SYDNEY BOYS HIGH SCHOOL

Trial Physics Examination

2011

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Draw diagrams using pencil
- Board- approved calculators may be used
- A data sheet, and formulae sheets Periodic Table are provided at the back of this paper

Total marks - 100

Section 1

75 marks

This section has two parts, Part A and Part B

Part A-20 marks

- Attempt questions $1-20$
- Allow about 35 minutes for this part

Part B - 55 marks

- Attempt Questions 21-32
- Allow about 1 hour and 40 minutes for this part

Section II

25 marks

- Attempt the Quanta to Quarks option.
- Allow about 45 minutes for this part.

Section I

75 marks

Part A- 20 marks

Attempt Question 1-20

Allow about 35 minutes for this part
Use the multiple choice answer sheet for Questions 1-20. Choose the most correct alternative.

1. The Landsat 7 satellite orbits Earth at an altitude of approximately 700 km . The International Space station orbits at an altitude of 330 km .

Which of the following correctly compares the orbital velocity and orbital period of these satellites?
(A)
(B)

International Space Station	Landsat 7
Greater orbital velocity	Shorter orbital period
Lesser orbital velocity	Shorter orbital period
Greater orbital velocity	Longer orbital period
Lesser orbital velocity	Longer orbital period

2. Which of the following best describes Newton's analysis of escape velocity?
(A) A projectile launched with a great enough velocity would escape Earth's gravity?
(B) A projectile would travel in a straight line until it ran out of momentum, then it would fall.
(C) A projectile launched from the equator towards the east with a great enough velocity would orbit Earth.
(D) A projectile would travel in a parabolic path because it has constant horizontal velocity and constant acceleration.
3. A scientist at a particle accelerator laboratory observes the lifetime of a particular subatomic particle to be $1.0 \times 10^{-6} \mathrm{~S}$ when it is travelling at 0.9 c .

What would the lifetime of the particle be if it were stationary in the laboratory?
(A) $1.4 \times 10^{-8} \mathrm{~s}$
(B) $4.5 \times 10^{-8} \mathrm{~S}$
(C) $0.9 \times 10^{-6} \mathrm{~S}$
(D) $4.4 \times 10^{-7} \mathrm{~s}$
4. A ball was thrown upward at an angle of 45°. It landed at the same height as thrown.

Which graph best represents the vertical velocity component of the ball during its time of flight?
. (A)

(B)

(C)

(D)

5. A 200 g mass is swung in a horizontal circle as shown. It completes 3 revolutions in 5 seconds. The circle has a 2 m radius.

Which of the following forces is closest to that required to keep the mass moving in this circle?
(A) 0.50 N
(B) 5.5 N
(C) 10 N
(D) 20 N
6. Which statement about Thomson's q / m experiment is correct?
(A) It was a valid experiment because it tested the principle of relativity.
(B) It was a valid experiment because it took into account the known properties of magnetic and electric fields.
(C) It was an invalid experiment because it did not take into account the particle nature of light.
(D) It was an invalid experiment because the speed of cathode rays could not be determined.
7. The acceleration due to gravity on the surface of Mercury is $3.6 \mathrm{~m} \mathrm{~s}^{-2}$.

What is the mass of a 2.0 kg brick on Earth and on Mercury?
(A)
(B)
(C)
(D)

Mass of brick on Earth	Mass of brick on Mercury
2.0 kg	2.0 kg
19.6 kg	7.2 kg
19.6 N	19.6 N
19.6 N	7.2 N

8. While drilling into tough material, the DC motor in an electric drill is slowed significantly. This causes its coils to overheat.

Choose the most correct statement below:
(A) The resistance of the coils increases with loss of speed.
(B) At lower speeds increased friction on the drill is converted to heat and greater current.
(C) The back emf increases and so the current in the coils increases.
(D) Loss of speed increases net forward voltage through coils.
9. The possible application of superconductors in the transmission of electrical energy from power stations to users?
(A) May produce efficiency gains by reduction of line loss.
(B) May only be possible if temperature greater than T_{c} are maintained.
(C) May maximise the effects of the electrical resistance of the wires.
(D) Will ensure that, even with voltage losses, 240 V efficiency will be 100%.
10. The diagram shows a model of a transformer in a circuit.

