Section A (14 Marks) Begin a Separate sheet of paper

1. Expand and simplify $(2-3 \sqrt{5})^{2}$.
2. Solve for $x: x^{2}-6 x=0$.
3. Simplify $\frac{8 a^{3}-27}{3-2 a}$.
4. Express $\left(x^{-1}+y^{-1}\right)^{-1}$ as a rational expression with no negative indices.
5. Make x the subject in $y=\frac{2 x}{x-1}$.
6. Find k if the point $(3,-4)$ lies on the line whose equation is $5 x-4 k y=12$.
7. Solve for $x: \sqrt{2 x+1}=\frac{7}{2}$.
8. Factorise: $4 a^{2}-b^{2}-4 a+2 b$.

Section B (14 Marks) Begin a Separate sheet of paper

1. Find the angle X, to the nearest degree.

2. Find the length $A C$, to 3 significant figures.

3. A ship sailing on a course bearing 142° is 5500 metres due north of a lighthouse (L). The ship continues on this course.

What is the closest distance the ship will come to the lighthouse?
(Give answer to the nearest metre).
First draw a diagram of the above information before answering the question.
4. $(x+2)$ is a factor of the polynomial $P(x)=x^{3}+a x+a^{2}$.
(i) Show that $a^{2}-2 a-8=0$.
(ii) Hence, find all possible values of a.
5. $\quad A B C D$ is a trapezium. P and Q are the midpoints of $A D$ and $B D$ respectively.

The line $P Q$ is produced to R.

(i) Prove $P Q \| A B$ (giving reasons).
(ii) Prove QR bisects BC (giving reasons).
6. $A B C D$ is a parallelogram and $B Y=D X$.

Diagram not

Prove $A Y C X$ is a parallelogram.

End of Section B. Go onto Section C

Section C (14 Marks) Begin a Separate sheet of paper

1. The line L, whose equation is $3 x+2 y=6$, cuts the y -axis at $A(0,3)$, as shown on the number plane. O is the origin.

(i) The line M, through the point A is perpendicular to L.

Find the equation of the line M.
(ii) The line $y=x$ cuts L and M at C and D respectively.

Find the coordinates of C and D.
(iii) Find the exact length of $C D$.
(iv) Find the area of the $\triangle A O D$
(v) If $\angle A D C=\theta^{\circ}$, find θ to the nearest degree and minute.
2. The points P, Q, R, S and T lie on a circle. $S T$ bisects $\angle R T V$. Let $\angle V T S=x^{\circ}$.

Copy the diagram onto your answer sheet and prove SQ bisects $\angle P Q R$.
3. Solve for $x: \frac{2}{x-1}-\frac{4}{x^{2}-1}=1$

Section D (15 Marks) Begin a Separate sheet of paper

1. An enclosure is to be built adjoining a barn, as shown below. The walls of the barn meet at 135° and cannot be moved. The farmer has 117 metres of fencing available to build the enclosure so that $x+y=117$, where x and y are as shown in the diagram.

(i) Show that the shaded area of the enclosure in square metres is given by:

$$
A=117 x-\frac{3}{2} x^{2}
$$

(ii) Show that the largest enclosured area which can be built occurs when y is twice the value of x.
(iii) Find the area of the largest enclosure possible.
2. A bag contains 2 red, 1 black and 1 white ball. Andrew selects one ball from the bag. He then selects a second ball but does not replace the first ball before the second ball is chosen.
(i) Draw a dot diagram, or otherwise, displaying all the possible outcomes.
(ii) Find the probability that:
(a) both the selected balls are red.
(b) at least one selected ball is red.
(iii) What is the probability that Andrew had two red balls, if it is known that at least one ball was red?
3. Use the remainder theorem to find the remainder when $x^{3}+2 x^{2}-7$ is divided by $2 x+3$.
4. (i) Sketch the graph of the polynomial $y=x^{3}-6 x^{2}+9 x-4$.
(ii) Hence, or otherwise, solve $x^{3}-6 x^{2}+9 x-4 \geq 0$.

