SYDNEY BOY HIGH SCHOOL

TRIAL HSC EXAMINATION

PHYSICS

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using blue or black pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A data sheet, formulae sheets and Periodic Table are provided at the back of this paper
- Write your candidate number at the top of each page in Part B
- \quad Set working out clearly as marks are allocated to working

Total marks (100)
Section $1 \quad 75$ Marks

This section has two parts, Part A and Part B.

Part $\mathrm{A}=15$ marks

- Attempt questions 1-15
- Allow about 30 minutes for this part

Part $B=60$ marks

- Attempt Questions 16-28
- Allow about 1 hour and 45 minutes for this part

Section II 25 marks

- Attempt Question 34 only
- Allow about 45 minutes for this section.

Part A

Total Marks (15 Marks)

Attempt Questions 1-15

Allow about 30 minutes for this Part

Use the multiple-choice Answer Sheet.

Select the alternative A, B, C OR D that best answers the question. Fill the response circle completely.

Sample $2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
(A)

(C)
D

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows.

D

Use the coloured multi choice answer sheet provided with this paper.

1. An unknown planet, X, has an acceleration due to gravity of $14.0 \mathrm{~ms}^{-2}$ at its surface. What is the weight of a 75.0 kg astronaut on the surface of planet X ?
(A) 5.17 N
(B) 75.0 N
(C) 388 N
(D) 1050 N

Questions 2, 3 and 4 refer to the following information:
The following quantities describe the properties of the Hubble space telescope and its orbit around the Earth:-

- Total mass of the telescope $=1.1 \times 10^{4} \mathrm{~kg}$
- Radius of telescope orbit $=7.0 \times 10^{6} \mathrm{~m}$.

2. What is the orbital speed of the telescope?
(A) $8.2 \times 10^{1} \mathrm{~ms}^{-1}$
(B) $7.6 \times 10^{3} \mathrm{~ms}^{-1}$
(C) $7.9 \times 10^{5} \mathrm{~ms}^{-1}$
(D) $5.7 \times 10^{7} \mathrm{~ms}^{-1}$
3. What is the gravitational potential energy of the telescope?
(A) $-6.3 \times 10^{11} \mathrm{~J}$
(B) $-6.5 \times 10^{10} \mathrm{~J}$
(C) $-5.7 \times 10^{7} \mathrm{~J}$
(D) $\quad-9.0 \times 10^{4} \mathrm{~J}$
4. What is the gravitational force between the Earth and the telescope?
(A) $8.2 \times 10^{1} \mathrm{~N}$
(B) $3.0 \times 10^{2} \mathrm{~N}$
(C) $\quad 9.0 \times 10^{4} \mathrm{~N}$
(D) $1.1 \times 10^{5} \mathrm{~N}$
5. The star Algol is $3.67 \times 10^{16} \mathrm{~m}$ away from Earth, as measured from Earth. Meanwhile, a spacecraft is travelling past earth on the way to Algol. The spacecraft measures the distance between Earth and Algol to be $2.15 \times 10^{16} \mathrm{~m}$.

What is the speed of the spacecraft, relative to Earth?
(A) 0.810 c
(B) 0.657 c
(C) 0.414 c
(D) 0.235 c
6. The following diagram shows a cross-section of a loudspeaker.

At the instant shown, when the current in the coil is flowing into the page at the top of the coil, which of the following statements describes the motion of the coil (and the attached cone)?
(A) It is oscillating.
(B) It is rotating.
(C) It is accelerating to the right of the page.
(D) It is accelerating to the left of the page.
7. The unit of magnetic flux is the weber, where 1.0 Wb is equivalent to which of the following units?
(A) $1 \mathrm{Am}^{2}$
(B) $1 \mathrm{Am}^{-2}$
(C) $1 \mathrm{Tm}^{2}$
(D) $1 \mathrm{Tm}^{-2}$
8. An electric motor driven from a constant voltage supply is used to move a load. If the magnitude of the load is decreased, which one of the following sets of changes occurs?

