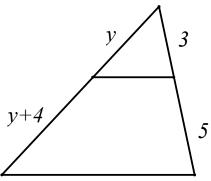
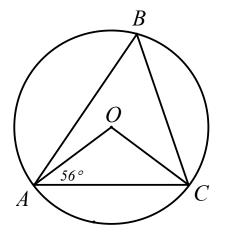
Year 9 Yearly Examination 2008

Section A (15 MARKS)		
(a) Evaluate	$\frac{5+\sqrt{3}}{6-\pi}$ giving your answer correct to 2 decimal places.	Marks 1
(b) Factorise	$a^3 - 8b^3$.	1
(c) Evaluate	sin 32°44' giving your answer correct to 3 decimal places.	1
(d) Write 2'	$7^{\frac{4}{3}}$ as a fraction in simplest form.	1
(e) Draw a n	eat sketch of a frequency polygon that has positive skew.	1
(f) Solve for	$p: (3p-2)^2 = 5.$	2
(g) Find the	value of y giving reasons.	2



(h)	Solve for <i>t</i> : $t - 3 = \sqrt{4t - 7}$.	3
-----	--	---

(i) *O* is the centre of the circle and $\angle OAC = 56^{\circ}$. Copy the diagram onto your answer sheet and find the size of $\angle ABC$ giving reasons.



OABC is a quadrilateral with verticies O(0,0), A(10,10), B(8,24) and C(-2,14).

(a)	Prove that $OC \parallel AB$.	1
(b)	Prove that $OC = AB$.	1
(c)	Prove that $OB \perp AC$.	2
(d)	What type of quadrilateral is OABC? (Give reason)	1

Question 2

Marks

On Sunday morning Jan rides 60km from Hornsby to Gosford at a constant speed. In the afternoon she returns from Gosford to Hornsby by the same route but at a speed that is 4km/hour slower with the result that the journey takes her 30 minutes longer.

- (a) Let Jan's speed in the morning be v km/h. Write an expression involving v for the time, in 1 hours, that Jan needs to complete the morning journey.
- (b) Write a similar expression involving v for the time, in hours, that Jan needs to complete the 1 afternoon journey.

(c) Write an equation and solve it to find Jan's speed for the morning journey. 3

Question 3MarksOn a table are ten sealed envelopes. Five of the envelopes contain a \$10 note, three contain a \$20
note and the remaining two contain a \$50 note. A contestant selects two of the envelopes at
random.2(a) Draw a probability tree diagram to illustrate the possible outcomes.2(b) Find the probability that the contestant wins \$100.1(c) Find the probability that the contestant wins less than \$40.2

- (a) On the grid provided, sketch the region defined by the inequalities $2x + y \ge 120$, $y \ge x$ 3 and $y \le 2x$.
- (b) For values of x and y defined by the above region find the minimum value of V when V = 5x + 4y 100.

Question 2

A university student carrying out research on fish in a local steam caught, weighed and released 25 fish. Their weights, rounded off to the nearest gram, are recorded in the stem-and-leaf plot below.

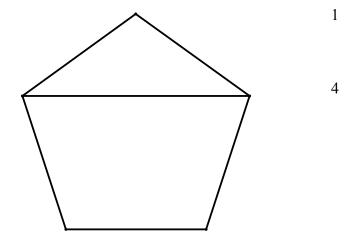
Stem	Leaf
0	4779
1	0 2 2 5 5 6
2	0 0 1 2 3 4 5 5 5 7
3	0124
4	2

- (a) Find the (i) range, (ii) median and (iii) interquartile range of the data.
- (b) Display the above data in a box-and-whisker plot.
- (c) With the aid of a calculator, find the standard deviation of the given data. Give your answer to one decimal place

Question 3

ABCDE is a regular pentagon.

- (a) Copy the diagram onto your answer sheet and prove that $\angle ABC = 108^{\circ}$.
- (b) Prove that AC is parallel to ED.



Marks

2

3

2

1

Marks

Marks

The polynomial $A(x) = px^3 + qx^2 - 2$ is divisible by x - 1 and leaves a remainder of 18 when divided by x + 2. Find the value of p and q.

Question 2

Express $\frac{3\sqrt{2}}{8-5\sqrt{2}}$ as a fraction in simplest form with a rational denominator.