Section E (15 Marks) Begin a Separate sheet of paper

1. In the diagram below, $\triangle A B C$ is isosceles, $A B=A C=1$, where $\angle B A C=108^{\circ}$. The point D is chosen on $B C$ such that $C D=1$. Let $B C=x$ and $\angle A B C=\theta^{\circ}$.

(i) Show that $\angle A D C=72^{\circ}$, giving reasons.
(ii) Show that $\triangle \mathrm{DBA}|\mid \triangle \mathrm{ABC}$, giving reasons.
(iii) Deduce from part (ii) that $x^{2}-x-1=0$.
(iv) Find the value of x.
2. A farmer prepares a rectangular garden which has length 30 metres and breadth 20 metres. Only celery and tomato plants are to be planted in the garden. The farmer intends to give each celery plant $0.3 \mathrm{~m}^{2}$ of garden and each tomato plant $0.2 \mathrm{~m}^{2}$ of garden. No more than 2100 tomato plants may be used and the sum of the plants must not exceed 2500.

Let x represent the number of celery plants and y the number of tomato plants.
(i) Use the information above to complete the constraints. Copy these onto your answer sheet.

$$
\begin{aligned}
& \quad y \geq \\
& \\
& \\
& \\
& y \leq \\
& \\
& \\
& x+y \leq \\
& \text { and } \quad 3 x+2 y \leq 6000 .
\end{aligned}
$$

(ii) Explain why one of the above constraints is $3 x+2 y \leq 6000$.
(iii) Detach the graph paper at the end of the exam paper to answer this question.

Graph the region which shows the number of celery and tomato plants that can be planted.
(iv) The farmer makes a profit of 96 cents on each celery plant and 72 cents on each tomato plant.
Write down an expression for profit (P) in terms of x and y.
(v) Find his total maximum profit and find the number of each type of plant needed in

YR 9 - YEARLY EXAM
SOLUTIONS TO 2007 MATHS PAPER

Sechoin (A) - 14 marks

1. $(2-3 \sqrt{5})^{2}=4+(9 \times 5)-4 \times 3 \sqrt{5}$

$$
=49-12 \sqrt{5}
$$

2. $x(x-6)=0$

$$
x=0 \text { or } x=6
$$

3. $\frac{(2 a-3)\left(4 a^{2}+6 a+a\right)}{-(2 a-3)}$

$$
=-\left(4 a^{2}+6 a+9\right)
$$

4. $\left(\frac{1}{x}+\frac{1}{y}\right)^{-1}=\left(\frac{y+x}{x y}\right)^{-1}$

$$
=\frac{x y}{x+y}
$$

, []]
5., $y=\frac{2 x}{x-1}$

$$
y x-y=2 x
$$

$$
\therefore \quad y x-2 x=y
$$

$$
x(y-2)=y
$$

$$
x=\frac{y}{y-2}
$$

6.

$$
\begin{align*}
15+16 k & =12 \\
16 k & =-3 \\
k & =\frac{-3}{16} \tag{12}
\end{align*}
$$

7. $\sqrt{2 x+1}=\frac{7}{2}$

$$
2 x+1=\frac{49}{4}
$$

$$
2 x=\frac{45}{4}
$$

$$
x=\frac{45}{8} \text { or } 5 \frac{5}{8}
$$

[2]
8. $(2 a-b)(2 a+b)-2(2 a-b) 1$

$$
i=(2 a-b)(2 a+b-2)
$$

2. $\cos 42^{\circ} 17^{\prime}=22.3 \quad 1$

Section (B) - 14 Mark j

1. $\tan x=\frac{16}{71}$
$x=13^{\circ}$ (nearest doge) ,

$$
\begin{aligned}
& A C=\frac{A C}{22.3} \\
& A C=30.1\left(35 f^{\circ}\right) 1
\end{aligned}
$$

Now in triangle

$$
\begin{align*}
\sin 38^{\circ} & =\frac{d}{5500} \\
\therefore d & =5500 \times \sin 38^{\circ} \\
\therefore d & =3386 \mathrm{~m}\binom{\text { he arrest }}{\text { metre }} \tag{3}
\end{align*}
$$

4 (i) If $(x+2)$ is a factor then $P(-2)=0$
le $(-2)^{3}-2 a+a^{2}=0$

$$
\begin{equation*}
a^{3}-2 a+8=0 \tag{1}
\end{equation*}
$$

(ii)

$$
\begin{align*}
& (a-4)(a+2)=0 \\
& a=4 \text { or }-2 \tag{1}
\end{align*}
$$

5. (i) $P Q \| A B\left(\begin{array}{l}\text { a line joining the } \\ \text { midpoint of } 2 \text { sides }\end{array}\right.$ of a triangle is parallel to the third side.)

