Name:	
Class:	

YEARLY EXAMINATION
 YEAR 92014
 MATHEMATICS

Time Allowed - 85 minutes plus 5 minutes Reading time.

INSTRUCTIONS:

- Start each section on a new page
- Write your Name and Class at the top of each page
- Write in Pen and draw diagrams in Pencil
- Department of Education approved calculators are permitted
- The use of mathematical templates are permitted.
- Show all necessary working
- Marks may not be awarded for untidy or carelessly arranged work
- No grid paper is to be used unless provided with the examination paper
- Teachers: Please collect each section separately.

Outcome	A	A	B	B	C	C	D	D	E	E	Total
Financial	1		1.2	/6							/10
Algebra	2,3	- /5			1,2	/6	1,2	/15	1	/3	/29
Trigonometry			3d	/2	3,4	/8			3,4,5	/8	/18
Co-ord geom			$3 \mathrm{a}, \mathrm{b}, \mathrm{c}$	/6							/6
Geometry	4,5	/5							2	/4	/9
Total		/14		/14		/14		/15		/15	/72

Section A (14 marks) (START A NEW PAGE)

1. Ray has the option of choosing between two types of investment. Plan A offers simple interest at 3% per quarter for 3 years, whereas Plan B offers compound interest of 11% p.a. for 3 years. Ray has $\$ 2000$ to invest.
a) Find the interest earned on Ray's investment if he chooses Plan A.
b) Compare and determine which plan will give the better return.
2. By using the graphical method, solve the following simultaneous equations: $x+2 y=7$ and $2 x-y=-1$.
3. Dr. Wong has $\$ 20000$ to invest. He invests a part at 6% p.a. simple interest and the rest at 7% p.a. simple interest. After one year, he earns $\$ 1280$ in interest. How much did he invest at each rate?
4. State two tests that can be used to prove that a quadrilateral is a parallelogram.
5. Given that the following shape is a parallelogram, find the perimeter of this parallelogram (to the nearest whole number) providing reasons.

Section B (14 marks) (START A NEW PAGE)

1. The value of a new car depreciates at 5% p.a. If a new car was bought for $\$ 15700$, what will its value be after 4 years?
2. Molly earns $\$ 64500$ each financial year. Her deductible allowance is $\$ 3497$. The following table shows the tax rate for 2014-2015. There is also a Medicare levy of 2%.

Taxable income	Tax on this income
$0-\$ 18,200$	Nil
$\$ 18,201-\$ 37,000$	19 c for each $\$ 1$ over $\$ 18,200$
$\$ 37,001-\$ 80,000$	$\$ 3,572$ plus 32.5 c for each $\$ 1$ over $\$ 37,000$
$\$ 80,001-\$ 180,000$	$\$ 17,547$ plus 37 c for each $\$ 1$ over $\$ 80,000$
$\$ 180,001$ and over	$\$ 54,547$ plus 45 c for each $\$ 1$ over $\$ 180,000$

a) What is Molly's total taxable income?
b) Molly has already paid $\$ 17900$ in tax. During this financial year, would she have to pay more tax or receive a tax rebate (Medicare levy is included in the tax)? How much would it be?
3. The point $\mathrm{A}(-7,0), \mathrm{B}(-9,3)$ and $\mathrm{C}(0,9)$ are the vertices of a triangle.
a) Show that $\triangle \mathrm{ABC}$ is a right-angled triangle.
b) Find the length of $A B$.
c) Find the area of $\triangle \mathrm{ABC}$.
d) Calculate the size of $\angle \mathrm{ACB}$ to the nearest degree.

Section C (14 marks) (START A NEW PAGE)

1. Solve for x :
a) $2^{x}=\frac{1}{4}$
b) $9^{2 x-1}=27^{2}$
2. When $x^{3}+p x^{2}+p^{2} x-36$ is divided by $x-3$ the remainder is 21 . Find the possible values of p.
3. From the top of a 200 metres high building, the angle of depression to the bottom of a second building is 20°. From the same point, the angle of elevation to the top of the second building is 10°. Calculate the height of the second building in metres to 2 decimal places.
4. Ship A leaves the dock and sails on a bearing of $028^{\circ} \mathrm{T}$ at a speed of $24 \mathrm{~km} / \mathrm{h}$. Ship B leaves the dock at the same time on a bearing of $118^{\circ} \mathrm{T}$ at a speed of $28 \mathrm{~km} / \mathrm{h}$. They travel for 4 hours.
a) Sketch a diagram showing all the information given.
b) How far apart are the two ships? (to the nearest kilometre)
c) What is the bearing of Ship A from Ship B (providing reason)?