	Speed of rotation	Induced emf in coil (back emf)	Current in the coil
(A)	increases	increases	decreases
(B)	decreases	decreases	increases
(C)	increases	increases	increases
(D)	decreases	increases	decreases

9. There are 200 turns in the primary coil of an ideal transformer and its secondary coil has 50 turns. If the current in the secondary coil is 40.0 A , what is the current in the primary coil?
(A) 160 A
(B) $\quad 80.0 \mathrm{~A}$
(C) $\quad 40.0 \mathrm{~A}$
(D) $\quad 10.0 \mathrm{~A}$

PART A CONTINUED NEXT PAGE

10. The diagram below represents a magnet mounted on a light rod which oscillates as a simple pendulum. At the end of the swing, the magnet approaches a coil connected to a sensitive galvanometer.

As it swings, the magnet induces an emf (voltage) in the coil. A graph of induced emf plotted against time for the coil is shown below. Times P, Q, R and S are marked on the graph for one complete period of oscillation.
emf

At which of the times P, Q, R and S is the magnet closest to the coil?
(A) Time P
(B) Time Q
(C) Time R
(D) Time S
11. Red light from a laser was tested in a laboratory and found to have a wavelength of 635 nm . What is the energy of an individual photon of this light?
(A) $1.04 \times 10^{-36} \mathrm{~J}$
(B) $1.04 \times 10^{-27} \mathrm{~J}$
(C) $3.13 \times 10^{-28} \mathrm{~J}$
(D) $3.13 \times 10^{-19} \mathrm{~J}$
12. In the context of experiments conducted in the nineteenth century, which of the following properties of cathode rays supports both the theory that cathode rays are composed of waves and the theory that they are particles?
(A) Cathode rays can be deflected by electric fields.
(B) Cathode rays can be deflected by magnetic fields.
(C) A metal object in the path of the cathode rays will cast a sharp shadow.
(D) Cathode rays have a definite charge to mass ratio.
13. The following graph shows intensity of light, at different wavelengths, emitted by a white-hot metal filament in a light bulb at a temperature of 2500 K .

What was Planck's hypothesis to explain this intensity distribution for a black body radiator?
(A) Light emitted and absorbed by black body radiators is in the form of a wave.
(B) Light emitted and absorbed by black body radiators is quantised.
(C) Light emitted and absorbed by black body radiators is a function of the temperature.
(D) Only light above a threshold frequency can be emitted or absorbed by black body radiators.

Questions 14 and 15 refer to the following information:
The diagram below shows a proton between two parallel, charged metal plates. The potential difference between the plates is 600 V and they are $1.5 \times 10^{-2} \mathrm{~m}$ apart.

The proton is at a position $5.0 \times 10^{-3} \mathrm{~m}$ from the positive (top) plate. The electric charge on a proton is $+1.6 \times 10^{-19} \mathrm{C}$.

14. What is the force on the proton due to the electric field between the plates?
(A) $6.4 \times 10^{-15} \mathrm{~N}$
(B) $6.4 \times 10^{-13} \mathrm{~N}$
(C) $4.0 \times 10^{2} \mathrm{~N}$
(D) $4.0 \times 10^{4} \mathrm{~N}$
15. What is the potential difference between the position of the proton and the negative plate?
(A) 600 V
(B) 400 V
(C) 200 V
(D) 100 V

Part B

Total Marks - 60
Attempt Questions 16-28
Allow about 1 hour and 45 minutes for Part B
Answer the questions in the spaces provided
Show all relevant working in questions involving calculations.

Question 16 (2 Marks) Marks
The modern definition of the metre is "the distance travelled by light in a 2 vacuum during $1 / 299,792,458$ of a second."

Explain why the modern metre is defined in this way.
\qquad

Question 17 (6 marks)
A boy performs an experiment with the simple projectile launcher shown below, which launches steel balls on a flat surface.

By pulling the spring in the launcher to a fixed distance, the boy gives the ball an initial velocity.
In one test run of the launcher, the boy makes a number of observations about the trajectory of the ball. These are shown in the table below as Test Run A.

Result Table Test Run A

Angle of Launch, θ	30°
Maximum Height, H	0.26 m
Range of Ball	1.80 m

(a) For Test Run A, calculate the magnitude of the initial vertical velocity of the ball.
(b) For Test Run A, calculate the total time the ball is in the air.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) For Test Run A, calculate the magnitude of the initial horizontal velocity of the 2 ball.