Question 3

Marks

Marks

Marks

3

2

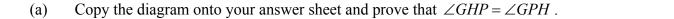
Marks

4

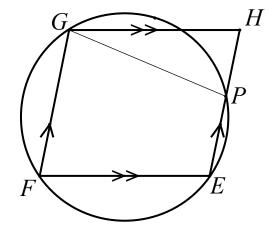
- (a) Sketch the curve $y = (x+2)^2(x-4)$, clearly showing all intercepts with the coordinate axes. 2
- (b) Hence solve the inequality $(x+2)^2(x-4) \ge 0$.

Question 4

EFGH is a parallelogram. A circle passing through the vertices E, F and G cuts the side EH at P.



(b) Hence prove that EF = PG.



2

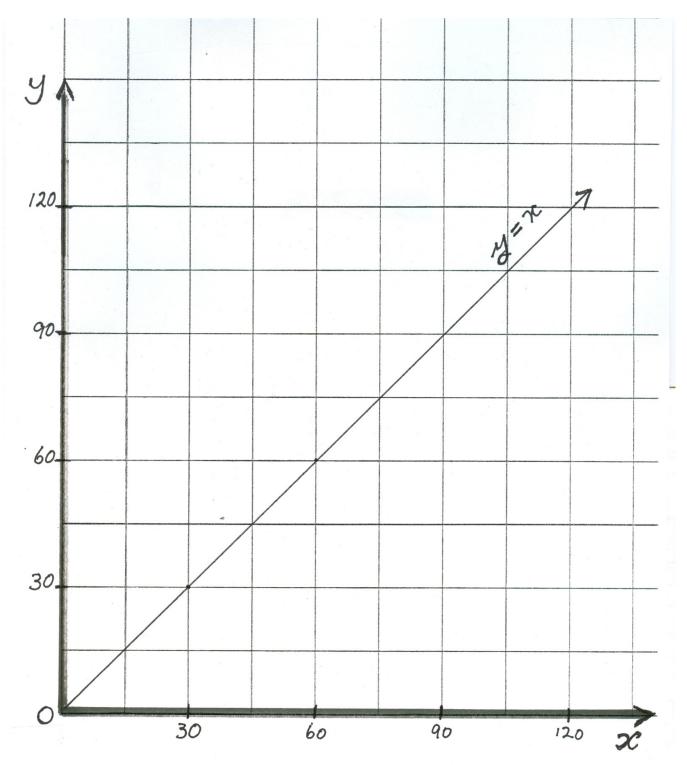
Stell	on E (STARTA NEW TAGE) (IS Marks)	
Ques	tion 1	Marks
Fully factorise $9m^2 - 6m - 4n^2 + 4n$.		
Ques	tion 2	Marks
The bearings and distances of two mountains viewed from my house are measured. Mount Visible is 6.4 km from my house and its bearing is $N25^{\circ}E$, while Mount Mighty is 4.5 Km from my house and bears $N65^{\circ}W$.		
(a)	Draw a neat diagram of the above information, clearly showing all angles and distances.	2
(b)	Find, correct to the nearest 100m, the distance between Mount Visible and Mount Mighty.	2
(c)	Find, correct to the nearest degree, the bearing of Mount Visible when viewed from Mount Mighty.	3
Question 3		Marks
(a)	The line $3x + 4y - 48 = 0$ crosses the <i>x</i> -axis at point <i>A</i> and the <i>y</i> -axis at point <i>B</i> . Find the	1

(b) Point P(r,s) lies on the interval *AB*. If the interval *OP*, where *O* is the origin, divides ΔAOB into two smaller triangles ΔAOP and ΔBOP whose areas are in the ratio 3:5, find

the coordinates of point *P*.

This is the end of the examination

SECTION C QUESTION 1(a) Complete the answer to Section C Question 1(a) on this grid Return this page with the rest of your answers to Section C



Year 9 Yearly Examination 2008 – Solutions

Sectio	on A (15 MARKS)	
(a)	2.36	Marks 1
(b)	$(a-2b)(a^2+2ab+4b^2)$	1
(c)	0.541	1
(d)	$\frac{1}{\left(\sqrt[3]{27}\right)^4} = \frac{1}{81}$	1
(e)	$\overline{\overline{x}}$	1
(f)	$(3p-2)^{2} = 5$ $3p-2 = \pm\sqrt{5}$ $3p = 2 \pm \sqrt{5}$ $p = \frac{2 \pm \sqrt{5}}{3}$	2
(g)	$\frac{y}{y+4} = \frac{3}{5}$ (interval parallel to side of triangle divides other sides in same ratio) 5y = 3y + 12	2

