2004 YEAR 9 YEARLY

SECTION A (16 Marks)

1. Evaluate x if $\sqrt{x}=9$.
2. Solve $x^{2}=4 x$.
3. Find $\angle A C B$ to the nearest degree.

4. Using the diagram shown, write an equation connecting x and y giving a reason.

5. Solve for $x: 8 x=\frac{1}{\sqrt{x}}$.
6. A bag contains five red and four blue marbles. Two are drawn together from the bag. Find the probability that
(a) they are both red.
(b) they are both red if it is known that one marble is red.
7. In the parallelogram $A B C D$ shown, $D E=15, C E=8$ and $D E$ is perpendicular to $C E$. Find the area of the parallelogram.

SECTION B (16 Marks)

1. Given $P(x)=x^{3}-x^{2}+9 x-9$,
(a) find $P(-3)$.
(b) show that $(x-1)$ is a factor of $P(x)$.
(c) briefly explain why there are no other real factors of $P(x)$.

2
2. In the diagram shown, $P Q R S$ is a rectangle and diagonal $Q S$ is 3 extended to $T V$ such that $T S=Q V$. Copy the diagram onto your answer sheet and prove that $P V R T$ is a parallelogram.

3. Fully factor $x^{3}+8 y^{3}$.
4. Find k if the line $2 x-4 y+1=0$ is parallel to the line $3 x+k y-7=0 . \quad 2$
5. The diagonals $A C$ and $B D$ of a rhombus $A B C D$ are 12 cm and 20 cm .
(a) Find its exact perimeter.
(b) Find $\angle A B C$ to the nearest degree.

SECTION C (16 Marks)

1. (a) On the same graph, neatly sketch the curves $\mathrm{y}=2^{x}$ and $\mathrm{y}=2^{-x}$. $\mathbf{3}$
(b) Find all solutions to $2^{x}=2^{-x}$.
2. In the diagram shown, $\angle A O B=126^{\circ}$ and $\angle O A D=24^{\circ}$.

3. Find $\angle C B D$ giving all reasons.
4. Solve for $x: x^{2}-2 x-4=0$.
5. (a) Find the equation of the line through the points $A(0,4)$ and $B(3,2)$.
(b) Find l, the equation of the line through B and 2 perpendicular to $A B$.
(c) The line l intersects the y-axis at C. Find the area of $\triangle A B C$.

SECTION D (16 Marks)

1. Find all solutions to:
$5^{2 x+y}=1$
$4^{x-y}=8$
2. (a) Find the value of x for which $P(x)=x^{3}-3 \mathrm{x}^{2}+4$ has a double root.
(b) Neatly sketch $P(x)=x^{3}-3 x^{2}+4$. 3
(c) Hence, or otherwise, solve $x^{3}+4 \leq 3 x^{2}$.
3. Bill starts at A and walks 8 km . on a bearing of $039^{\circ} T$ to B. 3
How far east is he from A. (Answer to nearest km.)
4. In the diagram shown, $A B C D$ is a parallelogram and $E F$ a chord.

Copy the diagram onto your answer sheet and prove that $A B=E F$.

SECTION E (16 Marks)

1. Find all solutions to $x^{4}-7 x^{2}+12=0$.
2. (a) Using a scale of $1 \mathrm{~cm} .=1$ unit, graph the region defined

3 by the inequalities:

$$
\begin{aligned}
x+3 y & \leq 6 \\
4 x+3 y & \leq 12 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
$$

(b) Find the co - ordinates of a point in this region which will maximise the value of z if $z=5 x-2 y$.
3. In the diagram given, $A B C D$ is a cyclic quadrilateral where $A E$ bisects $\angle B A D$ and $C F$ bisects $\angle B C D$. Copy the diagram onto your answer sheet and prove that $E F$ is a diameter.

4. A square $A B C D$ has an area of 1 square unit. Point E is on side $A B$ and point F is on side $A D$ such that $A E=A F=x$.
(a) Draw a diagram showing the above information.
(b) Show that A, the area of quadrilateral $C D F E$ is

$$
A=\frac{1}{2}\left(1+x-x^{2}\right) .
$$

(c) Find the maximum area of quadrilateral $C D F E$.