Which of the following correctly identifies Part 1 and Part 2 and the current in coil 2?
(A)
(B)
(C)
(D)

Part 1	Part 2	Current in coil 2
Primary coil	Secondary coil	Less than coil
Secondary coil	Primary coil	1
		Less than coil
Primary coil	Secondary coil	1
		Greater than coil
Secondary coil	Primary coil	Greater than coil

11. Two copper rings lie in the same plane as shown.

A decreasing current flows clockwise around the outer ring.
What happens in the inner ring?
(A) An induced clockwise electron flow.
(B) An induced anticlockwise electron flow.
(C) An induced magnetic field grows out of the page.
(D) An induced anticlockwise magnetic field is produced.
12. The terminal velocity $\left(v_{t}\right)$ of a spherical object in Earth's atmosphere is proportional to the square root of its radius (r).

Which graph correctly shows this relationship?
(A)

(B)

(C)

(D)

13. What was Albert Einstein's contribution to the development of quantum physics?
(A) He combined the quantised wave and particle models of light.
(B) He analysed the photoelectric effect and described light as quantised energy packets.
(C) He explained black body radiation and the photoelectric effect using quantised energy.
(D) He hypothesised that the radiation emitted and absorbed by the walls of a black body cavity is quantised.
14. Heinrich Hertz devised and performed an experiment to investigate electromagnetic waves. In this experiment he was able to determine the speed of the waves.

Which method was used to determine the speed?
(A) Timing how long it took the wave to travel a known distance.
(B) Producing a wave of known wavelength and using reflection to determine the frequency.
(C) Producing a wave of known frequency and using interference to determine wavelength.
(D) Using an interference pattern to determine the distance travelled and time taken.
15. A charged particle, q, enters a uniform magnetic field B at velocity v. the particle follows a circular path of radius r as shown.

If the magnitude of the magnetic field was tripled and the velocity was doubled, what would the new radius be?
(A) $\frac{3}{2} \mathrm{r}$
(B) 3 r
(C) 6 r
(D) $\frac{2}{3} r$
16. A positron beam (positive electrons) strikes the screen at point P, producing a bright spot. The north end of a magnet is brought towards the beam a shown.

Towards which point does the bright spot move?
(A) A
(B) B
(C) C
(D) D
17. JJ Thomson determined the charge/mass ratio of the electron by constructing a device which contained
(A) perpendicular magnetic fields, and electric fields and a heated cathode.
(B) perpendicular electric fields, and a heated anode.
(C) parallel electric and magnetic fields, and a heated cathode
(D) perpendicular electric and magnetic fields, and a heated anode
18. William and Lawrence Bragg investigated the layered structure of nickel crystals using
(A) coherent, monochromatic light and an interferometer.
(B) UV light with a wavelength in the order of $10^{-7} \mathrm{~m}$ and an interferometer.
(C) EMR with a wavelength in the order of $10^{-7} \mathrm{~m}$ and an X-Ray Spectrometer.
(D) EMR with a wavelength in the order of $10^{-10} \mathrm{~m}$ and an X-Ray Spectrometer.
19. Why does N type Silicon have a smaller band gap than pure silicon?
(A) Adding gallium contributor positive holes to the lattice which adds on acceptor band.
(B) Adding gallium contributes electrons which form a donor level just below the conduction band.
(C) Adding arsenic contributor electrons which provide an acceptor level reducing the band gap..
(D) None of the above are correct.
20. The diagrams show possible ways to connect the coils and rotor of a DC motor to a DC power supply.

In which circuit will the rotor turn in an anticlockwise direction?

\qquad

Physics

Section 1 (continued)

Part B- 55 marks

Attempt Question 21-32
Allow about 1 hour and 40 minutes for this part

Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
Show all relevant working in questions involving calculations.