2y = 12y = 6

* Could prove that the triangles are similar then use ratios of corresponding sides

3

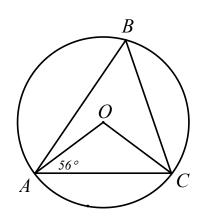
Marks 1

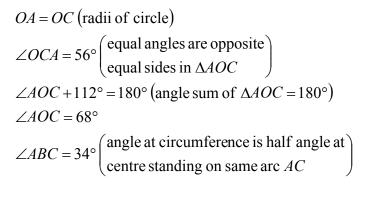
1

2

(h)
$$t-3 = \sqrt{4t-7}$$

 $(t-3)^2 = 4t-7$
 $t^2 - 6t + 9 = 4t - 7$
 $t^2 - 10t + 16 = 0$
 $(t-2)(t-8) = 0$
 $t = 2 \text{ or } 8$
but $t-3 \ge 0$, i.e. $t \ge 3$
 $\therefore t = 8$





Section B (START A NEW PAGE) (15 MARKS)

Question 1

(i)

(a)
$$m(OC) = \frac{14-0}{-2-0}$$

 $= -7$
 $m(AB) = \frac{24-10}{8-10}$.
 $= -7$
 $\therefore OC \parallel AB \text{ (equal slopes)}$
(b) $d(OC) = \sqrt{(-2-0)^2 + (14-0)^2}$
 $= \sqrt{200}$
 $= 10\sqrt{2}$
 $d(AB) = \sqrt{(8-10)^2 + (24-10)^2}$
 $= \sqrt{200}$
 $= 10\sqrt{2}$

 $\therefore OC = AB$ (equal lengths)

(c)
$$m(OB) = \frac{24-0}{8-0}$$

$$= 3$$

$$m(AC) = \frac{14-10}{-2-10}$$

$$= -\frac{1}{3}$$

$$m(OB) \times m(AC) = 3 \times \left(-\frac{1}{3}\right)$$

$$= -1$$

$$\therefore OC \perp AB \text{ (product of slopes equals - 1)}$$
(d) Rhombus
1
$$OC \parallel AB \text{ and } OC = AB$$

$$\therefore OABC \text{ is a parallelogram (pair of sides equal and parallel)}$$
but $OC \perp AB$

$$\therefore OABC \text{ is a rhombus (parallelogram with perpendicular diagonals)}$$
Question 2
$$Marks$$
(a) $\frac{60}{\nu}$
1
(b) $\frac{60}{\nu-4}$
(c) $\frac{60}{\nu-4} - \frac{60}{\nu} = \frac{1}{2}$

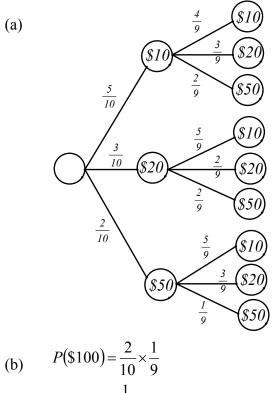
$$120\nu - 120(\nu - 4) = \nu(\nu - 4)$$
(c) $\frac{60}{\nu-4} - \frac{60}{\nu} = \frac{1}{2}$
(d) $\frac{60}{\nu} + \frac{1}{2}$
(e) $\frac{60}{\nu-4} - \frac{60}{\nu} = \frac{1}{2}$
(f) $\frac{3}{120\nu - 120(\nu - 4) = \nu(\nu - 4)}$

 $480 = v^{2} - 4v$ $v^{2} - 4v - 480 = 0$ (v - 24)(v + 20) = 0

v = -20 or 24

speed = 24 km / hr

but v > 0 $\therefore v = 24$



$$=\frac{1}{45}$$
(c) $P(<\$40) = P(\$20) + P(\$30)$
 $=\frac{5}{10} \times \frac{4}{9} + \frac{5}{10} \times \frac{3}{9} + \frac{3}{10} \times \frac{5}{9}$
 $=\frac{5}{9}$

