Section A (15 MARKS)

(a) Evaluate $\frac{5+\sqrt{3}}{6-\pi}$ giving your answer correct to 2 decimal places.
(b) Factorise $a^{3}-8 b^{3}$.
(c) Evaluate $\sin 32^{\circ} 44^{\prime}$ giving your answer correct to 3 decimal places.
(d) Write $27^{-\frac{4}{3}}$ as a fraction in simplest form.
(e) Draw a neat sketch of a frequency polygon that has positive skew.
(f) Solve for $p:(3 p-2)^{2}=5$.
(g) Find the value of y giving reasons.

(h) Solve for $t: t-3=\sqrt{4 t-7}$.
(i) O is the centre of the circle and $\angle O A C=56^{\circ}$.

Copy the diagram onto your answer sheet and find the size of $\angle A B C$ giving reasons.

Question 1

$O A B C$ is a quadrilateral with verticies $O(0,0), A(10,10), B(8,24)$ and $C(-2,14)$.
(a) Prove that $O C \| A B$.
(b) Prove that $O C=A B$.
(c) Prove that $O B \perp A C$.
(d) What type of quadrilateral is $O A B C$? (Give reason)

Question 2

On Sunday morning Jan rides 60 km from Hornsby to Gosford at a constant speed. In the afternoon she returns from Gosford to Hornsby by the same route but at a speed that is $4 \mathrm{~km} /$ hour slower with the result that the journey takes her 30 minutes longer.
(a) Let Jan's speed in the morning be $v \mathrm{~km} / \mathrm{h}$. Write an expression involving v for the time, in hours, that Jan needs to complete the morning journey.
(b) Write a similar expression involving v for the time, in hours, that Jan needs to complete the afternoon journey.
(c) Write an equation and solve it to find Jan's speed for the morning journey.

Question 3

On a table are ten sealed envelopes. Five of the envelopes contain a $\$ 10$ note, three contain a $\$ 20$ note and the remaining two contain a $\$ 50$ note. A contestant selects two of the envelopes at random.
(a) Draw a probability tree diagram to illustrate the possible outcomes.
(b) Find the probability that the contestant wins $\$ 100$.
(c) Find the probability that the contestant wins less than $\$ 40$.

Section C (START A NEW PAGE) (15 Marks)

Question 1

(a) On the grid provided, sketch the region defined by the inequalities $2 x+y \geq 120, y \geq x$ and $y \leq 2 x$.
(b) For values of x and y defined by the above region find the minimum value of V when $V=5 x+4 y-100$.

Question 2

A university student carrying out research on fish in a local steam caught, weighed and released 25 fish. Their weights, rounded off to the nearest gram, are recorded in the stem-and-leaf plot below.

Stem	Leaf
0	4779
1	022556
2	0012345557
3	0124
4	2

(a) Find the (i) range, (ii) median and (iii) interquartile range of the data.
(b) Display the above data in a box-and-whisker plot.
(c) With the aid of a calculator, find the standard deviation of the given data. Give your answer to one decimal place

Question 3

$A B C D E$ is a regular pentagon.
(a) Copy the diagram onto your answer sheet and prove that $\angle A B C=108^{\circ}$.
(b) Prove that $A C$ is parallel to $E D$.

Question 1

The polynomial $A(x)=p x^{3}+q x^{2}-2$ is divisible by $x-1$ and leaves a remainder of 18 when divided by $x+2$. Find the value of p and q.

Question 2

Express $\frac{3 \sqrt{2}}{8-5 \sqrt{2}}$ as a fraction in simplest form with a rational denominator.
(a) Sketch the curve $y=(x+2)^{2}(x-4)$, clearly showing all intercepts with the coordinate axes.
(b) Hence solve the inequality $(x+2)^{2}(x-4) \geq 0$.

Question 4
$E F G H$ is a parallelogram. A circle passing through the vertices E, F and G cuts the side $E H$ at P.

(a) Copy the diagram onto your answer sheet and prove that $\angle G H P=\angle G P H$.
(b) Hence prove that $E F=P G$.

Question 2

The bearings and distances of two mountains viewed from my house are measured. Mount Visible is 6.4 km from my house and its bearing is $N 25^{\circ} \mathrm{E}$, while Mount Mighty is 4.5 Km from my house and bears $N 65^{\circ} \mathrm{W}$.
(a) Draw a neat diagram of the above information, clearly showing all angles and distances.
(b) Find, correct to the nearest 100 m , the distance between Mount Visible and Mount Mighty.
(c) Find, correct to the nearest degree, the bearing of Mount Visible when viewed from Mount Mighty.

Question 3
(a) The line $3 x+4 y-48=0$ crosses the x-axis at point A and the y-axis at point B. Find the coordinates of points A and B.
(b) Point $P(r, s)$ lies on the interval $A B$. If the interval $O P$, where O is the origin, divides $\triangle A O B$ into two smaller triangles $\triangle A O P$ and $\triangle B O P$ whose areas are in the ratio 3:5, find the coordinates of point P.