Question 21 (4 marks)

On the return leg of an Apollo space mission the occupants of the Space vehicle proposed 3 possible angles of approach for re-entry to the earth's atmosphere.
$\mathrm{A}=6.2^{\circ}$
$B=7.2^{\circ}$
$\mathrm{C}=9.2^{\circ}$

Discuss the 3 suggested approach angles A, B and C and give your recommendation of the best approach angle.

Question 22 (4 marks)

Henry spiked a volleyball at a Grammar boy that hit the boy on the top of the head. The boy was 1.8 metres tall and was standing 12 metres from Henry at the time. Henry hit the ball with a trajectory that was initially parallel to the floor. The contact height of Henry's spike was 3.0 metres of the ground.

(NOT TO SCALE)
(a) Calculate the time of flight of the volleyball
\qquad
\qquad
\qquad
(b) Calculate the initial velocity of the ball from Henry's spike.
\qquad
\qquad
\qquad
(c) Calculate the momentum of the volleyball when it hit the Grammar boy (the mass of a volleyball is 226 grams)
\qquad
\qquad
\qquad

Physics

Student Number

Section I - Part B (continued)

Question 23 (4 marks)

A train is travelling on a straight horizontal track. A student on the train attaches a mass on a string to the ceiling of the train. The student observes that the mass remains stationary in the position shown.

(a) The string then breaks and the mass falls.

Indicate the path of the mass on the diagram above. Explain why the mass has taken this path.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) At the same time another student on the train is conducting an investigation to verify Einstein's time dilation equation. He does this by comparing his clock to one on the platform as they go by.

Evaluate the validity of the student's investigation.
\qquad
\qquad
\qquad

Question 24 (3 marks)

The earth orbits the sun with a period of approximately 365 days. The diagram shows the earth orbiting the sun, viewed from above the earth's north pole.

(a) Draw labelled vectors on the diagram to show the net force $\left(\mathrm{F}_{\mathrm{N}}\right)$ acting on the earth, and the instantaneous velocity (v) of the earth at the position shown.
(b) Calculate the distance between the earth and the $\operatorname{sun}\left(\mathrm{M}_{\text {sun }}=2.0 \times 10^{30} \mathrm{~kg}, \mathrm{~T}_{\text {earth }}=365\right.$ days $) \quad \mathbf{2}$

Physics

Student Number

Section I - Part B (continued)

Question 25 (4 marks)

The mass of a rocket decreases during launch as it burns fuel, as shown in the graph. The rocket engine produces a constant upward force on the rocket.

(a) Complete the graphs below to show the qualitative relationship between
(i) Rocket Thrust v time

(ii) Rocket Acceleration v time

(b) Explain the difference between the g forces on an astronaut at times t_{1} and t_{2}.
\qquad
\qquad
\qquad
\qquad

Question 26 (6 marks)

A bar magnet is dropped through the centre of a solenoid connected to a data logger as shown.

The data are recorded in the graph as shown.

(a) Explain the shape of the graph with the reference to Faraday's Law.
\qquad
\qquad
\qquad
\qquad

Question 26 continues on the next page.

Question 26 (continued)
(b) The magnet is dropped again after the following changes were made.

1. The number of turns on the solenoid was doubled.
2. The south pole of the magnet was pointing down.

Sketch a graph that represents the most likely outcome of this new experiment.

(c) Name a different change that could be made that would increase the rate of change of magnetic flux.

Thermionic vacuum tube devices have largely been replaced with solid state technology.
Evaluate the impact that solid state devices have had on society and the environment.
\qquad

Physics

\qquad

Section I - Part B (continued)

Question 28 (3 marks)
A copper rod is placed on a wooden frame, which is placed on an electronic balance.
A length of 0.2 m of the rod passes at right angles to a horizontal magnetic field.