$C D \| P R(P Q$ produced)

$\left\{\begin{array}{l}\text { Gut } \frac{D O}{Q B}=\frac{1}{1} \quad(C \text { is maprout } \\ B D\end{array}\right)$
$1\left\{\begin{array}{l}i \\ R B\end{array} \quad \therefore \frac{C R}{1}\right.$ also.
$\therefore R$ is the midpoint of $B C$
2
2
\vdots So, QR bisects BC
 $A Y=X C\binom{$ Subtraction of equal }{ lengths $B y \& D x}$ lengths $B y$ \& $D x$ from
equal sides $A B \& C D$ equal sides $A B \& C D$)
$A Y \| x C$ (opposite sicks of $\begin{aligned} & \text { farm } A B C D \text { and equal) }) ~\end{aligned}$
\therefore AYCX is a pam $\left(\begin{array}{l}\text { one pili } \\ \text { or upisite } \\ \text { siohescie }\end{array}\right.$ equal Es pirated.

$$
\begin{align*}
(\text { iii })(1) & =\sqrt{\left(9-\frac{6}{5}\right)^{2}+\left(9-\frac{6}{5}\right)^{2}} \\
& =\sqrt{2 \times 60 \frac{21}{25}} \\
& =\sqrt{\frac{3042}{25}}=\frac{\sqrt{3042}}{5} \tag{21}
\end{align*}
$$

(iv)

$$
\begin{aligned}
A_{\triangle A O D} & =\frac{1}{2} \times A 0 \times 9 \\
& =\frac{1}{2} \times 3 \times 9 \\
& =\frac{27}{2} w^{2}
\end{aligned}
$$

(v)
A

$$
\theta=11^{\circ}, c_{1}^{\prime}
$$

$O R \quad A C=\frac{-}{\sqrt{(6 / 5-0)^{2}+\left(\frac{6}{5}-3\right)^{2}}}$

$$
=\frac{\sqrt{117}}{5}
$$

$$
\therefore \sin \theta=\frac{\frac{\sqrt{17}}{5}}{\frac{\sqrt{30+2}}{5}}
$$

$$
\theta=11^{\circ} 191
$$

$V R T S=x^{\circ}\left(\begin{array}{l}S T \text { bisects } \angle R T V\end{array}\right)$
$\angle S Q R=x^{\circ}\left(\begin{array}{l}\text { argues subteradid to the } \\ \text { circuinference of a circle }\end{array}\right.$ by tic same segment are. equal.)
$\begin{aligned} & \angle P Q S=x \text { (ext. angle or a cycic } \\ & \text { quad } P Q S T \text { equals }\end{aligned}$ the interwar uppoiste ! in

$$
(3) \frac{2}{x-1}-\frac{4}{x^{2}-1}=1
$$

$$
\begin{aligned}
& 2(x+1)-4=x^{2}-1, x \neq \pm 1 \\
& 2 x+2-4=x^{2}-1
\end{aligned}
$$

$$
x^{2}-2 x+1=0
$$

$$
(x-1)^{2}=0
$$

$$
1 / 2 \quad x=1
$$

Gut $x \neq 1$,

$$
=117 x-x^{2}-\frac{1}{2} x^{2}
$$

2

2

$$
A=117 x-\frac{3}{2} x^{2}
$$

(ii) Since then is a quadrate functor which is concave down then tie moiximion occurs at die vicutex.

$$
\text { 1: ie } \begin{aligned}
x & =-\frac{b}{2 a}
\end{aligned}=\frac{-117}{2 \times-\frac{3}{2}}=39 子 \begin{aligned}
\therefore y & =117-39
\end{aligned}=78
$$

2. y : is trance the value of x
(iii)

