2005 YEAR 9 YEARLY

SECTION A (16 Marks)

Marks
1 Find k if lines $2 x-5 y+1=0$ and $k x+2 y-3=0$ are parallel.
2 Given that $\frac{3}{3+\sqrt{3}}=p+q \sqrt{3}$, where p and q are rational, find the values of p and q.
3. In the square $A B C D$ given, $T C$ bisects $\angle A C B$ and $T X$ is perpendicular to $A C$. Copy the diagram onto your answer sheet and prove that $A X=T B$.

4. (a) Show that $(x+2)$ is a factor of $P(x)=x^{3}-3 x+2$.
(b) Find the other factors of $\mathrm{P}(\mathrm{x})$ and hence sketch $P(x)=x^{3}-3 x+2$.
(c) Hence, or otherwise, solve $x^{3} \leq 3 x-2$.

SECTION B (16 Marks)

1. Fully factor $3 x^{4}-48 y^{4}$
2. Find the probability that two people were born on Friday if it is known that at least one was born on a Friday.
3. Simplify $9 x^{-2} \div 27 x^{-3}$.
4. Solve $x^{2}-6 x+4=0$ using the method of completing the square.
5. A rhombus $A B C D$ has a perimeter of 32 cm . and diagonal $A C$ of length 8 cm . Find the exact length of diagonal $B D$ giving all reasons.
6. Solve $9^{\frac{1}{x}}=3 \sqrt{3}$.

SECTION C (16 Marks)

1. Find the maximum value of $8-2 x-x^{2}$ for all real values of x. $\mathbf{3}$
2. A number is randomly selected from the first twenty positive integers.

Find the probability that it is divisible by 2,3 or 4 .
3 (a) From the diagram given, show that $\triangle A E D\|\| \triangle B E C$.
(b) Briefly explain why the points A, B, C and D lie on the circumference of a circle.

4. The quadratic equation $x^{2}-4 x+6=0$ has two solutions in the
form of complex numbers $x=a+i b$ and $x=a-i b$, where $i=\sqrt{-1}$. Find the value of $a^{2}+b^{2}$.
5. If $P=3^{2005}+3^{-2005}$ and $Q=3^{2005}-3^{-2005}$, evaluate $P^{2}-Q^{2}$.

SECTION D (16 Marks)

1. Find the equation of the line passing through the point $(1,4)$ and perpendicular to the line $2 x-3 y-6=0$.
2. Find all real solutions to the equation $4^{x}-5\left(2^{x}\right)-24=0$.
3. The polynomial $P(x)=2 x^{3}+a x^{2}+b x+1$ has a factor $(x+1)$ and a remainder of -5 when divided by $(x-2)$. Find a and b.
4. In the diagram shown, $A B \| D E$ and $\angle A B C=56^{\circ}$.

(a) Copy the diagram onto your answer sheet and find $\angle A F C$
(b) Prove that $A F E$ is a straight line.
5. If four horses eat four bales of hay in four days, how many days
will it take for twenty horses to eat thirty bales of hay.

SECTION E (16 Marks)

1. A triangle has a base length of $(x-1) \mathrm{cm}$ and a height of $(2 x-5) \mathrm{cm}$. Find its height if it has an area of $7 \mathrm{~cm}^{2}$.
2. The answer to this question is to be done on the graph paper provided.

A factory makes two types of desk lamps; a standard model S and a deluxe model D. The factory can make up to 30 desk lamps per day. The standard model requires 2 minutes and the deluxe model 5 minutes to make the lamps on this machine, which is only available for 90 minutes per day for production.
The profit on the standard model is $\$ 4$ and on the deluxe model is $\$ 8$.
Let x be the number of model S and y be the number of model D made per day.
(a) Given that $x \geq 0$ and $y \geq 0$, find equations for the constraints on time and on the number of lamps made.
(b) Find the equation of the profit line.
(c) Using a scale of $1 \mathrm{~cm}=5$ units, graph the polygon using all of the constraints.
(d) How many of each model must be made to maximise the profit.
3. Nine marbles numbered from 1 to 9 are placed in a bag and three are drawn out at random without replacement. Find the probability that the sum of the numbers on the marbles is odd.
4. If $x>0, y>0$ and $x^{2}-y^{2}=2 x y$, find the exact value of $\frac{x}{y}$.