When a current of 0.3 A is passed through the rod, the reading on the balance decreases from $7.5 \times 10^{-3} \mathrm{~kg}$ to $7.5 \times 10^{-4} \mathrm{~kg}$

What is the strength and direction of the magnetic field?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 29 (3 marks)
Two sets of plates deflect an electron beam in a cathode ray oscilloscope to produce the trace on the screen shown.

Explain the role of the X deflection plates and the voltage changes that occur across them to control the sweep rate of the cathode ray beam.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Physics

Student Number

Section I - Part B (continued)

Question 30 (5 marks)
Pure germanium can be doped by adding small amounts of boron or arsenic.
(a) Explain how the addition of arsenic alters the electrical conductivity of germanium.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Draw a labelled diagram of a p n junction solar cell connected in series to a lamp and a variable resistor. Include current direction (I) in your diagram.

Question 31 (5 marks)

(a) What is the energy of a photon having a wavelength of $4.5 \times 10^{5} \mathrm{pm}$.
\qquad
\qquad
\qquad
\qquad
(b) Incident light of frequency well above f_{o} is directed onto a photoelectric material. With reference to Work Function, explain why emitted electrons have a range of kinetic energies.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Given that $\mathrm{KE}=\mathrm{hf}-\mathrm{W}$,

Show that $\quad V_{s} \propto f-f_{o}$
Where $\quad \mathrm{V}_{\mathrm{s}}=$ stopping voltage
$\mathrm{f}=$ incident light frequency
$\mathrm{f}_{\mathrm{o}}=$ threshold frequency
$\mathrm{W}=$ work function

Section I - Part B (continued)

Question 32 (8 marks)
(a) Tin has been shown to have superconductor properties. Its transition temperature is $\mathbf{- 2 6 5}{ }^{\mathbf{0}} \mathrm{C}$.

Draw a graph to show how the electrical resistance of tin changes, above and below the transition temperature.
(b) Outline the current theory to explain why tin is superconducting at very low temperatures.
\qquad
\qquad
\qquad
\qquad
(C) It has been suggested that superconductors could be used to replace the copper cables currently used in large scale electricity transmission. Critically evaluate this proposal.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

OPTION - QUANTA TO QUARKS.

Student number

\qquad

25 marks. Attempt all questions.

USE THE SEPARATE ANSWER SHEET FOR THESE QUESTIONS.

(a) The atomic model underwent rapid change around the turn of the $20^{\text {th }}$ century. Recount modifications to the model of the atom from Thomson (1898) to Bohr (1913) and assess the impact of the Heisenberg Uncertainty Principle on later models.
(b) Calculate the wavelength of the lowest energy visible photon in the Balmer series for hydrogen.
(c) The Bohr model of the atom had a number of shortcomings. (ie things it couldn't explain). Give 4 shortcomings of the Bohr theory.
(d) The Bohr model of the atom has been said to consist of both quantum and classical ideas. State one part of the model which is classical in nature and one aspect that is quantum in nature.
(e) Define diffraction
(f) Explain the significance of the Davisson and Germer electron diffraction experiment on De Broglie's matter wave proposal and the stability of electron orbits in the Bohr atom.
(g) State the Pauli exclusion principle and give one limitation of the Bohr Model of Hydrogen that the Pauli Exclusion Principle accounts for.
(h) Uranium 238 undergoes alpha decay to produce element X . Element X then undergoes beta decay to produce element Y.
Write the transmutation reactions for the two events described above and name elements X and $\mathrm{Y} \quad \mathbf{3}$
(i) Calculate the mass defect in amu and energy absorbed or released in eV for the following transmutation.

$$
\begin{aligned}
& \mathrm{Ra}^{226}{ }_{88} \rightarrow \quad \mathrm{Rn}^{222}{ }_{86}+\mathrm{He}_{2}^{4} \\
& \text { (Masses in amu: } \mathrm{He}^{4}=4.00260, \mathrm{H}_{1}^{1}=1.0078825, \mathrm{Rn}^{222}{ }_{86}=222.08690, \mathrm{Ra}^{226}{ }_{88}=226.09600 \text {) }
\end{aligned}
$$