Section D (15 marks) (START A NEW PAGE)

1. If $P(x)=x^{3}+2 x^{2}-5 x-6$ and $A(x)=x+2$,
a) Find the degree and the leading coefficient of $P(x)$.
b) Find $P(x) \times A(x)$.
c) Find $P(x) \div A(x)$, writing your answer in the form $P(x)=A(x) Q(x)+R(x)$.
d) Factorise $P(x)$ fully.
e) Neatly sketch the graph of $P(x)$ showing all essential features.
f) Using your graph, solve the inequality $x^{3}+2 x^{2}-5 x-6>0$.
2. A cannon ball is fired from a hill which is 80 metres above a lake. The cannon ball's height (h) above the surface of the lake is given by $h=-16 t^{2}+64 t+80$, where t is the time in seconds and h is measured in metres.
a) After how many seconds will the cannon ball hit the surface of the lake?
b) What is the maximum height reached by the cannon ball?

Section E (15 marks) (START A NEW PAGE)

1. If A and B are the remainders when the polynomials $x^{3}+2 x^{2}-5 a x-7$ and $x^{3}+a x^{2}-12 x+6$ are divided by $x+1$ and $x-2$ respectively and if $2 A+B=6$ find the value of a.
2. Given that ABCD is a rectangle and that $\mathrm{AF}=\mathrm{DE}$. Prove that AEFD is a rectangle. (4)

3. In a right angled triangle, $\tan x=\frac{3}{4}$. Find $\sin x$ and $\cos x$.
4. Find the length of BC by first splitting the triangle into two smaller right-angled triangles. Write your answer correct to 2 decimal places.

5. The diagram shows a semi-circle and an isosceles triangle. The areas of the two shapes are equal. Find the value of $\tan x^{\circ}$, leaving your answer in exact form.

$$
\text { YR } 9 \text { YEARLY } 2014
$$

Section A

1. a)

$$
\begin{align*}
& P \operatorname{lan} A: \\
& I=P R N \tag{1}\\
& I=2000 \times 0.03 \times(4 \times 3) \\
& =\$ 720 \tag{1}
\end{align*}
$$

b) Plan B :

$$
\begin{aligned}
A & =P(1+r)^{n} \\
& =2000(1+0.11)^{3} \\
& =\$ 2735.26 \\
I & =2735.26-2000 \\
& =\$ 735.26
\end{aligned}
$$

\therefore Plan B will have the (1)
better return.

3. let the part invested at 6% be x
let the part invested at 7% be y.

$$
\begin{align*}
& x+y=20000 \Rightarrow x=20000 y \tag{1}\\
& 0.06 x+0.07 y=1280-2
\end{align*}
$$

Sub. (1) into (2)

$$
\begin{array}{r}
0.06(20000-y)+0.07 y=1280 \\
1200-0.06 y+0.07 y=1280 \\
0.01 y=80 \\
y=8000
\end{array}
$$

when $y=8000, x=20000-8000$

$$
=12000
$$

\therefore He invested $\$ 12000$ at 6%.a. (1) and 88000 at 7% pa.
4. -Both pairs of opposite sides parallel?

- Both pairs of opposite sides equal
- Both pairs of opposite angles equal
- Diagonals bisect each other
- A pair of sides are equal and parallel

5. $x+30=2 x-10$ (opposite sides of a parallelogram are equal) $x=40$
$y+10=2 y-10$ (opposite sides of a parallelogram are equal)

$$
\begin{aligned}
& y=20 \\
& \therefore \text { Perimeter }=2(20)-10+20+10+40+30+2(40)-10 \\
&=200 \text { units. }
\end{aligned}
$$

Section B
1.

$$
\begin{align*}
A & =P(1-r)^{n} \\
& =15700(1-0.05)^{4} \\
& =\$ 12787.75 \tag{1}
\end{align*}
$$

2. a) Taxable income:

$$
\$ 64500-3497=\$ 61003
$$

b)

$$
\begin{aligned}
\text { Tax } & =3572+(61003-37000) \times 0.325 \\
& =\$ 11372.98 \\
\text { medicare } & =61003 \times 0.02 \\
& =\$ 1220.06 \\
\text { Tax due } & =\$ 11372.98+\$ 1220.06 \\
& =\$ 12593.04 \\
\therefore 17900 & -12593.04=\$ 5306.96
\end{aligned}
$$

