My=51.3 m/s

$$V = \mu + a^{\frac{1}{4}}$$
 $t = \sqrt{y} - \mu y$
 $= 134.27 + 100$
 $= \frac{0 - 51.3}{-9.8}$
 $= \frac{5.24}{2}$
 $= 51.3 \times 5.24 + \frac{1}{2} \times \frac{9.8}{2} \times 5.24$

	cannon ball landed.	ence determine now far i	rom the ship the	12/
	Mare In = 234.27 m			3
	time to fall from 234.27 m			
	4 3	Rong DR=L	lx.t	
	$t = \sqrt{\frac{2 \times \Delta y}{2}}$	2	6.95×12.15	
	ay	= 17	113.2	,
	$= \sqrt{2 \times 2.34.77}$	= 17 = 1	713 m	marks
	= 6.91 s	Cornon ball la	and ad 287	
	:.TOTAL TIME = 6.91 + 5.24		the ship	l mark
	=12.2	~ S FLW PZ ~ 7	The Stup	(Mark
	(d) Describe an adjustment of the cannon that is		7	1 ()
	- Increase angle (to ho		. , , –	and enough
	(or increase gun pouder to	s give mure vel	ocity)	35-
	17. Explain why all low -Earth satellites will even			2
	LEO Satellites (300-1500 km altitu			
	drag which slows then down. f			
	velocity. When fuel runs out - 18. A boy standing on train station platform obse			
	through the station. He observes the clocks on th girl on the train observes the boy's watch, and no			
e ed	on the train.			
N. New	Account for the above situation with reference to			3
.\	Both observers see clocks in th			
morni	d clocks run slow, relative to station	onary observers	Both the 6	oy a girli
observe	ations are consistent with special	Relatively as Em	stein stated	that all
INERTIC	or FRAMES are equal (both of these	are inertial bec	ause reither a	re accelerating)
Thorato	are both observers would see clock	is in the other of	same runnis	ب درماء و
17	Marking Criteria Gives correct description of change to orbital speed with reason		Marks 2	
٠,	Gives only a general description of the change in orbital speed		1	
	The satellite's orbital speed decreases with increasing altitude due to red Marking Criteria	uced centripetal force.	Marks	
(8)	Clear, concise discussion, referring to the PoR and frames of reference frame of reference is preferred over another inertial FoR		4	
on an promotive of the later of the final final section and the later of the later	Discussion shows understanding of PoR and mentions frames of referen- Reference-to-PoR-and-frames-of-reference Some reference to the PoR		3	Service and the service of the servi
TO A SCHOOL STORE TO THE STORE SERVICE	MATINE TOTAL CHIEF OIL			

19. Michelson and Morley set up an experiment to measure the velocity of Earth relative Mark to the aether.
(a) Outline TWO features of the aether model for the transmission of light. 1 mark each - any 2 of filled space, transpared,
permanded all matter, low density, high elasticity
low viscosity, stationary- the absolute rest frame
(b) Recount the Michelson and Morley experiment, which attempted to measure the relative velocity of Earth through the aether, and describe the results they anticipated.
Describes the apparatus used - an interferomater with
labels, The use of a coherent light source which would
be split by a half silvered mirror theo recombined to
form as interference pattern. M+M expected the interf-
pattern to change as the interferomater was not ated
due to the change in relative light speed. Despite good
procedures and repetition no charge was ever dotected
Describes experiment but poorly recounts - expedied results 3-2 or achieved results or apparatus used
or achieved results or apparatus used

Has some understanding of the interferomater, or]!
That light speed was expected to change or]!

that no result was acheived.