Question 18 (6 marks)
The following iniomation was inciudedina inssA press rease of 13 June 2005:

Astronomers Announce the Most Earth-Like Planet Yet Found Outside the Solar System.

Taking a major step forward in the search for Earth-like planets beyond our own solar system, a team of astronomers has announced the discovery of the smallest extra-solar planet yet detected. "We keep pushing the limits of what we can detect and we're getting closer and closer to finding Earths," said team member Steven Vogt, a Professor of astronomy and astrophysics at the University of California, Santa Cruz.

The newly discovered "Super Earth", orbits the star Gliese 876, located just 15 light years away in the direction of the constellation Aquarius. The team measured the mass of the planet to be 5.9 Earth masses, and its radius to be 2.2 times that of the Earth. It orbits Gliese 876 with a period of 1.94 days at a distance of $3.15 \times 10^{9} \mathrm{~m}$.

Use the information contained in the passage above to answer the following questions:
(a) Calculate the acceleration due to gravity at the surface of the planet.
\qquad
\qquad
\qquad
(b) Compare the escape velocity of the planet to that of the Earth.
\qquad
\qquad
(c) Calculate the mass of the star, Gliese 876.
\qquad
\qquad
\qquad
\qquad

Question 19 (6 marks)

The Michelson-Morley experiment attempted to measure the velocity of the Earth through the aether. Describe the procedure used and evaluate the reliability of the result.
\qquad

Question 20 (4 marks)

The diagram below illustrates the path of a negatively charged particle moving in a magnetic field. The magnetic field is directed into the page.

(a) Explain why the path of the particle is circular. 2
\qquad
\qquad
\qquad
\qquad
(b) Explain what would happen to the radius of the path if a negatively charged particle of the same mass and speed, but twice the charge is travelling in the same magnetic field.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 21 (4 marks)
Marks

A simple motor consists of a flat rectangular coil with n turns in a magnetic field B as shown.

The coil has an area of $0.01 \mathrm{~m}^{2}$ and carries a current of 1 A . The motor drives a pulley of diameter 20 cm and weights can be hung from either side of the pulley at point X or point Y .
(a) In order to prevent rotation, should a weight be hung at point X or at point Y ? Justify your answer.
\qquad
\qquad
(b) What is the magnitude of the torque provided by a mass of 0.2 kg suspended from either point X or point Y ?
\qquad
\qquad
\qquad
\qquad
(c) If the motor is just stopped by a mass of 0.2 kg how many turns does the coil have?
\qquad
\qquad

Question 22 (3 marks)
An electricity transmission line consists of two wires separated by 4.0 metres and the towers supporting the wires are 200 metres apart. Each wire is carrying a current of 1.78 x $10^{2} \mathrm{~A}$. The currents are flowing in opposite directions.

Determine the magnitude and direction of the force per metre exerted by each current on the other.

Question 23 (5 marks)
The photograph below shows the parts of an AC electric motor.

(a) Outline the function of the stator coils in this motor.
\qquad
\qquad
(b) Describe the principle of operation of the type of motor illustrated above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 24 (5 marks)
The following diagram shows an aluminium sheet dropping, under the influence of gravity, between the poles of a strong permanent magnet. At the position shown, the sheet has an instantaneous velocity, V, and is dropping out of the field. Only the top half of the sheet remains between the poles of the magnet.

(a) On the diagram above, draw in the eddy current that is generated in the sheet, showing both the position and the direction of the current.
(b) Explain, in terms of the physical principles involved, the production of eddy currents in the sheet and their effect on the subsequent motion of the sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 25 (3 marks)

Heinrich Hertz performed an experiment where he measured the speed of radio waves using the principle of interference of waves produced by a reflection from a metal plate. Outline the significance of the result of this experiment.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 26 (4 marks)

In the early nineteenth century, it was experimentally shown that light had wave 4 properties such as interference and diffraction. However, this classical wave model of light could not be used to explain the observations made in experiments on the photoelectric effect. Use Einstein's reconceptualisation of the model of light to explain why the photoelectric effect will not occur if incident light is below the threshold frequency.
\qquad

Question 27 (6 marks)
The diagram below shows a thin beam of electrons in a cathode ray tube. The electrons are moving at a velocity, $\mathrm{v}=1.2 \times 10^{3} \mathrm{~ms}-1$ into a region of magnetic field between two electrically charged deflector plates (P and S). Due to the combined effect of the electric and magnetic fields between plates P and S, the electrons pass undeflected between the plates.