This is the end of the examination

SECTION C QUESTION 1(a)

Complete the answer to Section C Question 1(a) on this grid
Return this page with the rest of your answers to Section C

Year 9 Yearly Examination 2008 - Solutions

Section A (15 MARKS)

(a) 2.36 Mark
(b) $\quad(a-2 b)\left(a^{2}+2 a b+4 b^{2}\right) \quad 1$
(c) 0.541
(d) $\frac{1}{(\sqrt[3]{27})^{4}}=\frac{1}{81}$
(e)

(f) $\quad(3 p-2)^{2}=5$
$3 p-2= \pm \sqrt{5}$
$3 p=2 \pm \sqrt{5}$
$p=\frac{2 \pm \sqrt{5}}{3}$
(g) $\frac{y}{y+4}=\frac{3}{5}$ (interval parallel to side of triangle divides other sides in same ratio)
$5 y=3 y+12$
$2 y=12$
$y=6$

* Could prove that the triangles are similar then use ratios of corresponding sides
(h) $t-3=\sqrt{4 t-7}$
$(t-3)^{2}=4 t-7$
$t^{2}-6 t+9=4 t-7$
$t^{2}-10 t+16=0$
$(t-2)(t-8)=0$
$t=2$ or 8
but $t-3 \geq 0$, i.e. $t \geq 3$
$\therefore t=8$
(i)

$O A=O C$ (radii of circle)
$\angle O C A=56^{\circ}\binom{$ equal angles are opposite }{ equal sides in $\triangle A O C}$
$\angle A O C+112^{\circ}=180^{\circ}\left(\right.$ angle sum of $\left.\triangle A O C=180^{\circ}\right)$
$\angle A O C=68^{\circ}$
$\angle A B C=34^{\circ}\binom{$ angle at circumference is half angle at }{ centre standing on same arc $A C}$

Question 1
Section B (START A NEW PAGE) (15 MARKS)
(a)

$$
\begin{aligned}
m(O C) & =\frac{14-0}{-2-0} \\
& =-7 \\
m(A B) & =\frac{24-10}{8-10} \\
& =-7
\end{aligned}
$$

$\therefore O C \| A B$ (equal slopes)
(b)

$$
\begin{aligned}
d(O C) & =\sqrt{(-2-0)^{2}+(14-0)^{2}} \\
& =\sqrt{200} \\
& =10 \sqrt{2} \\
d(A B) & =\sqrt{(8-10)^{2}+(24-10)^{2}} \\
& =\sqrt{200} \\
& =10 \sqrt{2}
\end{aligned}
$$

$\therefore O C=A B$ (equal lengths)
(c) $m(O B)=\frac{24-0}{8-0}$

$$
=3
$$

$$
m(A C)=\frac{14-10}{-2-10}
$$

$$
=-\frac{1}{3}
$$

$m(O B) \times m(A C)=3 \times\left(-\frac{1}{3}\right)$

$$
=-1
$$

$\therefore O C \perp A B$ (product of slopes equals -1)
(d) Rhombus
$O C \| A B$ and $O C=A B$
$\therefore O A B C$ is a parallelogram (pair of sides equal and parallel)
but $O C \perp A B$
$\therefore O A B C$ is a rhombus (parallelogram with perpendicular diagonals)

Question 2

(a) $\frac{60}{v}$
(b) $\frac{60}{v-4}$
(c) $\frac{60}{v-4}-\frac{60}{v}=\frac{1}{2}$
$120 v-120(v-4)=v(v-4)$
$480=v^{2}-4 v$
$v^{2}-4 v-480=0$
$(v-24)(v+20)=0$
$v=-20$ or 24
but $v>0$
$\therefore v=24$
speed $=24 \mathrm{~km} / \mathrm{hr}$
(a)

(b) $P(\$ 100)=\frac{2}{10} \times \frac{1}{9}$

$$
=\frac{1}{45}
$$

(c) $\quad P(<\$ 40)=P(\$ 20)+P(\$ 30)$

$$
\begin{aligned}
& =\frac{5}{10} \times \frac{4}{9}+\frac{5}{10} \times \frac{3}{9}+\frac{3}{10} \times \frac{5}{9} \\
& =\frac{5}{9}
\end{aligned}
$$

Section C (START A NEW PAGE) (15 Marks)
Question 1
(a)

(b) At A
$2 x+y=120$ \qquad (1)
$y=x$
(2)
sub. (2) into (1)
$3 x=120$
$x=40$
$y=40$
vertex $(40,40)$

At B
$2 x+y=120$
$y=2 x$ \qquad
sub. (2)into (1)
$4 x=120$
$x=30$
$y=60$
vertex $(30,60)$

x	y	$V=5 x+4 y-100$
40	40	260
30	60	290

Minimum value of $V=260$

Question 2

(a) (i) range $=38$
(ii) median $=21$
(iii) interquartile range of the data $=26-12$

$$
=14
$$

(c) $\quad \sigma_{n}=9.4$ (to 1 decimal place)

Question 3

(a) $\angle A B C=\frac{180(n-2)^{\circ}}{n}$

$$
\begin{aligned}
& =\frac{180(5-2)^{\circ}}{5} \\
& =108^{\circ}
\end{aligned}
$$