Student Number.....

alternati	ng current.				
to how	you verified that alter	nating current was	actually produced.	th particular reference	3
% A d	Lescription ar	dateded	e.g. oscillating	row Ac was	3-2
	edural mo		some appou	estus or	2-1
* evid	erve of som	re knowles	lge of a sc	itable expl.] [
(b) Desci	ribe two advantages o	of using AC genera	tors for large-scale el	ectrical power produc	ction. 2
Any	2 reasonal	de advort	rages (but	must have)
	٠ ماامسع ٧٥	stage to b	e easily ch	anged +	
<u>-</u>	, no comm	stator and	better re	habity	
				by of method	e-
,				r wave mo	
(1			• • • • • • • • • • • • • • • • • • • •	BESPONSES 1	
	hotograph shows a sn motor from an electri				3
	ame the labelled parts B, and C and				
` '	escribe the function of each				
A-Elec	dromagnetic a	undings - p	produce a m	agnetic field	!
	ipuin anter	3			

.

.....

Student Number.....

22. The diagram shows part of an experiment designed to measure the force between two parallel current-carrying conductors.

Mark
7

The experimental results are tabulated below.

$I_2(A)$	Force (× 10 ⁻⁶ N)
. 0	0
2.0	7
3.0	11
4.0	14
5.0	18

(a) Plot the data and draw the line of best fit.

(b) Calculate the gradient of the line of best fit the graph.

(CRADIENT CALCULATIONS MUST)

(BE FROM THE LINE, NOT)

POINTS

(d) Use this expression and the gradient calculated in part (b) to determine the value of the magnetic force constant k.

K = gradied x 0.05 = 1.79 x 10

Student	Number.					

23. In a particular experiment a long length of copper wire of very resistance is rotated by two Marks students. The ends of the wire are connected to a galvanometer G, and a current is detected.

Explain the effect of increasing the speed of rotation on the current measured by the galvanometer outline /Identify that more speed gives a greater rate of cutting field lines or greater rate of change of magnetic flux. States Faraday (aw on that induced emf = $\frac{\Delta FLUX}{\Delta TIME} = \frac{B\Delta H}{E} = BLV$. explains increased emfocus and i more current Relates speed to flux change and : greater convert 3-2 Identifies more current will be road on galvarante] * Bands 24. Using silicon as an example of a semiconductor, describe how it carries a current and how doping affects the process. AND HOLES - Describes the movement of eladrons and hales in silver MUST and that doping increases the number of available BE REFERRED electrons or holes OR that doping charges/ TOreduces the energy required to make the samucardor conductive or that doping changes electrical proporties Describes charge movement or doping OR a dadgy description of both

thought experient
25. During your course you carried out in investigation to model behaviour of semiconductors, Marks including the concept of holes.
Outline what you did in you investigation. Explain how the model showed conduction in semiconductors.
Gives apparatus used (as diagram) and how it shows
energy input to cross F. C. gap is Valence bank -> Conduction
Describes apparatus with little procedural into } I does't refer to hole or electron movement (12 How 17 occupe)
E.g. petri, marbles Marble represent electrons, when shaken (E in) dish to 000000 marbles Jump up (conduction board) and leave a HOLE. Both the marble + hale can move
26. In early studies, the observed characteristics of cathode rays led to the belief that they were electromagnetic waves.
Describe the wave-like properties of cathode rays and explain how other evidence shows them to be particles. Expression Gives 2 wave-like props (travels in straight lines, flaurences green) of every control of the particles property e.S. imports. The particles property e.S. imports. A least property e.S. imports. PLUS EXPLANATION
A LENDUS EXPLANATION. Gives Wavelake + porticle property] 2
Gives only wave OR particle props.
27. A physics student was conducting an investigation on the photoelectric effect. The student used an infrared laser with a wavelength of 1.55×10^{-6} m for this investigation.
(a) Calculate the energy of a photon from this laser. $E = h = 6.63 \times 10^{-34} \times 3 \times 10^{-19} = 1.28 \times 10^{-19}$

(b) When the laser light was shone onto a photo-cell, no current was detected. The student