The magnetic field has a magnitude of 100 T .

(a) Determine the magnitude and direction of the force on a single electron due to the magnetic field only.
\qquad
(b) Determine the magnitude and direction of the electric field. Show working.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Derive an equation for the velocity of an electron between the deflector plates when the magnetic and electric forces are in balance.
\qquad
\qquad
\qquad
\qquad
(d) Calculate the potential difference between plates P and S . State which plate is positive. 1
\qquad
\qquad

Question 28 (6 marks)
Explain how energy savings are currently made during the transmission of electricity through power grids and assess the possible use of superconductors in these applications.
\qquad

BLANK PAGE

\qquad

SECTION II

25 Marks

Attempt Question 34 only from Questions 31-35
Allow about 45 minutes for this section.
Answer the question in a writing booklet. Extra writing booklets are available.
Show all relevant working in questions involving calculations.

Question 31
Elective 1
Question 32 Elective 2
Question 33 Elective 3
Question 34
Question 35
Elective 5
\qquad

Question 34 - From Quanta to Quarks (25 Marks)

(Use the lined paper over leaf for you answers)
(a) Rutherford analysed an experiment where alpha particles where fired at gold foil. From this experiment Rutherford concluded that the atom :

* was mostly free space and
* had a dense positively charged nucleus.

With reference to experimental observations made by Geiger and Marsden, justify Rutherfords conclusions shown above.
(2 marks)
(b) Bohr described an atomic model where electrons occupied energy levels.

Compare the Bohr model to that proposed by Rutherford.
(3 marks)
(c) State 4 shortcomings(difficulties) of the Bohr model of the atom.
(d) Assess the role of the Pauli exclusion principle in explaining one aspect or shortcoming of the Bohr model.
(2 marks)
(e) Bohr postulated that an atom's angular momentum was quantised and occurred in multiples of $\mathrm{h} / 2 \pi$. Using the de Broglie relation $\lambda=\mathrm{h} / \mathrm{mv}$, derive an expression to show that angular momentum is quantised.
(2 marks)
(f) The flowchart represents one model of scientific method used to show the relationship between theory and the evidence supporting it.

Discuss de Broglie's "matter wave" model and the evidence supporting it, in .
terms of the model of Scientific Method shown above.
(2 marks)
(g) Write the transmutation equations for the following processes;
(i) Alpha decay of Uranium 238
(ii) Beta decay of Thorium 234
(h) Calculate the magnitude of the gravitational and electrostatic forces between 2 protons separated by $1.2 \times 10^{-15} . \quad\left(\mathrm{F}=\mathrm{kq} . \mathrm{q} / \mathrm{d}^{2}, \mathrm{k}=9 \times 10^{9}\right)$
(i) Account for the need for the strong nuclear force.

Answer sheet for Quanta option
Student number
(a)
\qquad
\qquad
\qquad

(b)

(c)
\qquad
\qquad
\qquad
(d)

e)

(f)

(g)

\qquad -

Physics

Data Sheet

Charge on the electron, q_{E}	$-1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, m_{s}	$9.109 \times 10^{-31} \mathrm{~kg}$
Mass of neutron, m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
mass of proton, m_{s}	$1.673 \times 10^{-27} \mathrm{~kg}$
Speed of sound in air	$340 \mathrm{~m} \mathrm{~s}^{-1}$
Earth's gravitational acceleration, g	$9.8 \mathrm{~m} \mathrm{~s}^{-2}$
Radius of Earth, R_{E}	$6.4 \times 10^{6} \mathrm{~m}$
Speed of light, c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Magnetic force constant, $\left[k \equiv \frac{k}{2 m}\right]$	$2.0 \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}$
Universal gravitational constant, G	$6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Mass of earth	$6.0 \times 10^{24} \mathrm{~kg}$
Planck's constant, h	$6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Rydberg's constant, R (hydrogen)	$1.097 \times 107 \mathrm{~m}^{-1}$
Atomic mass unit, u	$\begin{aligned} & 1.661 \times 100^{27} \mathrm{~kg} \\ & 931.5 \mathrm{MeV} / \mathrm{c}^{2} \end{aligned}$
1 eV	$1.602 \times 10^{-19} \mathrm{~J}$
Density of water, ρ	$1.00 \times 10^{3} \mathrm{~kg} \mathrm{~m}-3$
Specific heat capacity of water	$4.18 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