\therefore she would receive refund of $\$ 5306,96$

a)

$$
\begin{array}{rlrl}
m_{A B}=\frac{0-3}{-7+9}, & m_{B C} & =\frac{9-3}{0+9} \\
& =\frac{-3}{2} & =\frac{6}{9} \\
& =\frac{2}{3}
\end{array}
$$

$$
m_{A B} \times m_{B C}=-\frac{3}{2} \times \frac{2}{3}
$$

$$
=-1
$$

$$
\begin{equation*}
\therefore A B+B C \tag{1}
\end{equation*}
$$

$\therefore \triangle A B C$ is a right-angled triangle $(A B+B C)$
b)

$$
\begin{align*}
A B & =\sqrt{(-9+7)^{2}+(3-0)^{2}} \\
& =\sqrt{(-2)^{2}+3^{2}} \\
& =\sqrt{13} \tag{1}
\end{align*}
$$

c)

$$
\begin{aligned}
B C & =\sqrt{(0+9)^{2}+(9-3)^{2}} \\
& =\sqrt{117}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \text { Area of } \triangle \triangle B C=\frac{1}{2} \times \sqrt{13} \times \sqrt{117} \tag{1}
\end{equation*}
$$

$$
=19.5 \text { units }^{2}
$$

d) $\tan \angle A C B=\frac{\sqrt{13}}{\sqrt{17}}$

$$
\begin{align*}
\angle A C B & =\tan ^{-1}\left(\frac{\sqrt{13}}{\sqrt{177}}\right) \\
& =18.43: \cdot \\
& =18^{\circ} \text { (nearest degree) }
\end{align*}
$$

\qquad

Section C

1. a)

$$
\begin{aligned}
& 2^{x}=4^{-1} \\
& 2^{x}=2^{-2}
\end{aligned}
$$

$$
\therefore x=-2
$$

b)

$$
\begin{align*}
& x=-\alpha \tag{1}\\
& 3^{2(2 x-1)}=3^{3 \times 2} \\
& 2(2 x-1)=6 \\
& 2 x-1=3 \\
& 2 x=4 \tag{1}\\
& \therefore x=2
\end{align*}
$$

2.

$$
\begin{align*}
& \text { Let } p(x)=x^{3}+p x^{2}+p^{2} x-36 \\
& p(3)=3^{3}+p(3)^{2}+p^{2}(3)-36 \tag{1}\\
& =3 p^{2}+9 p-9 \\
& p(3)=21 \\
& \therefore 3 p^{2}+9 p-9=21 \tag{1}\\
& 3 p^{2}+9 p-30=0 \\
& p^{2}+3 p-10=0 \\
& (p+5)(p-2)=0 \tag{1}\\
& \therefore p=-5 \text { or } 2
\end{align*}
$$

3

$$
\begin{array}{r}
\tan 20^{\circ}=\frac{200}{x} \\
x=\frac{200}{\tan 20}
\end{array}
$$

$$
\tan 10=\frac{y}{x}
$$

$$
y=x \tan 10
$$

$$
=\frac{200 \tan 10}{\tan 20}
$$

\therefore height of second tower is:

$$
\begin{aligned}
200+y & =200+\frac{200 \tan 10}{\tan 20} \\
& =296.89 \mathrm{~m}(2 \mathrm{dp})
\end{aligned}
$$

4. a)

(1)
b) $\angle B O N-\angle A O N=90^{\circ}$

$$
\begin{aligned}
\therefore A B^{2} & =96^{2}+112^{2} \text { (by pythagoras theorem) } \\
A B & = \pm \sqrt{21760} \\
& =147.512 \ldots \text {, since } A B \geqslant 0 \\
& =148 \mathrm{~km} \text { (nearest km) }
\end{aligned}
$$

e) $\angle O B C=180^{\circ}-118^{\circ}$ (co-interior angles on parallel lines $=62^{\circ}$. are supplementary)

$$
\begin{align*}
& \tan \angle A B O=\frac{96}{112} \\
& \angle A B O=40.601(3 \mathrm{dp}) \\
& \therefore \angle A B C=\angle O B C-\angle A B O \\
&=62^{\circ}-40.601^{\circ} \\
&=21.399^{\circ} \tag{1}\\
&=21^{\circ} \\
& \therefore \text { beaning is } 360^{\circ}-21^{\circ} \\
&=339^{\circ} \mathrm{T} \tag{1}
\end{align*}
$$

Section D.

1. a) degree: 3
leading coefficient: I
b)

$$
\begin{aligned}
P(x) \times A(x)= & \left(x^{3}+2 x^{2}-5 x-6\right)(x+2) \\
= & x^{4}+2 x^{3}+2 x^{3}+4 x^{2}-5 x^{2}-10 x-6 x-12 \\
= & x^{4}+4 x^{3}-x^{2}-16 x-12
\end{aligned}
$$

c)

$$
x + 2 \longdiv { \frac { x } { x ^ { 3 } + 2 x ^ { 2 } - 5 x - 6 } } \frac { x ^ { 3 } + 2 x ^ { 2 } } { }
$$

$$
\begin{align*}
&-5 x-6 \\
&-5 x-10 \\
& 4 \tag{1}\\
& \therefore P(x) \div A(x)=(x+2)\left(x^{2}-5\right)+4
\end{align*}
$$

d) test $x=1, x=-1$

$$
\begin{aligned}
P(1) & =1^{3}+2(1)^{2}-5(1)-6 \\
& \neq 0 \\
P(-1) & =(-1)^{3}+2(-1)^{2}-5(-1)-6 \\
& =0
\end{aligned}
$$