MUST SHOW DEPTH OF KNOWKERGE

development of the maglev train. NB - NOT MEISSLER EFFECT DESCRIBES THAT Superconductors have led to much stronger electromagnetic Superconducting electromagnets support and proper maglete

trains (diagram optional bot useful)

missing one crea (of the 2) noted above

Must the (a) Discuss Rutherford's proposal of the nuclear atom with orbiting electrons Dobscribes: Nuclear atom diagram will do it labelled.) COR Discussion Nuclear atom diagram will do it labelled.) Done experimental evidence for at least 1 feature Size of Source at least 1 argument against the model e. p.	.>4 - 3
Describes nuclear atom but missing evidence for OR	
agairst	·
Describes Nuclear atom	. } 1
(b) In refining the model of the atom, Bohr began with three postulates. State 2 of Bohr's postulates. ANY 2 OF- (ONLY FIRST 2 are marked)	hates 2
Dorbithing cladrons exist or quantiscol energy levels. Electrons on these levels are stable and emit no energy 2) Energy is closended or emitted when electrons change is level according to hf = E, -E2	
3) Angular momentum of electrons is quantized.	
(c) Identify experimental evidence that supported one of Bohr's postulates and explain how it provided this support. Correct identification of relevant evidence (1 mork)	2
Justifies how the stated evidence supports the porticular endene (1 mak)	··· ···
* De Broglie only provides indirect support for IST POSTULATE. * Davidson and Germer accepted ONLY IF linked to 3RD Post and explained with algoribanic prove.	
(d) Define the term transmutation. The transformation of leternant into another by the bombordment of nuclei with particles.	1

Student Number.								
Student Number.		٠						

Marks

	(e) As a result of the studying the electrons emitted during beta decay, Pauli suggested the existence of a then unknown particle. Discuss Pauli's suggestion, and relate this to the energy
	of the emitted electrons.
	. Outline what the suggestion of Pauli's was (by Pauli). Gives reasons for the suggestion relating to & particle KE's + consof p - Gives reasons against the proposal - is no experimental detection
4	?. Gives reasons for the suggestion relating to & particle KE's + cons. of P
marker	- Cives reasons against the proposal -us as experimental detection
	As above but ornite or communicater one of the points
3 mles	As above but omits or communicates one of the points
	boarty
0.1.1.	Demonstrates some understanding of Pauli's suggestion
5 Ah	Lamore 1213 2000 Oracles 121-2011 2 01 Fault
	<u> </u>
)	Some attempt
	L
	(f) Calculate the mass of a particle that has a De Broglie wavelength of 2.5 x 10 ⁻¹² m when moving with speed of 200ms ⁻¹ .
	3 - 4
	mv34
	6.43 × 10
	2,5×10 × 200
	ـ (. 33 × اک ایع
Correc	(g) Calculate the energy of the lowest frequency photon emitted in the Balmer series?
working	g lower f when n=2, n=1 (= 1.097(0.25 - 0.11)
essente	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\frac{1}{2} = R\left(\frac{1}{2} - \frac{1}{2}\right)$
	$7\left(\frac{1}{3}-\frac{1}{2}\right)$
•.	E = LC = 3.06 × 10-14 J
+-	(h) Write the transmutation equation for the beta decay of Bi ²¹⁰ _{83.} 2
	$B_i^{216} \longrightarrow B^6 + P_6^{216} \downarrow V$
	83 -1 84
	(or V)
	* - I mark for EACH missing or incorrect part

4
For full marks - must make Student Number
CONSERVATION LAWS " Marks
(i) Explain the significance of the conservation laws, in Chadwick's discovery of the neutron. 4
1 - Describer the Bothe + Backer expt resulting in protons being ejected from
* parathin.
4-3 2. Explains that the Law of Cons. of momentum could not be
satisfied unless the highly pereduative projectile was much
more massive that initially suggested
L 3 . Explains that conservation of mass and charge suggested particle
had to be cimilar in mass to a proton and have NO CHARDE
2-1 Identifies conservation of monotum as being relevant
(j) Justify the existence of the strong nuclear force.
· Describes nature of nuclear force, range etc -
- that is very start range rept / 1x10 "
· Dutlines grantational and electrostatic forces and relative 3
sizes of each (clackrostatic repulsion is much greater)
explains need for S.N.F. to overcome electrostatic repulsion
END OF EXAMINATION
Describes the nature of SNF and refer to strong Z
electrostatic forces
Same idea