FORMULAE SHEET

$$
\begin{aligned}
& v=f \lambda \\
& I \propto \frac{1}{d^{2}} \\
& \frac{v_{1}}{v_{2}}=\frac{\sin i}{\sin r} \\
& E=\frac{F}{q} \\
& R=\frac{V}{I} \\
& P=\nabla I T \\
& \Delta x=u_{x} t \\
& \text { Energy }=\text { VIt } \\
& v_{a r}=\frac{\Delta r}{\Delta t} \\
& a_{u v}=\frac{\Delta v}{\Delta t}=\frac{v-u}{t} \\
& F=\frac{G m_{1} m_{2}}{d^{2}} \\
& \Sigma F=m a \\
& E=m c^{3} \\
& F=\frac{m v^{2}}{r} \\
& l_{4}=l_{a} \sqrt{1-\frac{v^{2}}{c^{2}}} \\
& E_{k}=\frac{1}{2} m v^{2} \\
& W=F s \\
& p=m v \\
& \text { Impulse }=F t \\
& E_{p}=-\frac{G m_{1} m_{3}}{r} \\
& F=m g \\
& v_{x}^{2}=u_{x}^{2} \\
& v=u+a t \\
& v_{y}^{2}=u_{y}^{2}+2 a_{y} \Delta y \\
& \Delta y=u_{y} t+\frac{1}{2} a_{y} t^{2} \\
& \frac{r^{3}}{T^{2}}=\frac{G M}{4 \pi^{2}} \\
& t_{n}=\frac{t_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& m_{v}=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{aligned}
$$

$$
\begin{array}{cc}
\frac{F}{l}=k \frac{l_{1} I_{2}}{d} & d=\frac{1}{P} \\
F=B l l \sin \theta & M=m-5 \log \left(\frac{d}{10}\right) \\
\tau=F d & \frac{I_{A}}{I_{B}}=100^{\frac{\left(m_{r}-m_{t}\right)}{5}} \\
\tau=n B L A \cos \theta & \frac{1}{\lambda}=R_{H}\left[\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right] \\
\frac{V_{p}}{V_{s}}=\frac{n_{p}}{n_{x}} & m_{1}+m_{2}=\frac{4 \pi^{2} r^{3}}{G T^{2}} \\
\hline F=q v B \sin \theta & \lambda=\frac{h}{m v} \\
E=\frac{V}{d} & A_{0}=\frac{V_{\text {out }}}{V_{i n}} \\
E=h f & \frac{V_{a w}}{V_{i n}}=\frac{R_{f}}{R_{i}} \\
c=f \lambda &
\end{array}
$$

$$
\frac{I_{r}}{I_{0}}=\frac{\left[Z_{2}-Z_{1}\right]^{2}}{\left[Z_{2}+Z_{1}\right]^{2}}
$$

PERIODIC TABLE OF THE ELEMENTS

Lanthanides														
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
138.9	140.1	140.9	144.2	[146.9]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Yterbium	Tutitium
														-
Actinides														
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
[227.0]	232.0	231.0	238.0	[237.0]	[239.1]	[241.1]	[244.1]	[249.1]	[252.1]	[252.1]	[257.1]	[258.1]	[259.1]	[262.1]
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Labirencium

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets.
The atomic weights of Np and Tc are given for the isotopes ${ }^{237} \mathrm{~Np}$ and ${ }^{99} \mathrm{Tc}$.

Physics 2008 Trial Examination

Part B
Total Marks - 60
Attempt Questions 16-28
Allow about 1 hour and 45 minutes for Part B
Answer the questions in the spaces provided
Show all relevant working in questions involving calculations.

M / C	1	2	3	4	5	6	7	8	9	10	11	12	13	14
D	B	A	C	A	D	C	A	D	B	D	C	B	A	B

Question 16 (2 Marks)
Student Number \qquad

| M / C | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 1 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D | B | A | C | A | D | C | A | D | B | D | C | B | A | B |

Marks

The modern definition of the metre is "the distance travelled by light in a vacuum during $1 / 299,792,458$ of a second."