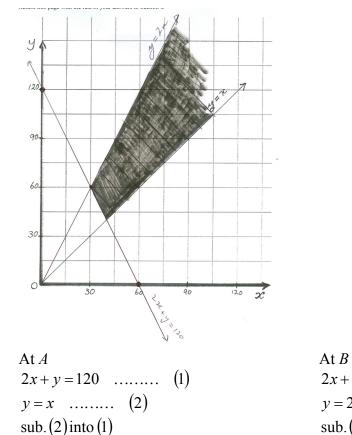
JRAHS Yr9 Yearly 2008

Marks 2

2

1

(b)



At A	
2x + y = 120	(1)
$y = x \dots (2)$	
sub. (2) into (1)	
3x = 120	
x = 40	
<i>y</i> = 40	
vertex (40,40)	

At B 2x + y = 120 (1) y = 2x (2) sub. (2) into (1) 4x = 120 x = 30 y = 60vertex (30,60) 2

Marks

3

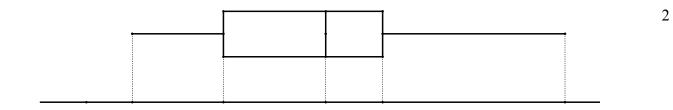
x	У	V = 5x + 4y - 100
40	40	260
30	60	290

Minimum value of V=260

Question 2 (a) (i) ra

(i) range = 38
(ii) median = 21
(iii) interquartile range of the data = 26 - 12

(b)



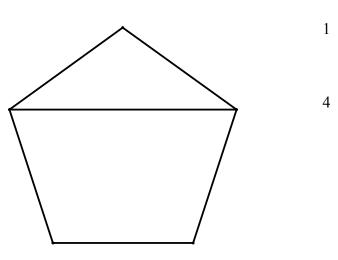
(c) $\sigma_n = 9.4$ (to 1 decimal place)

Question 3

(a)
$$\angle ABC = \frac{180(n-2)^{\circ}}{n}$$

 $= \frac{180(5-2)^{\circ}}{5}$.
 $= 108^{\circ}$
(b) $AB = BC \left(\begin{array}{c} \text{all sides of regular} \\ \text{pentagon are equal} \end{array} \right)$
 $\angle BAC = \angle BCA = x^{\circ} \left(\begin{array}{c} \text{equal angles are} \\ \text{opposite equal sides} \\ \text{of } \Delta ABC \end{array} \right)$
 $2x + 108 = 180 \text{ (angle sum of } \Delta ABC = 180^{\circ} \text{ x} = 36$
 $\angle CAE + 36^{\circ} = 108^{\circ} \left(\begin{array}{c} \text{angles at vertices} \\ \text{equal } 108^{\circ} \end{array} \right)$
 $\angle CAE = 72^{\circ}$
 $\angle CAE + \angle AED = 72^{\circ} + 108^{\circ} = 180^{\circ} \text{ angles are} \text{ supplementary}$

