SYDNEYBOYS HIGH SCHOOL modre park, surry hills

Year 9

Yearly Examination 2009

Advanced

Mathematics

General Instructions

- Working time - 90 minutes
- Write using black or blue pen.
- Approved calculators may be used.
- All necessary working MUST be shown in every question if full marks are to be awarded.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- Clearly indicate your class by placing an X, next to your class

NAME:

Class	Teacher	
9 A	Mr Kourtesis	
9 B	Ms Nesbitt	
9 C	Ms Ward	
9 D	Ms Roessler	
9 E	Mr McQuillan	
9 F	Mr Boros	
9 G	Mr Hespe	

- All answers should be presented in simplest exact form, unless otherwise directed.
- Marks may not be awarded for untidy or badly arranged work.

Examiner: A.M.Gainford

Question	Mark
1	$/ 18$
2	$/ 18$
3	$/ 18$
4	$/ 18$
5	$/ 18$
6	$/ 18$
7	$/ 18$
Total	$/ 126$

Question 1. (18 marks)

		Answers
(a)	Find, correct to 4 decimal places: (i) $\sin 46^{\circ} 22^{\prime}$ (ii) $\tan 84^{\circ} 12^{\prime}$	(i) (ii)
(b) [1]	Express $0 \cdot 0064045$ in scientific notation, correct to four significant figures.	
(c) [2]	Arrange this set of numbers in order, smallest to largest: $\left\{\frac{11}{7}, \frac{\pi}{2}, \sqrt{3},(0 \cdot 66667)^{-1}\right\}$	
(d) [2]	In each case find the acute angle θ correct to the nearest minute: (i) $\cos \theta=0 \cdot 9$ (ii) $\tan \theta=2.5$	(i) (ii)
(e) [2]	Express $\sqrt{45}-\sqrt{20}$ as a simple surd.	
(f)	Simplify the following expression: $\frac{6\left(x y^{2}\right)^{4}}{\left(3 x^{3} y\right)^{2}}$	
(g) [2]	Express in simplest surd form (i) $2 \sqrt{75}-3 \sqrt{48}$ (ii) $\frac{6 \sqrt{2} \times \sqrt{6}}{4 \sqrt{3}}$	(i) (ii)
(h) [2]	Expand and simplify $(3 x-2)-2(x+2)$.	
(i) [1]	At a Sydney Swans match in Sydney there were five men to every two women. If 31514 fans attended, how many men were there?	

		Answers	
(j)	Solve for $x:$	$4(x+2)-3(x-1)=23$	
$[2]$			

Question 2. (18 marks)

(a) [3]	A letter is chosen at random from the word KATOOMBA. What is the probability that the letter is: (i) A (ii) a consonant (iii) Z	(i) (ii) (iii)
(b)	Factorise completely: (i) $9 a b^{2}-6 a^{2} b$ (ii) $4 y^{2}-36$	(i) (ii)
(c)	Find the volume and surface area of the closed rectangular prism, where measurements are in centimetres.	Volume $=$ $\mathrm{SA}=$
(d) [4]	Factorise (i) $x^{2}-6 x+8$ (ii) $8 x^{2}+18 x-5$	(i) (ii)
(e)	Find x, correct to 3 decimal places.	

		Answers
(f)	A certain quad scull races at $18 \mathrm{~km} / \mathrm{hr}$.	(i)
	(i) How far will it go in 2 minutes?	(ii)
$[2]$	(ii) How long, to the nearest second, will it take to race 1100 m ?	(in

Question 3 (18 Marks)

	(a) Two ordinary dice (6 faces) are (i) rolled, and the uppermost faces noted. (i) Use a grid or table to show all possible outcomes. (ii) What is the probability of a double? (iii) What is the probability that the sum is 7 or 11? [4](ii) (b) Consider the line with equation $2 x-5 y+10=0$ (i) State the gradient of the line. (ii) State the y-intercept of the line. (iii) State the x-intercept of the line.	(iii)

\begin{tabular}{|c|c|c|}
\hline \& \& Answers \\
\hline \begin{tabular}{|c}
\hline (c) \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
[3]
\end{tabular} \& \begin{tabular}{l}
(i) State which test you would use to show that these two triangles are congruent. \\
(ii) Find the value of the pronumeral, correct to 2 decimal places.
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \\
\hline (d)

[3] \& | $A B C D$ is a rectangle with sides 6 cm and $8 \mathrm{~cm} . A X$ and $C Y$ are drawn perpendicular to $B D$. |
| :--- |
| Find the length of $X Y$. | \&

\hline (e) \& | A card is drawn at random from a regular pack of 52 playing cards. State the probability that it is: |
| :--- |
| (i) Red |
| (ii) a spade |
| (iii) a king |
| (iv) a red ace |
| (v) either a seven or a black queen | \& | (i) |
| :--- |
| (ii) |
| (iii) |
| (iv) |
| (v) |