Explain why the modern metre is defined in this way.

- Marcs
- Idosifiec that "c" is custont for all obsemenc ragandams ur af relative position or matiom
 Far all observers (M any inertial frame) \therefore it is o stendaral that 1 MR K repradvad any curare
AND/OR
- Some attempt
- highly accurate
- ease of access
- indestructable
- invariant
- can be measured anywhere.
\qquad

A boy performs an experiment with the simple projectile launcher shown below, which launches steel balls on a flat surface.

By pulling the spring in the launcher to a fixed distance, the boy gives the ball an initial velocity.
In one test run of the launcher, the boy makes a number of observations about the trajectory of the ball. These are shown in the table below as Test Run A.

Result Table Test Run A

Angle of Launch, θ	30°
Maximum Height, H	0.26 m
Range of Ball	1.80 m

(a) For Test Run A, calculate the magnitude of the initial vertical velocity of the ball.

\qquad
(b) For Test Run A, calculate the total time the ball is in the air.

(c) For Test Run A, calculate the magnitude of the initial horizontal velocity of the $\mathbf{2}$ ball.
$\mu_{x}=\mu \operatorname{Cos} 30$
$=3.9 \mathrm{~m} / \mathrm{s}$

Question 18 (6 marks)
The following information was included in a NASA press release of 13 June 2005:
Astronomers Announce the Most Earth-Like Planet Yet Found Outside the Solar System.

Taking a major step forward in the search for Earth-like planets beyond our own solar system, a team of astronomers has announced the discovery of the smallest extra-solar planet yet detected. "We keep pushing the limits of what we can detect and we're getting closer and closer to finding Earths," said team member Steven Vogt, a Professor of astronomy and astrophysics at the University of California, Santa Cruz.

The newly discovered "Super Earth" orbits the star Gliese 876 , located just 15 light years away in the direction of the constellation Aquarius. The team measured the mass of the planet to be 5.9 Earth masses, and its radius to be 2.2 times that of the Earth. It orbits Gliese 876 with a period of 1.94 days at a distance of $3.15 \times 10^{9} \mathrm{~m}$.

Use the information contained in the passage above to answer the following questions:
(a) Calculate the acceleration due to gravity at the surface of the planet.

(c) Calculate the mass of the star; Gliese 876.

\qquad

Question 19 (6 marks)
Describe the procedure used and valvate the reliability of the
The Michelson-Morley experiment attempted to measure the velocity of the Earth through the result. aether. 1 Evaluate the sificanoe thiserpento the aether of light
NB. \qquad of relicblito

* Gives an outline of the experiment and the inter ferernobies
* States outcome as a null rescuithexplains or, that no change in interference patters was observed

* Makes a judgernand that reliability was good due to sound methadshegy.
\rightarrow Many repititions giving consistent results.

Question 20 (4 marks)
The diagram below illustr: field. The magnetic field i

(a) Explain why the path of the particle is circular.
\qquad
Experiences a centripetal force because tie magnetic FIELD EXERTS A FORCE PERPENDICULAR TO THE MOTION OF THE CHARGED PARTCLE. ie. $q v B=\frac{m v^{2}}{r}$ 1 MARK SOME PART OF ABOVE
(b) Explain what would happen to the radius of the path if a negatively charged particle 2 of the same mass and speed, but twice the charge is travelling in the same magnetic field.
\qquad
THERFORE RADIUS DECREASES TO $1 / 2$ OF PREVIOUS
I mark qualitative statement that radius decreases only
\qquad
\qquad

Question 21 (4 marks)
Marks

A simple motor consists of a flat rectangular coil with n turns in a magnetic field B as shown.

The coil has an area of $0.01 \mathrm{~m}^{2}$ and carries a current of 1 A . The motor drives a pulley of diameter 20 cm and weights can be hung from either side of the pulley at point X or point Y.
(a) In order to prevent rotation, should a weight be hung at point X or at point Y ? Justify your answer.