(b) $\quad A B=B C\binom{$ all sides of regular }{ pentagon are equal }

$$
\angle B A C=\angle B C A=x^{\circ}\left(\begin{array}{l}
\text { equal angles are } \\
\text { opposite equal sides } \\
\text { of } \triangle A B C
\end{array}\right)
$$

$2 x+108=180\left(\right.$ angle sum of $\left.\triangle A B C=180^{\circ}\right)$
$x=36$
$\angle C A E+36^{\circ}=108^{\circ}\binom{$ angles at vertices }{ equal $108^{\circ}}$
$\angle C A E=72^{\circ}$
$\angle C A E+\angle A E D=72^{\circ}+108^{\circ}$
$=180^{\circ}$
$A C \| E D\binom{$ cointerior angles are }{ supplementary }

Section D (START A NEW PAGE) (15 Marks)

Question 1 Marks
$p(1)=0 \Rightarrow p+q-2=0$
$p+q=2 \quad \ldots \ldots$ (1)
$p(-2)=18 \Rightarrow-8 p+4 q-2=18$
$-2 p+q=5 \quad \ldots .$.
(1) $-(2)$
$3 p=-3$
$p=-1$
sub.into (1) $\therefore \quad-1+q=2$
$q=3$
$\therefore p=-1$ and $q=3$

Question 2

$$
\begin{aligned}
\frac{3 \sqrt{2}}{8-5 \sqrt{2}} & =\frac{3 \sqrt{2}}{8-5 \sqrt{2}} \times \frac{8+5 \sqrt{2}}{8+5 \sqrt{2}} \\
& =\frac{3 \sqrt{2}(8+5 \sqrt{2})}{8^{2}-(5 \sqrt{2})^{2}} \\
& =\frac{24 \sqrt{2}+30}{64-50} \\
& =\frac{30+24 \sqrt{2}}{14} \\
& =\frac{15+12 \sqrt{2}}{7}
\end{aligned}
$$

Question 3

(b) $x=-2$ or $x \geq 4$

Question 4

(a)
$\angle G H P=\angle G F E\left(\begin{array}{l}\text { opposite angles of } \\ \text { parallelogram } E F G H \\ \text { are equal }\end{array}\right)$
$\angle G P H=\angle \therefore G F E\left(\begin{array}{l}\text { exterior angle of cyclic } \\ \text { quadrilateral equals } \\ \text { opposite interior angle }\end{array}\right)$
$\angle G H P=\angle G P H \quad(=\angle G F E)$
(b) $\quad G P=G H$ (equal angles are opposite equal sides in $\triangle G H P$)
$F E=G H$ (opposite sides of a parallelogram are equal)
$\therefore G P=F E \quad(=G H)$

Section E (START A NEW PAGE) (15 Marks)

Question 1

$$
\begin{aligned}
9 m^{2}-6 m-4 n^{2}+4 n & =9 m^{2}-4 n^{2}-6 m+4 n \\
& =(3 m-2 n)(3 m+2 n)-2(3 m-2 n) \\
& =(3 m-2 n)(3 m+2 n-2)
\end{aligned}
$$

Question 2
Marks
(a)

2

(b) $\angle A O B=90^{\circ}$

$$
\begin{aligned}
A B^{2} & \left.=4.5^{2}+6.4^{2} \quad \text { (Pythagoras' Theorem }\right) \\
& =61.21
\end{aligned}
$$

$$
A B=7.8 \mathrm{~km}
$$

(c) $\tan \theta=\frac{6.4}{4.5}$

$$
\begin{aligned}
& \theta=54^{\circ} 53^{\prime} \\
& \alpha+\theta+65^{\circ}=180^{\circ} \\
& \alpha=180^{\circ}-65^{\circ}-54^{\circ} 53^{\prime} \\
& \\
& =60^{\circ} 7^{\prime}
\end{aligned}
$$

\therefore bearing is $N 60^{\circ} \mathrm{E}$ or $060^{\circ} \mathrm{T}$

$$
\text { (a) } \begin{aligned}
& \text { At } A, y=0 \\
& \therefore 3 x-48=0 \\
& x=16 \\
& A \text { is }(16,0) \\
& \text { At } B, x=0 \\
& \therefore 4 y-48=0 \\
& y=12 \\
& B \text { is }(0,12)
\end{aligned}
$$

(b)

Area of $\triangle O P A=\frac{1}{2}(16)(s) \quad u^{2}$

$$
=8 s \quad u^{2}
$$

Area of $\triangle O P B=\frac{1}{2}(12)(r) \quad u^{2}$

$$
=6 r \quad u^{2}
$$

$\frac{8 s}{6 r}=\frac{3}{5}$
$40 s=18 r$
$s=\frac{9 r}{20}$

But point $P(r, s)$ lies on the line $3 x+4 y-48=0$
$\therefore 3 r+4 s-48=0$
$3 r+4\left(\frac{9 r}{20}\right)=48$
$3 r+\frac{9 r}{5}=48$
$24 r=240$
$r=10$
$s=\frac{9 \times 10}{20}$
$s=4.5$
$\therefore P$ is $(10,4.5)$

This is the end of the examination
〇