Trial Physics Examination

2011

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using black or blue pen
- Draw diagrams using pencil
- Board- approved calculators may be used
- A data sheet, and formulae sheets Periodic Table are provided at the back of this paper

Total marks - 100

Section 1

75 marks
This section has two parts, Part A and Part B

Part A - 20 marks

- Attempt questions $1-20$
- Allow about 35 minutes for this part

Part B - 55 marks

- Attempt Questions 21-32.
- Allow about 1 hour and 40 minutes for this part

Section II

25 marks

- Attempt the Quanta to Quarks option.
- Allow about 45 minutes for this part.

SYDNEY BOYS HIGH SCHOOL

Trial Physics Examination

Multiple Choice Answer Sheet

ANSWERS Sou chatted)
Student Number

Physics

Section 1 (continued)

Part B- 55 marks
Attempt Question 21-32
Allow about $\mathbf{1}$ hour and $\mathbf{4 0}$ minutes for this part
Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
Show all relevant working in questions involving calculations.

Question 21 (4 marks)

On the return leg of an Apollo space mission the occupants of the Space vehicle proposed 3 possible angles of approach for re-entry to the earth's atmosphere.

$$
\mathrm{A}=6.2^{\circ} \quad \mathrm{B}=7.2^{\circ} \quad \mathrm{C}=9.2^{\circ}
$$

Discuss the 3 suggested approach angles A, B and C and give your recommendation of the best approach angle.

NOT TO
SCALE
ANSWER MUST SPECIFICQWY ROORESS EACH ANGLE marks \neq ticks in this question

 C. 2° min mid le of acceptable

Question 22 (4 marks)
Henry spiked a volleyball at a Grammar boy that hit the boy on the top of the head. The boy was 1.8 metres tall and was standing 12 metres from Henry at the time. Henry hit the ball with a trajectory that was initially parallel to the floor. The contact height of Henry's spike was 3.0 metres of the ground.

(NOT TO SCALE)
(a) Calculate the time of flight of the volleyball
$t=0.49 \mathrm{~s} \quad$ correct units and mennenen
\qquad
\qquad
(b) Calculate the initial velocity of the ball from Henry's spike.
$u_{x}=24.5 \mathrm{~m} / \mathrm{s}$ to the right (not toward, player)

* Carry over omar.... only anon ir
 \qquad
Many did not add (c) Calculate the momentum of the volleyball when it hit the Grammar boy (the mass of a volleyball

$$
p=5 \cdot \& \text { is } 1 \text { pork far nemmiced or corned unit }
$$ is 226 grams)

 NB: If everything else is correct except direction in (c) a monk con be given for direction if given in (b)

Physics \qquad
Section I - Part B (continued)

Question 23 (4 marks)
A train is travelling on a straight horizontal track. A student on the train attaches a mass on a string to the ceiling of the train. The student observes that the mass remains stationary in the position shown.

(a) The string then breaks and the mass falls.

Indicate the path of the mass on the diagram above. Explain why the mass has taken this path.
Ans.ner..should. describe accalerated....nature . af the........ trains frame of reference Ans......................................

- After...string ...nt the mass moves in th constant.......
horizontal velocity the train accelerates andy from it
- The confined vertical and trorizontal acenlenations produce the path thrown.
(b) At the same time another student on the train is conducting an investigation to verify Einstein's

2 MARKS time dilation equation. He does this by comparing his clock to one on the platform as they go by.

BEST REsPonsE - Exp cant be valid os the train is not an Inertial Frame as anequinen for special Relativity Acceptrsur........Refativistic speeds arno sot possible so observable effects will not be measurable
1 mover - discussion about need for synchronisations

Question 24 (3 marks)
The earth orbits the sun with a period of approximately 365 days. The diagram shows the earth orbiting the sun, viewed from above the earth's north pole.