EG. - X, BECAUSE. THE COLL MOUES CLOCKWISE DUE TO THE MOTOR
(b) What is the magnitude of the torque provided by a mass of 0.2 kg suspended from either point X or point Y ?

$$
\begin{aligned}
\tau & =F d & & \text { QUARKS CORRECT SURSTITUNON } \\
& =m g d & & \text { ANSWERS AND UNITS } \\
& =0.2 \times 9.8 \times 0.1 & & \\
& =0.196 \mathrm{Nm} & &
\end{aligned}
$$

(c) If the motor is just stopped by a mass of 0.2 kg how many turns does the coil have?

$$
\tau=n B I A \quad \therefore \quad n=\frac{0.196}{0.1 \times 1 \times 0.01}
$$

$$
n=\tau / B I A \quad=196 \text { Turns }
$$

Question 22 (3 marks)
An electricity transmission line consists of two wires separated by 4.0 metres and the towers supporting the wires are 200 metres apart. Each wire is carrying a current of 1.78 x $10^{2} \mathrm{~A}$. The currents are flowing in opposite directions.

Determine the magnitude and direction of the force per metre exerted by each current

\qquad

Question 23 (5 marks)
Marks
The photograph below shows the parts of an AC electric motor.

(a) Outline the function of the stator coils in this motor.

2 MARKS - CORRETLY INICATES MAIN FEATURES E.C. TTHE STATOR PRONIDES
AN EXTERNAL MAGNETIC FIELD FOR THEROTOR. THIS MAGNETIC FIELD ROTAFES/MONES TO PRODUCE A TORQUE. $\sqrt{\text { MARK - PART OF ABOVE }}$
(b) Describe the principle of operation of the type of motor illustrated above.

3 MARKS - CLEARLY PROVIDES CHARACTERISTCS AND FEATURES OF THE
PRINCIPLE OF OPERATION. EG. THE AC CURRENT GENERATE A ROTATING MAGNETIC FIELD. THIS INDUCES CURRENT IN TIE

ROTOR DUE TO FARADAY'S CAW. TIE CURRENT IN THE ROTOR PRODUCES A MAGNETS FIELD TIT INTERACTS WITT TIE STATORS MAGNETS FIELD ACCORDING TO LENZ'S LAW. AS THE FIECD'S OPPOSE EACH OTHER THERE IS A TORQUE FORCE ON THE ROTOR. ANE.

2 MARKS - MOSTLY CORRECT

I MARK - PARTLY CORRECT
\qquad

Question 24 (5 marks)
The following diagram shows an aluminium sheet dropping, under the influence of gravity, between the poles of a strong permanent magnet. At the position shown, the sheet has an instantaneous velocity, V, and is dropping out of the field. Only the top half of the sheet remains between the poles of the magnet.

2 MARKS CORRECT LOCATION AND DIRECTION
(MARK) AS ABOVE BUT DIRECTION INCORRECT
(a) On the diagram above, draw in the eddy current that is generated in the sheet, showing both the position and the direction of the current.
(b) Explain, in terms of the physical principles involved, the production of eddy currents in the sheet and their effect on the subsequent motion of the sheet.

3 MARKS - RELATES PRODUCTION OF CURRENTS
To chance in magnetic field (faraday's lan)

- Relates lenz's law to eddy current

PRODUCING MAGNETIC FIELD THAT OPPOSES MOTION
\& 42 Qepesine

- DESCRIBES SUBSEQUENT MOTION AS
DOWNWARD ACCELERATION $<9.8 \mathrm{~ms}^{-2}$

2 MARKS 2 of ABOVE
MARK I OF ABOVE

Question 25 (3 marks)
where tue
Heinrich Hertz performed an experiment measure the speed of radio waves using the principle of interference of waves produced by a reflection from a metal plate. Ochre the significance of the result of this experiment.

to be true: ie E/M waves could crest at coney fregus.
and that all chm apse propagate at same spored

- Hot feryés radio wave e wart $4 / \mathrm{m}$ wains

Question 26 (4 marks)
In the early nineteenth century, it was experimentally shown that light had wave properties such as interference and diffraction. However, this classical wave model of light could not be used to explain the observations made in experiments on the photoelectric effect. Use Einstein's reconceptualisation of the model of light to explain why the photoelectric effect will not occur if incident light is below the threshold frequency.

 3 Marks As above but par use \& loguagege or stud
 answer om onsunt eco dor

\qquad

Question 27 (6 marks)

The diagram below shows a thin beam of electrons in a cathode ray tube. The electrons are moving at a velocity, $v=1.2 \times 10^{3} \mathrm{~ms}-1$ into a region of magnetic field between two electrically charged deflector plates (P and S). Due to the combined effect of the electric and magnetic fields between plates P and S , the electrons pass undeflected between the plates.