1,

$$
\begin{aligned}
\text { Largest urea } & =1 / 7 \times 34-\frac{3}{2} \times 3 c^{2} \\
& =2281 \frac{1}{2} \mathrm{~m}^{2}
\end{aligned}
$$

$\pi,(1), \quad B \quad n$

(ii) a) $p(R K)=\frac{2}{12}=\frac{1}{6} 11$
b) $P\left(a+\left(2 a_{0}+1 R_{e d}\right)=\frac{10}{12}=\frac{5}{6[1]}\right.$

(3) Let $P(x)=x^{3}+2 x^{2}-7$

$$
\begin{aligned}
P\left(-\frac{3}{2}\right) & =\left(-\frac{3}{2}\right)^{3}+2\left(-\frac{3}{2}\right)^{2}-7 \\
& =-5 \frac{7}{8}
\end{aligned}
$$

$\therefore A=x(117-x)-\frac{1}{2} x^{2} \quad \therefore$ Kirnainober is $-5 \frac{7}{8}$
(4)

$$
\begin{aligned}
& \text { (i) Let } P(x)=x^{3}-6 x^{2}+9 x-4 \\
& P(1)=1-6+4-4=0 \\
& \therefore(x-1) \text { is a factor } \\
& \frac{x^{2}-5 x+4}{x-1) \frac{x^{3}-6 x^{2}+4 x-4}{-5 x^{2}+4 x-4}} \begin{array}{c}
\frac{x^{3}-x^{2}}{-5 x^{2}+5 x-4} \\
\frac{4 x-4}{4 x-4}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\therefore P(x) & =(x-1)\left(x^{2}-5 x+4\right) \\
& =(x-1)(x-1)(x-4) \\
\therefore f(x) & =(x-1)^{2}(x-4)
\end{aligned}
$$

$y=(x-1)^{2}(x-4)$

(ii) $x^{3}-6 x^{2}+9 x-4 \geqslant 0$

Soln: $x \geqslant 4$ and $x=1$

$$
\frac{1}{2} \quad \frac{1}{L}
$$

Section E]
(1)

$$
2 \quad \angle A D=72^{\circ}
$$

(ii) $\ln \triangle A B C \& D B A$.
$\frac{1}{2} \angle F i$ comtmon
$\angle A D B=108^{\circ}\binom{$ anyle sum of }{ strangict angle a180") }
$\angle B A C=100^{\circ}$ (given)
$\therefore \angle A D B=\angle B A C$
$\therefore \triangle \overline{D B+} \operatorname{III} \triangle A B C$ (eqi/finguiow. $)$
(iii) $\frac{B C}{A B}=\frac{A C}{B D}$

$$
\begin{aligned}
& x(x-1)=1 \\
& x^{2}-x-1=0
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& x=\frac{1 \pm \sqrt{1+4 \cdot 1 \cdot 1}}{2} \\
& x=\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

Gut $x>0 \Rightarrow x=\frac{1+\sqrt{5}}{\text { oncy }} \cdot \frac{1}{12}$
$\left(\begin{array}{lll}(2) & y \geqslant 0 & \frac{1}{2} \\ x \geqslant 0 & \frac{1}{2} \\ & y \leqslant 2100 & \frac{1}{2} \\ & x+y \leqslant 2500 & \frac{1}{2}\end{array}\right.$
(ii) Area $=30 \times 20=600$

Cirea of celany $=0.3 x$
arece of tomatos $=0.2 y$
Cirex of celany $=0.3 x$
Arece of tomatos $=0.2 y$

$$
\begin{array}{r}
\therefore 0.3 x+0 \cdot 2 y=600 \\
3 x+2 y=6000
\end{array}
$$

(ii) See attacked sheet 2
(iv) $P=0.96 x+0.72 y$
(Where P is in atollars) or

$$
P=96 x+72 y
$$

(where P is in cents)
(v) Max. profit occurs at the point (1000,1500)

$$
\begin{aligned}
P & =0.96 \times 1000+0.72 \times 1500 \\
& =\$ 2040 .
\end{aligned}
$$

\therefore No. of celery is 1000 and No. of tomato is 15001

End of Exam papen
\qquad

Class:

Remove this graph and attach to your solution for Section E Q2 (iii)