All NOT TO SCALE

$$
\left(F_{N}\right)
$$

(a) Draw labelled vectors on the diagram to show the net force acting on the earth, and the instantaneous velocity(of the earth at the position shown.
(b) Calculate the distance between the earth and the sun $\left(\mathrm{M}_{\text {sum }}=2.0 \times 10^{30} \mathrm{~kg}, \mathrm{~T}_{\text {earth }}=365\right.$ days $) \quad 2$ (Shaw your working)

$$
\begin{aligned}
T & =365 \times 24 \times 60 \times 60 \\
& =31536000= \\
& =9.9452 \times 10^{14} \mathrm{~s}
\end{aligned}
$$

correct

$$
\begin{array}{rlrl}
r^{3}=\frac{6 m}{4 T^{2}} & & =365 \times 2 \\
r^{3} & =31536 \\
r^{3} & =\frac{6 m T^{2}}{4 \pi^{2}} & =9.945 \\
& =\frac{6.47 \times 10^{-11} \times 2 \times 10 \times 9.9452 \times 10^{30}}{4 \pi^{2}} 33
\end{array}
$$

$$
\frac{3}{r}=3.360542 \times 10^{13}
$$

$$
\begin{aligned}
r & =105 \times 10^{11} \quad m \\
& \left.=1.5 \times 10^{8} \quad \mathrm{~km}\right) \stackrel{\Delta r}{\longleftrightarrow}
\end{aligned}
$$

* Max 3 sig. firs 1 Mark call

Physics

Student Number

\qquad

Section I - Part B (continued)

Question 25 (4 marks)

The mass of a rocket decreases during launch as it burns fuel, as shown in the graph. The rocket engine produces a constant upward force on the rocket.

(a) Complete the graphs below to show the qualitative relationship between
(i) Rocket Thrust v time
(ii) Rocket Acceleration v time

$$
\text { thrust } \underbrace{\substack{\text { Stroulal be a } \\ \text { straight line }}}_{\text {time }}
$$

F $F_{\text {th }}=m_{a}$
$a=\frac{F_{T}}{m}$
$a \propto \frac{1}{m}$
(b) Explain the difference between the g forces on an astronaut at times t_{1} and t_{2}.

 1) Mass reduces with tire 2) a <1 $\rightarrow g$ force greer at 2 than 1 .

\rightarrow name in inv inge Lon of cons. of Energy.
It applies when energy changes occur. Rig Induction of current on induced KE (maters).
 Erresgy $=V I t, \quad I=0 \quad \therefore$ no induced elacherical I Question 26 (5 marks) \therefore No work dane by gravity on the circint
A bar magnet is dropped through the centre of a solenoid connected to a data logger as shown.

The data are recorded in the graph as shown.

Many students one confused abas the Time (s)
application if Faraday's and Lenzs Lows. (see above)
(a) Explain the shape of the graph with the reference to Faraday's Law. correctly
 \checkmark OR flux consent by the moving magnet

Induced voltage at y is restive os the change in flux is opposite to t hot at x lie flux is reducing at y, mereasing at x)
$\int-$ Induced voltage at y has gracter magmiuhe as magrat is Ealing faster at $Y \therefore \frac{\Delta G A}{\Delta t}$ is greater.

Question 26 continues on the next page.

Question 26 (continued)
(b) The magnet is dropped again after the following changes were made.

1. The number of turns on the solenoid was doubled.
2. The south pole of the magnet was pointing down.

Sketch a graph that represents the most likely outcome of this new experiment.

(c) Name a different change that could be made that would increase the rate of change of magnetic flux.

Trle-i Thence roup the dreemndin
umpionemed in fondwonther arne Last year.
Question 27 (6 marks)
Thermionic vacuum tube devices have largely been replaced with solid state technology.
Evaluate the impact that solid devices have had on society and the environment.

\qquad

The 6 points baku were used by the marker to monitor the boliaxic. $\%$ f. the sturdemen ...expanse..... They . don't. nenecessorely $=$ mans amardea'

Nates:- Judgernends about imppet without supporting criteria are worthless * rat corisidared.