The magnetic field has a magnitude of 100 T .

(a) Determine the magnitude and direction of the force on a single electron due to the magnetic field only.

\qquad
electric field
(b) Determine the magnitude and direction of the fore electrieffecta Show working.

$$
\begin{aligned}
& F=q^{E}=q B=8 B \\
&=1.6 \times 10^{-19} \times E=12 \times 10^{-19} \\
&=1.92 \times 10^{-4}
\end{aligned}
$$

(d) Calculate the potential difference between plates P and S . State which plate is positive. 1

$$
\begin{aligned}
v & =s d \\
& =3.2 \times 10^{5} \times 0.1 \\
& =1.2 \times 10^{4} \mathrm{vats}
\end{aligned}
$$

\qquad

Question 28 (6 marks)
Explain how energy savings are currently made during the transmission of electricity through the power grid and assess the possible use of superconductors in these applications.
Divide answer into - current energy savings -3 marks -assessment of superconduct.
 cledricity - Hest loss reduction by use of AC powys, tresformers and transmission using high V and low I.

- Trenstarmer efficiency is improved using laminated cores to . reduce eddy currants reducing E loss through heat radiation step up tronsomers hove low I outputs which also reduces hoot loss
\qquad
\qquad

For 2 d 3 marks
- Describe how supercondudars could be applied-s.S. wo heat loss would occurs and fewer transformers cull be used. Trescission of De would a bo be possible.
The answer must moke a judgement
Ls The zero rasitorx of superconductors reduce anergy buses and mucose energy sames
(g) Write the transmutation equations for the following processes;
(i) Alpha decay of Uranium 238
(ii) Beta decay of Thorium 234
(h) Calculate the magnitude of the gravitational and electrostatic forces between 2 protons separated by $1.2 \times 10^{-15} . \quad\left(\mathrm{F}=\mathrm{kq} . \mathrm{q} / \mathrm{d}^{2}, \mathrm{k}=9 \times 10^{9}\right.$) (2 marks)
(i) Account for the need for the strong nuclear force.
(2 marks)

Answer sheet for Quanta option
Student number
(a) I Mark for justifying each part (2 Marks)

Mostly free space becavis α particles passed-thon Au-fot-undeflected.
"dense +ven -ucleus" because α particles (1 m 10000 is) rebounded elastically (Aced any reasonable justification)

if cored

2 MARKS - 1 correct similarity and 1 correct difference
egg. Both Buhr and Rutherford had electrons orbiting the nucleus with electrostatic force providing the recassary centripetal farce. Bohr's model differed because his modal had many possible radii (or E le vets) to occupy. Rutherford simply stated that electrons orb af a large distance from nuctein:
(c)

$$
\begin{aligned}
& \text { IMARK far mach corned shortcoming } \\
& \text { * couldn't explain - intensity variation of emission spectrum } \\
& \text { * " ., - zeernen effect } \\
& \because \text { - hyperfine splitirs }
\end{aligned}
$$

* Uses a combination of classical and quantum ideas.
\qquad
for 2 marks - Makes a clear assessment of P.E.P
(d)
- Justifies the assessonent
es: The P.E.P. made a significant and positive contribution as it provided reasons why a limited number of eledrors can occupy each E level oe/gave reasons for hyperfine splitting

1 MARK - Gives only 1 correct part of the answer above

2 MARKS
1 MaRK - Sore attempt.
(f) 2 MaRks - Answer presents a for and on against argumot.
c. 3 de Broglie didn't experiment to test his hypothesis so didn't follow the model however later on, Davisson and Gamer showed high energy e's form a diffraction pattern whom fired ot metallic orystols-ie experrindal enderue 1 MaRk If either a for os against argument
(g) For each partisustract i mark (max $2 \mathrm{mks} / \mathrm{part}$) for march error.

(i) $U^{23 T} \rightarrow \infty+$ Th 90
(ii) $T h^{234} \longrightarrow \beta_{-1}^{0}+P_{a}^{234}+\underset{91}{20}$

Student Number \qquad
\qquad