УトイK у y\&ாnaz
2004 SOLUTIONS
SECTION A
$1 \quad \sqrt{x}=9 \quad 2 x^{2}=4 x$
$\therefore x=81 \quad \therefore x^{2}-4 x=0$

$$
\therefore x(x-4)=0
$$

5

$\therefore x=0$ or $x=4$

$$
\begin{aligned}
8 x & =\frac{1}{\sqrt{x}} \\
\therefore x^{\frac{3}{2}} & =\frac{1}{8} \\
\therefore x & =\left(2^{-3}\right)^{\frac{2}{3}} \\
\therefore x & =1
\end{aligned}
$$

$$
\begin{array}{lll}
x=0 & \text { or } x=4 & \therefore \\
\frac{6}{4}, R & \frac{4}{5}, & \frac{20}{72} \\
\frac{5}{9} & \frac{20}{72} \\
\frac{y}{9} & \frac{5}{5} R & \frac{20}{72} \\
& \frac{3}{1} & \frac{12}{72}
\end{array}
$$

(a) $P=\frac{20}{72}=\frac{5}{18}$

$$
\text { (b) } p=\frac{20}{72-12}=\frac{1}{3}
$$

Abstract

\qquad

\qquad

$$
\therefore \text { Area of forme. }
$$

SECTION B

1) $P(x)=x^{3}-x^{2}+9 x-9$
(a) $P(-3)=(-3)^{3}-(-3)^{2}+9(-3)-9 \quad 2$

$$
\begin{aligned}
& =-27-9-27-9 \\
& =-72
\end{aligned}
$$

(b) Let $P(x)=(x-1) Q(x)$ $P(+1)=+1-1+9-9$
$\begin{aligned} &=0 \\ & \therefore(x-1) \text { is } \times \text { yactor } f(P(x)\end{aligned}$
(c) $P(x)=x^{2}(x-1)+9(x-1)$

$$
=(x-1)\left(x^{2}+9\right)
$$

Since, $x^{2}+9$ has no real yactors $\therefore P(x)$ has anly ane reel yacter.

$7 \operatorname{ter} 2 x-4 y+1=0$

$$
\text { let } m_{1}=\frac{1}{2}
$$

$$
\text { For } 3 x+k y^{2}-7=0
$$

a Thombur livet ear

$$
\text { let } m_{2}=-\frac{3}{k}
$$ other xt right angles

Since linies farallel $\therefore A B=\sqrt{6^{2}+10^{2}}$ by fythoyers

$$
\begin{array}{r}
m_{1}=m_{2} \quad \therefore \frac{k}{k}=-\frac{3}{k} \\
\therefore k=-6
\end{array}
$$

$\therefore A B=2 \sqrt{34} \mathrm{~cm}$
(b) $\operatorname{L\text {Perimeteris}8\sqrt {34}\mathrm {cm}}$.
$\therefore A \hat{\tan } A \hat{B D}=\frac{6}{10}$
$\therefore A \hat{B} D=30^{\circ} 58^{\circ}$ (to menot deyree)

SECTION C

$A \hat{D} O=30^{\circ}$ (Mugle sum $\left.\triangle A O D=i t^{\circ}\right)$
$\therefore C \hat{D} B=30^{\circ}$ (vterticiolly
$\therefore \hat{D C B}=63^{\circ}$ (argle At car tre tus
$\therefore C \hat{B D})=87^{\circ}$ (Angle $\operatorname{lum}_{=180^{\circ}}$ of $\triangle C B i$
$3 x^{2}-2 x-4=0$
$\therefore x=\frac{2 \pm \sqrt{4+16}}{2}$

$$
=\frac{2 \pm 2 \sqrt{5}}{2}
$$

$$
x=1 \pm \sqrt{5}
$$

SECTION D

$$
\text { 1. } 5^{2 x-4}=1=5^{\circ}
$$

$$
4_{2 x-2 y}^{x-y}=8
$$

$$
\therefore 2^{2 x-2 y}=2^{3}
$$

$$
\therefore 2 x+y=0-(1)
$$

$$
2 x-2 y=3-(2)
$$

$$
\text { (1) }-(2): 3 y=-3
$$

$$
\left.\therefore \begin{array}{l}
y=-1 \\
x=\frac{1}{2}
\end{array}\right\}
$$