- Many students put too much emphasis on comparing thermionic and sis. device, RATHE then focussing their response on ImpAat - Others LISTED ar DESCRIBED impacts but didn't EVALUATE.
\qquad

Question 28 (4 marks)
A copper rod is placed on a wooden frame, which is placed on an electronic balance.
A length of 0.2 m of the rod passes at right angles to a horizontal magnetic field.

magnetic field

When a current of 0.3 A is passed through the rod, the reading on the balance decreases from $7.5 \times 10^{-3} \mathrm{~kg}$ to $7.5 \times 10^{-4} \mathrm{~kg}$

What is the strength and direction of the magnetic field?

$\Delta F=\Delta m g=\left(7.5 \times 10^{4}-7.5 \times 12\right) \times 9.8=0.066$
$F=\operatorname{Busin} \theta$

\qquad
\qquad

Question 29 (3 marks)
Two sets of plates deflect an electron beam in a cathode ray oscilloscope to produce the trace on the screen shown.

Note
Explain - Cause and effect required.
T. mary student e spake about both sets of deflection plates - Hins strow r lack of focus on the question at hand.
Explain the role of the X deflection plates and the voltage changes that occur across them to control the sweep rate of the cathode ray beam.
vertically arienteg plater which
(-Produce the moving spot across the screen's... X axis (hergental dirt)

MAR q - The voltage sees tho 2 plates alternates to move the...
spot aras the scree the prickly reel (varies positive to negative,

Voltage
$[$ Saw Tooth voltage graph on x phases

Physics \qquad
Section I - Part B (continued)

Question 30 (5 marks)
Pure germanium can be doped by adding small amounts of boron or arsenic.
(a) Explain how the addition of arsenic alters the electrical conductivity of germanium.

- Arsenic incososps the conductivity af anemarnum

occupies a bond gust below the conduction band at the donar level
- This..... result
\therefore Produces an N..... type serniconductor
\qquad
(b) Draw a labelled diagram of a $\mathrm{p} n$ junction solar cell connected in series to a lamp and a variable resistor. Include current direction (I) in your diagram.
(No deduction, BUT

should be done with ruler and)
paneit

subtract on mark for each error

Question 31 (5 marks)
(a) What is the energy of a photon having a wavelength of $4.5 \times 10^{5} \mathrm{pm}$.

1 Marks . Correct formula lin
$\begin{aligned} & E \text { the subject } \\ & \text { with }\end{aligned}=4.4 \times 10^{-19} \mathrm{~J}$

(b) Incident light of frequency well above f_{0} is directed onto a photoelectric material. With reference to Work Function, explain why emitted electrons have a range of kinetic energies.
W (Work fundic.) is the minimum E to bring an eledron to the surface and $K E=h^{\prime}-W$. For somme eledrons, the energy required to be eyaded will be greater than w hance the rearing energy to form KE will be reduced. That KE win vary because envision E varies. Alternatively nonce question didn't state that f incident was constant, variations in F_{i} will give a range $\mathcal{A} K E^{\prime}$, (if $F_{i}>f_{0}$)
(c) Given that $\mathrm{KE}=\mathrm{hf}-\mathrm{W}$, (Work function is the minimum ε to bring gin elodea.

Show that $\quad V_{s} \propto f-f_{0}$
Where
$\mathrm{V}_{\mathrm{s}}=$ stopping voltage
$\mathrm{f}=$ incident light frequenc
$\mathrm{f}_{\mathrm{o}}=$ threshold frequency W = work function
since

$$
\text { once } \begin{aligned}
K E & =q V_{s} \\
\text { and } & =h f_{0} \\
V_{s} & =h f^{\prime}-h f_{0} \\
V_{s} & =\frac{h}{T}\left(f-f_{0}\right) \\
\therefore V_{s} & =\sim+f_{0}
\end{aligned}
$$

Sore otrudeds confuses

- E_{k} and E (field strenght)
- V_{s} and $V_{\text {velocity }}$

Many meannexty stated

$$
\underset{\operatorname{mad}}{ }=V_{s}
$$

Physics \qquad
Section I - Part B (continued)

Question 32 (8 marks)
(a) Tin has been shown to have superconductor properties. Its transition temperature is $\mathbf{- 2 6 5}{ }^{\circ} \mathrm{C}$.