END of PAPER

YEAR 9 YEARLY 2005
Option A
1 Let $m_{1}=\frac{2}{5}$ cad $m_{2}=-\frac{k}{2} \cdot 2$ Nav $\frac{3}{3+\sqrt{3}} \times \frac{3-\sqrt{3}}{3-\sqrt{3}}=p+q \sqrt{2}$ If lines fansallel, $m_{1}=m_{1}^{2}$

$$
\begin{aligned}
\therefore \frac{2}{5} & =-\frac{k}{2} \\
\therefore k & =-\frac{4}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{3(3-\sqrt{3})}{62}=p+q \sqrt{2} \\
& \therefore \frac{3}{2}-\frac{1}{2} \sqrt{3}=p+q \sqrt{2} \\
& \therefore p=\frac{3}{2} \text { and } q=-\frac{1}{2}
\end{aligned}
$$

3
In $\triangle A T X$
$T \hat{A} X=45^{\circ}$ (diagonals int square Civet)
$A \hat{X} T=90^{\circ}$ (adjacent angles on $A \times C$ eupflemantig)
$\therefore \hat{A T X}=45^{\circ}$ (angle sum $\left.\rightarrow \triangle A T X\right)$
$\therefore \triangle A X T$ is isosccics. (two equal angles)
$\therefore A X=X T$ (sides effauite equal angles)
in isascofes $\triangle A X T$
in isascafes $\triangle B X T$
In $\triangle T X C, \triangle T B C$

$$
T \hat{B C}=T \hat{X} C=90^{\circ} \quad \text { (given) }
$$

$x \hat{C} T=B \hat{C} T \quad(T C$ bisects $\hat{A C B}$ given)
$T C$ is common

$$
\therefore \triangle T X C \equiv \triangle T B C(A A S)
$$

$\therefore T X=T B$ (corresponding sides of $\triangle T X C=\triangle T B C$)

$$
\text { But } T X=A X \text { (friroven) }
$$

$$
\therefore A x=T B
$$

$-(a)$ If $(x+2)$ is a - factor $4(b) P(x)=(x+2)(x-1)^{2}$ of $P(x)$, than $P(-2)^{\prime}=0$
Haw $f(-2)=-8+6+2$

$$
=0
$$

$\therefore(x+2)$ is a factor of $P(x)$.
(c) $x^{3} \leqslant 3 x-2 \quad \therefore x^{3}-3 x+2 \leqslant 0$
$\therefore x \leqslant-2$ or $x=1$ from soph.

$$
p=\frac{1}{13}
$$

$$
\begin{aligned}
& 39 x^{-2} \div 27 x \\
& =\frac{9}{x^{2}} \div \frac{27}{x^{3}} \\
& =\frac{x}{3}
\end{aligned}
$$

5

How $A B=8 \mathrm{~cm}$. (sisters of rhomben equal, and perimeter is 32 cm given) Amice diagonals not thomslis bisect each other at right angles

$$
\begin{aligned}
& \therefore\left(\frac{B D}{2}\right)^{2}+4^{2}=8^{2} \quad \text { (Pythogoma) } \\
& \therefore B D^{2}=64 \times 3 \\
& \therefore B D=8 \sqrt{3} \mathrm{~cm} .
\end{aligned}
$$

6. $9_{\frac{2}{x}}^{\frac{1}{x}}=3 \sqrt{\frac{3}{3}}$

$$
\begin{aligned}
& \therefore \quad 3^{\bar{x}}=3^{\frac{1}{2}} \\
& \therefore \quad \frac{2}{x}=\frac{3}{2} \\
& \therefore \quad x=\frac{4}{3}
\end{aligned}
$$

Suction C

$$
\begin{aligned}
& \text { deter } \\
= & 8-2 x-x^{2} \\
= & -\left(x^{2}+2 x-8\right) \\
= & -\left[(x+1)^{2}-9\right] \\
= & -(x+1)^{2}+9
\end{aligned}
$$

2 Maw 2, $4, \cdots, 20$ ore
both divisible by 2 and $4, \therefore \frac{10}{20}$. also $3,6,9,12,15,18$
\therefore MAXIMUM value divisible by 3 of 9 (when $x=-1$). OR Since $6,12,18$ are divisible by 2

$$
\therefore P=\frac{10}{20}+\frac{3}{20}
$$

$\hat{A E D}=B \hat{E C}($ vertinely
using $x=-\frac{b}{2 a}$

$$
\begin{aligned}
x & =-1 \\
\therefore 8-2 x-x^{2} & =8+2-1 \\
& =9
\end{aligned}
$$

\therefore maximum value of 9 (urban $x=-1$)

4
4. $x^{2}-4 x+6=0$

$$
\begin{aligned}
\therefore x & =\frac{4 \pm \sqrt{16-24}}{2} \\
& =\frac{4 \pm \sqrt{-8}}{2} \\
& =\frac{4 \pm 2 \sqrt{2}}{2} \\
\therefore x & =2 \pm i \sqrt{2}
\end{aligned}
$$