\hline
\end{tabular}

Question 4 (18 Marks)

						Answers
(a)	Use the diagram to answer the following:					
		1_{1}^{y}			$+\dagger$	
		M				
	- \quad.					
	K	C				
	L			B		
	.					
	${ }^{1}{ }^{-5}$		A			
	\because	H				
	-				E	
	${ }^{\bullet} \mathrm{J}$	G				
			${ }^{\circ} \mathrm{F}$			
					\square	
	(i) Find the gradient of H					(i)
	(ii) Find the gradient of F					(ii)
	(iii) Find the gradient of H					(iii)
	(iv) Find the length of $A K$	a surd				(iv)
	(v) Find the mid point of					(v)
	(vi). Write the equation of	line F				(vi)
[6]						
(b)	Anita is five times as old as her son Bill. In fifteen years time Anita will only be twice as old as Bill. Find their present ages.					
(c)	Factorise the following expression completely:					
	$x^{2}-y^{2}+5 x-5 y$					

Question 5 (18 Marks)

		Answers
(a)	Simplify, and express with rational denominator: $\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{7}+\sqrt{5}}$	
(b)	The Venn diagram shows the papers (Herald, Tele, Mx) read by a class of 30 boys. A boy is chosen at random. State the probability that: (i) He reads the Herald (ii) He reads the Tele and Mx, but not the Herald (iii) He reads exactly two papers (iv) He reads no paper	(i) (ii) (iii) (iv)
(c)	A canoeist paddles due west for 1.5 km , then turns due south and covers a further 800 m . How far (to the nearest metre) and in what direction (true bearing, nearest degree) must she travel to return directly to her starting point?	Distance Bearing
(d)	Calculate the area of a right-angled triangle with hypotenuse 8 cm , and an angle of 50°, correct to 2 decimal places.	
(e)	Solve this set of equations simultaneously: $\left.\begin{array}{rl} 3 x-y & =11 \\ x+y & =1 \end{array}\right\}$	$\begin{aligned} & x= \\ & y= \end{aligned}$
(f)	From a lighthouse 70 m above sea level a ship is sighted 1.2 km out to sea. What is the angle of depression from the lighthouse to the ship? (Answer to the nearest minute.)	

		Answers			
(g)	Simplify $\frac{x^{2}+2 x-8}{x^{2}+8 x+16}$.				
(h)	$\begin{array}{l}\text { Sketch the solution set of the inequations on } \\ \text { separate number lines. }\end{array}$	\longleftrightarrow			
(i) $2 x-3<5$					
(ii) $-2(3-2 x) \leq 4$				$]$	
:---					
[2]					

Question 6 (18 Marks)

\begin{tabular}{|c|c|c|}
\hline (a)

[2] \& | The bases of two ladders are the same distance from the base of a vertical wall. The longer ladder is 15 m long, and makes an angle of 58° with the ground. |
| :--- |
| If the shorter ladder is 12.6 m long, what angle does it make with the ground? (Nearest degree) | \&

\hline (b) \& | Find the general form equations of the lines: |
| :--- |
| (i) Parallel to the line $3 x+4 y-2=0$ and passing through the point $(-3,4)$. |
| (ii) Perpendicular to the line $3 x+y=4$ and with x-intercept at -3 . | \& | (i) |
| :--- |
| (ii) |

\hline (c) \& By the use of an appropriate construction, calculate the area of this triangle, correct to one decimal place. \&

\hline
\end{tabular}

		Answers
(d) [1]	A British 50 pence piece is based on a regular heptagon (7 sides). Find the size of the internal angles.	
(e) [2]	On the number plane below sketch the lines $3 x-2 y=6$ and $y=-\frac{1}{2} x+3$.	
(f)	Use either the elimination method or the substitution method to solve the following system of simultaneous equations: $\left.\begin{array}{l} 7 x+3 y-4=0 \\ 5 x+2 y-3=0 \end{array}\right\}$	
[2]		

\begin{tabular}{|c|c|c|}
\hline \& \& Answers

\hline (g)

[2] \& \multicolumn{2}{|l|}{Sketch on the number plane the region where the inequalities $x-y \leq 2$ and $3 x+y \geq 3$ hold simultaneously.}

\hline (h) \& \& | (i) Given that $A B \\| C D$, prove that $\triangle A B X\\|\\| C D X$ (giving reasons). |
| :--- |
| (ii) Hence find the value of y. (Measurements are in centimeters). |

\hline
\end{tabular}

Question 7 (18 Marks)

This is the end of the paper.

Use this space if you wish to REWRITE any answers Clearly indicate the QUESTION number.

Question

Use this space if you wish to REWRITE any answers Clearly indicate the QUESTION number.

Question	

Use this space if you wish to REWRITE any answers Clearly indicate the QUESTION number.

Question	