Draw a graph to show how the electrical resistance of tin changes, above and below the transition temperature.

Tc terperalum

Sg..... Lotic. cooling d deformation occurs lon dine to formation

(C) It has been suggested that superconductors could be used to replace the copper cables currently used in large scale electricity transmission. Critically evaluate this proposal.

Guipeune for Maxes \qquad
\qquad
 - At least 2 bereft -Rourke to Type. T d deference
$2{ }^{2}$,
\qquad (- A door and expanded judgement, with criteria, stating whether we should be ding the replacement or not
For 4 MARKS -Arum mot display. depttior kraciedigic - depth of understanding

- strong and clear judgement

OPTION - QUANTA TO QUARKS. \qquad

25 marks. Attempt all questions.

USE THE SEPARATE ANSWER SHEET FOR THESE QUESTIONS.
(a The atomic model underwent rapid change around the turn of the $20^{\text {th }}$ century. Recount modifications to the model of the atom from Thomson (1898) to Bohr (1913) and assess the impact of the Heisenberg Uncertainty Principle on later models.
(b) Calculate the wavelength of the lowest energy visible photon in the Balmer series for hydrogen.
(c) The Bohr model of the atom had a number of shortcomings. (ie things it couldn't explain). Give 4 shortcomings of the Bohr theory.
(d) The Bohr model of the atom has been said to consist of both quantum and classical ideas. State one part of the model which is classical in nature and one aspect that is quantum in nature.
(e) Define diffraction
(f) Explain the significance of the Davisson and Germer electron diffraction experiment on De Broglie's matter wave proposal and the stability of electron orbits in the Bohr atom.
(g) State the Pauli exclusion principle and give one limitation of the Bohr Model of Hydrogen that the Pauli Exclusion Principle accounts for.
(h) Uranium 238 undergoes alpha decay to produce element X . Element X then undergoes beta decay to produce element Y .
Write the transmutation reactions for the two events described above and name elements X and Y 3
(i) Calculate the mass defect in amu and energy absorbed or released in eV for the following transmutation.

$$
\mathrm{Ra}^{226}{ }_{88}^{2} \rightarrow \mathrm{Rn}^{222}{ }_{86}+\mathrm{He}^{4}{ }_{2}
$$

(Masses in amu : $\mathrm{He}^{4}{ }_{2}=4.00260, \mathrm{H}^{1}{ }_{1}=1.0078825, \mathrm{Rn}^{222}{ }_{86}=222.08690, \mathrm{Ra}^{226}{ }_{88}=226.09600$)
\qquad
(a) 3 MATfys Recounts Thwons plum puddine to Rutternord orbitel/Free
 DIAGRAMS
\qquad
\qquad

 shawed thot the precise quantitative description of sair cauld nat be

where $A_{5}=2 \ldots \cdots \cdots=3$

$$
\cdots \cdot \mathrm{OR}
$$

 shertcoms? (-2 shot comos raquel for ulot mote)

3) Dido 1 explan zénman ..efect

(d). 1 Mork for each correct staterner..... (totol.... 2 MARKS) cussica - electractatur ottrection of arbinto dectref .
QUANTM - - . descrete E. . levels..........phatans...eminted.:
(e) Diffraction is the bendins of o o atove araind an obstocle
\qquad
\qquad
oddressed. electron orbitol...stabality by using starding. . ways.. cancept. but.. lacked experimental... Suppart.
 partichas (specaficelly eledrans) Hod hemp prapentien.
(Morker.to dievelof .this For lowner mank.
\qquad
\qquad
\qquad
\qquad
\qquad
 quanturn..numbersi.....

$$
\begin{aligned}
& \text { - 6.0.55 MeV }
\end{aligned}
$$

I malk