$\frac{5}{8}$

$$
\frac{2}{P^{2}}-Q^{2}=(P-Q)(P+Q)
$$

$$
\begin{aligned}
& =\left[\left(3^{2005}+3^{-2005}\right)-\left(3^{2005}-3^{-2005}\right)\left[\left(3^{200}+3^{-2005}\right)+\left(3^{2000}-3^{-2000}\right)\right]\right.
\end{aligned}
$$

$$
=\left(3^{200 r}+3^{2005}-3^{200 r}+3^{-200 r}\right)\left(3^{200 r}+3^{200 r}+3^{200 r}-3^{-20 r r}\right)
$$

Since $x=a+i b$

$$
=\left(2 \times 3^{-2005}\right)\left(2 \times 3^{2005}\right)
$$

$$
\therefore a=2, b=\sqrt{2} \text { and }
$$

$$
=4 \times 3^{0}
$$

$$
a^{2}+b^{2}=6
$$

$$
=4
$$

Section D

1) Let equation be

$$
y-4=m_{2}(x-1)
$$

$24^{x}-5\left(2^{x}\right)-24=0$
$\therefore\left(2^{x}\right)^{2}-5\left(2^{x}\right)-24=0$
$\therefore\left(2^{x}-8\right)\left(2^{x}+3\right)=0$ Since no real $\therefore a-b=1$ - (1)
solution to $2^{x}+3=0$ Since $P(2)=-5$

$$
\begin{array}{ll}
\therefore 2^{x}-8=0 & \therefore 16+4 a+2 b+1=-5 \\
\therefore 2^{4}=2^{3} & \therefore 2 a+b=-11-(2 \\
\therefore x=3 & \therefore a=-\frac{10}{3}, b=-\frac{13}{3} \tag{2}
\end{array}
$$

(a) Gain AF and FC.
$A \hat{F} C+56^{\circ}=150^{\circ}$ (quod ABCF suthenventery) - $\hat{F} \mathcal{A}$ (quad ABCF sappenmentary)

$$
\therefore A \hat{F} C=124^{\circ}
$$

(b) foin $E F$.
$4 C \hat{D E}+56^{\circ}=180^{\circ}$ (eupflementory as $A B \| D E$)

$$
\therefore \quad C \hat{D E}=124^{\circ}
$$

 $\therefore 4$ homer ext 1 bale in I day, Maw $A \hat{F} C+C \hat{F} E=180^{\circ}$
\therefore home e as $\frac{1}{4}$ bade in 1 Lay, Since adjacent angles are

$\therefore 20$ horme ct $\frac{20}{4}$ bobs in 1 dog, supplementary, $\therefore A F F$ is a straight
$\therefore 20$ homes ext 30 baler in 6 days. Sine, ie; A, F and E are caltinnear.
$\therefore 6$ days

$$
\begin{equation*}
x+y \leq 30 \tag{i}
\end{equation*}
$$

ariteon 5

$$
\begin{aligned}
& \quad \frac{1}{2}(x-1)(2 x-5)=7 \\
& \therefore(x-1)(2 x-5)=14 \\
& \therefore 2 x^{2}-7 x-9=0 \\
& \therefore(2 x-9)(x+1)=0
\end{aligned}
$$

$$
\therefore x=\frac{9}{2} \text { or } x=-1
$$

Since sides mun bee a motive beng th, $\therefore x=\frac{9}{2}$ an
\therefore Aught is $\left(2 \times \frac{9}{2}-5\right)=4 \mathrm{~cm}$.

(a) Constraints an time' Solving (i) orlii). Jesting for P at version:and numbers of Campo: $\quad y=30-x \quad(0,18) \quad P=144,(20,10) \quad P=160$. $2 x+5(30-x)<90$ $(30,0) \quad P=120$
$2 z+5 y \leqslant 90$-(ii) $\quad-3 x \equiv 60$ \therefore Maximum profit is
(b) Equation af profit $\therefore x=20 \quad P=160$ making 20 standard \therefore brie is $P=4 x+8 y \quad y=10$ and 10 deluxe models.

Let the od number on a marble be 0 and on even number be E. From the diagrams:

$$
\begin{aligned}
P & =P(E, E, 0)+P(E, 0, E)+P(0, E, E)+P(0,0,0) \\
& =4\left(\frac{4}{9} \times \frac{3}{8} \times \frac{5}{7}\right) \\
\therefore P & =\frac{10}{21}
\end{aligned}
$$

4 Since $x^{2}-y^{2}=2 x y$

$$
\begin{array}{r}
\therefore \frac{x^{2}}{y^{2}}-1=\frac{2 x}{y} \\
\therefore \frac{x^{2}}{y^{2}}-2\left(\frac{x}{y}\right)-1=0 \\
\therefore \quad \frac{x}{9}=\frac{2 \pm \sqrt{4+4}}{2} \\
\therefore \quad \frac{x}{y}=1 \pm \sqrt{2}
\end{array}
$$

Since $x>0, y>0 \therefore \frac{x}{y}=1+\sqrt{2}$