$\therefore x+1$ is a factor.

$$
\left.\begin{array}{rl}
x+1 & \frac{\sqrt{x^{3}+2 x^{2}-5 x-6}}{x^{3}+x^{2}} \\
x^{2}-5 x \\
x^{2}+x \\
-6 x-6 \\
-6 x-6 \\
0
\end{array}\right] \begin{aligned}
\therefore P(x)= & (x+1)\left(x^{2}+x-6\right) \\
& =(x+1)(x+3)(x-2)
\end{aligned}
$$

e)

(1) x-intercepts
(1) y-intercept
(D) correct shape \& scale.
f) $-3<x<-1$ or $x>2$

2
a) $\cdot h=-16 t^{2}+64 t+80$
when $h=0$
(1)

$$
\begin{aligned}
& 16 t^{2}-64 t-80=0 \\
& t^{2}-4 t-5=0 \\
& (t-5)(t+1)=0 \\
& t=5 \text { or }-1 \text { but } t \geqslant 0
\end{aligned}
$$

\therefore it takes 5 seconds for the cannon ball to hit the water (I)
b)

$$
\begin{aligned}
\text { max. at } f & =\frac{5-1}{2} \\
& =2
\end{aligned}
$$

When $t=2$

$$
\begin{aligned}
h & =-16(2)^{2}+64(2)+80 \\
\therefore h & =144 m
\end{aligned}
$$

Section E

1. let $P(x)=x^{3}+2 x^{2}-5 a x+7$
and $Q(x)=x^{3}+a x^{2}-12 x+b$

$$
\begin{align*}
P(-1) & =(-1)^{3}+2(-1)^{2}-5 a(-1)+7 \\
& =5 a-6 \\
P(-1) & =A \\
\therefore A & =5 a-6 \tag{11}\\
Q(2) & =2^{3}+a \times 2^{2}-12 \times 2+6 \\
& =4 a-10 \\
Q(2) & =B \\
B & =4 a-10 \tag{1}
\end{align*}
$$

since $2 A+B=6$

$$
\begin{align*}
2(5 a-6)+(4 a-10) & =6 \\
10 a-12+4 a-10 & =6 \\
14 a & =28 \\
\therefore a & =2
\end{align*}
$$

2. ABCD is a rectangle.
$\angle D A E=\angle A D F=90^{\circ}$ (angles in a rectangle are right angles)
In $\triangle A D F$ \& $\triangle D A E$

$$
\angle A D F=\angle D A E=90^{\circ} \text { (proven above) }
$$

$A D$ is common
$A F=D E$ (given)

$\therefore \triangle A D F \equiv \triangle D A E$ (DHS)
$\therefore A E=D F$ (corresponding sides of congruent triangles are equal)

$$
\begin{align*}
\angle D A E+\angle A D F & =90^{\circ}+90^{\circ} \tag{1}\\
& =180^{\circ} \tag{0}
\end{align*}
$$

: HE E/DDF (winterior angles are supplementary)
\therefore AEFD is a rectangle (one pair of opposite sides, AE ADF are equal and parallel and the (I) diagonals, $A F$ \& $D E$ are equal)

$$
\begin{align*}
\sin 30 & =\frac{B D}{28} \\
B D & =28 \sin 30 \\
\sin 25 & =\frac{B D}{C B} \\
\therefore C B & =\frac{B D}{\sin 25} \\
& =\frac{28 \sin 30}{\sin 25} \\
& =33.1268 \ldots \\
& =33.13 \mathrm{~m}(2 d p .)
\end{align*}
$$

5.

let the radius of -the circle be r let the perpendicular height of the (1) triangle be h.
Area of semi-circle $=\frac{1}{2} \pi r^{2}$

$$
\begin{aligned}
\text { Area of triangle } & =\frac{1}{2} \times h \times 2 r \\
& =h r
\end{aligned}
$$

Areas are equal,

$$
\begin{align*}
& \therefore \quad \frac{1}{2} \pi r^{2}= \\
& h= \\
& \tan x=\frac{h}{r} \\
&=\frac{\frac{1}{2} \pi r}{r} \\
& \therefore \tan x=\frac{1}{2} \pi
\end{align*}
$$

$$
r^{2}=h r
$$

$$
h=\frac{1}{2} \pi r
$$