(a) $y-4=-\frac{2}{3}(x-0)$
$\therefore 3 y-12=-2 x$
$\therefore 2 x+3 y-12=0$
(b)
b) $\begin{aligned} y-2 & =\frac{3}{2}(x-3) \\ 2 y-4 & =3 x-9\end{aligned}$
$\therefore 3 x-2 y-5=0$ (linid
(c) Lime l through $C\left(0,-\frac{5}{2}\right.$,

Area af $\triangle A B C=\frac{1}{2}\left(4+\frac{5}{2}\right)^{3}$
$2(a) P(x)=x^{3}-3 x^{2}+4$
$P(-1)=0 \quad \therefore(x+1)$
is a factor
Now $P(x)=(x+1)(x-2)$
$\therefore P(x)$ has a
dauble root
at $x=2$

(c) $\begin{aligned} & x^{3}+4 \leqslant 3 x^{2} \\ & \therefore x^{3}-3 x^{2}+4 \leqslant 0 \\ & \therefore x \leqslant-1 \text { or } x=2\end{aligned}$

4
4

(b) $A=1-\frac{1}{2} x^{2}-\frac{1}{2}(1-x)$
$=1-\frac{x^{2}}{2}-\frac{1}{2}+\frac{x}{2}$
$=\frac{1}{2}+\frac{x}{2}-\frac{x^{2}}{2}$

$$
\therefore A=\frac{1}{2}\left(1+x-x^{2}\right)
$$

(c) Let $A=-\frac{1}{2}\left[x^{2}-x-1\right]$
$=-\frac{1}{2}\left[x^{2}-x+\frac{1}{4}-\frac{5}{4}\right]$
Note:
$=-\frac{1}{2}\left[\left(x-\frac{1}{2}\right)^{2}-\frac{5}{4}\right]$
If we use $x=\frac{-b}{2 a}$
where $a=-1$ ar $b=1$
$\therefore A=-\frac{1}{2}\left(x-\frac{1}{2}\right)^{2}+\frac{5}{8}$
$\therefore x=\frac{1}{2}$ and
$A=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{4}\right)$
$\therefore A=\frac{5}{8} u^{2}$
where $\left(\frac{1}{2}, \frac{5}{8}\right)$ is the co- ordinate
af the turning point in the
parabola $A=\frac{1}{2}\left(1+x-x^{2}\right)$ which
is concove down and hence
maximum.

(b) $x+3 y=6 \quad$ - (1)

$$
\begin{aligned}
& \text { SECTION } \\
& 1 \cdot x^{4}-7 x^{2}+12=0 \\
& \text { Let } \mu=x^{2} \\
& \therefore \mu^{2}-7 \mu+12=0 \\
& \therefore(\mu-4)(\mu-3)=12 \\
& \therefore \mu=4 \text { or } \mu=3 \\
& \therefore x^{2}=4 \text { or } x^{2}=3 \\
& \therefore x= \pm 2 \text { or } \pm \sqrt{3}
\end{aligned}
$$

(2) -(1): $3 x=6$
$\begin{aligned} \because x & =2 \\ \therefore y & =\frac{4}{3}\end{aligned}$
$\operatorname{Iain} E F, A F$ and $E C$.
Now $E \hat{C B}=\hat{E A B}=\alpha$ (ambles at
Similarly $F \hat{A D}=F \hat{C}(D)=\beta$ segment
In cyclic quad AECF

$$
\begin{aligned}
& \text { In cyclic quad AECF } \\
& 2(\alpha+\beta)=180 \text { (Ofhasite angles of } \\
& \therefore \alpha+\beta=90 \text { aychi quad iuplimitap) }
\end{aligned}
$$

$\therefore F \hat{A E}=90^{\circ}$
$\therefore E F$ is a diameter (angle in a
ssimi-airle ais)