Marks



$$p(1)=0 \implies p+q-2=0$$

$$p+q=2 \qquad (1)$$

$$p(-2)=18 \implies -8p+4q-2=18$$

$$-2p+q=5 \qquad (2)$$

$$(1)-(2)$$

$$3p=-3$$

$$p=-1$$

sub. into (1) $\therefore -1+q=2$

$$q=3$$

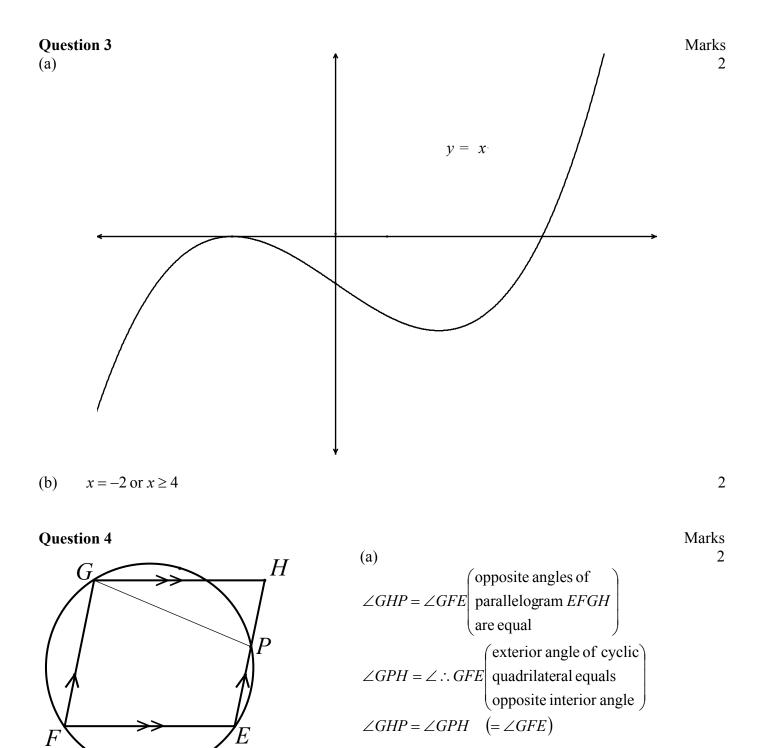
 $\therefore p=-1$ and $q=3$

Question 2

$$\frac{3\sqrt{2}}{8-5\sqrt{2}} = \frac{3\sqrt{2}}{8-5\sqrt{2}} \times \frac{8+5\sqrt{2}}{8+5\sqrt{2}}$$
$$= \frac{3\sqrt{2}(8+5\sqrt{2})}{8^2 - (5\sqrt{2})^2}$$
$$= \frac{24\sqrt{2} + 30}{64 - 50}$$
$$= \frac{30 + 24\sqrt{2}}{14}$$
$$= \frac{15 + 12\sqrt{2}}{7}$$

Marks 3

Marks

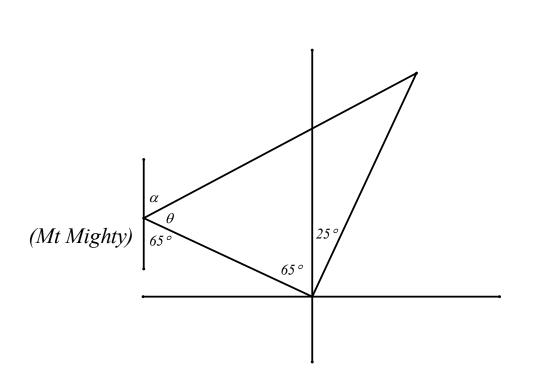


(b) GP = GH (equal angles are opposite equal sides in ΔGHP) FE = GH (opposite sides of a parallelogram are equal) $\therefore GP = FE \quad (= GH)$

 $9m^{2} - 6m - 4n^{2} + 4n = 9m^{2} - 4n^{2} - 6m + 4n$ = (3m - 2n)(3m + 2n) - 2(3m - 2n)= (3m - 2n)(3m + 2n - 2)

Question 2

(a)



(b)
$$\angle AOB = 90^{\circ}$$

 $AB^2 = 4.5^2 + 6.4^2$ (Pythagoras' Theorem)
 $= 61.21$
 $AB = 7.8 \, km$
(c) $\tan \theta = \frac{6.4}{4.5}$
 $\theta = 54^{\circ}53'$
 $\alpha + \theta + 65^{\circ} = 180^{\circ}$
 $\alpha = 180^{\circ} - 65^{\circ} - 54^{\circ}53'$
 $= 60^{\circ}7'$

: bearing is $N60^{\circ}E$ or $060^{\circ}T$

2

Marks

Marks

2

3

(a)

At A, y = 0

A is (16,0)

At B, x = 0 $\therefore 4y - 48 = 0$

x = 16

 $\therefore 3x - 48 = 0$

Marks 1

4

y = 12*B* is (0,12) (b) 3x + 4y - 48 = 0Area of $\triangle OPA = \frac{1}{2}(16)(s)$ u^2 $=8s u^{2}$ Area of $\triangle OPB = \frac{1}{2}(12)(r)$ u^2 $=6r u^2$ $\frac{8s}{6r} = \frac{3}{5}$ 40s = 18r

$$s = \frac{9r}{20}$$

JRAHS Yr9 Yearly 2008

But point
$$P(r,s)$$
 lies on the line $3x + 4y - 48 = 0$
 $\therefore 3r + 4s - 48 = 0$
 $3r + 4\left(\frac{9r}{20}\right) = 48$
 $3r + \frac{9r}{5} = 48$
 $24r = 240$
 $r = 10$
 $s = \frac{9 \times 10}{20}$
 $s = 4.5$
 $\therefore P \text{ is (10,4.5)}$

This is the end of the examination