

Year 9

Yearly Examination 2013

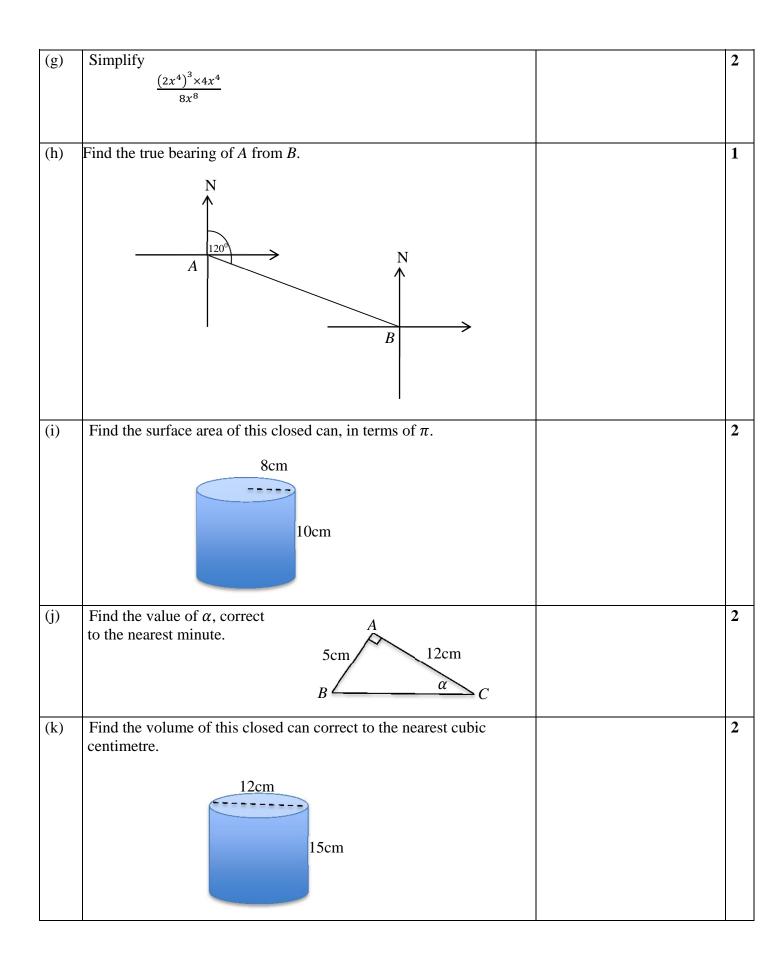
Advanced

Mathematics

- **General Instructions**
- Working time 90 minutes •
- Write using black or blue pen.
- Approved calculators may be used. •
- All necessary working MUST be • shown in every question if full marks are to be awarded.
- If more space is required, clearly write the ٠ number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- Clearly indicate your class by placing an X, next • to your class

Class	Teacher
9 A	Ms Kilmore
9 B	Ms Chen,
	Mr Elliott
9 C	Ms Millar
9 D	Ms Nesbitt
	Ms Likourezos
9 E	Mr Hespe
9 F	Mr McQuillan
9 G	Mr Fuller

NAME:


- All answers should be presented in simplest ٠ exact form, unless otherwise directed.
- Marks may not be awarded for untidy or • badly arranged work.

Examiner: R.Boros

Question	Mark
1	/20
2	/20
3	/20
4	/20
5	/11
6	/15
7	/12
Total	/118

Question 1. (20 marks)

	Answers	
(a)	In the diagram at right, $\triangle ABC$ is isosceles, such that $AB=CB$. Given the other data in the diagram, find $\angle ABC$.	1
(b)	The two triangles shown are congruent. Find the size of $\angle ABC$. $A \longrightarrow E \longrightarrow G \longrightarrow C \longrightarrow C$	1
(c)	Find the size of the angle α . 70° 75° 55° 80°	2
(d)	Circle the correct letter. The expression $\frac{6}{\sqrt[3]{x^2}}$ may be written as:	1
	(A) $6x^{-\frac{2}{3}}$ (B) $6x^{\frac{2}{3}}$ (C) $6x^{\frac{3}{2}}$ (D) $6x^{-\frac{3}{2}}$	
(e)	Andrew made the following statements: I: 6.8×10^{-20} is greater than 1.2×10^{-10} II: 120 million can be written as 1.2×10^{8} Circle the correct letter. Andrew was correct in:	1
	(A) I only (B) II only (C) both I and II (D) neither	l nor II
(f)	Expand and simplify the following expression:	2
	$\left(2\sqrt{3}-3\right)^2$	

(1)	Angelo starts to design a spinner in which a player can win either \$500 or \$1000. Complete the design so that the probability of winning \$500 is 3 times the probability of winning \$1000.	\$500 \$500 \$500 \$500 \$500	1
(m)	Belinda is to choose two balls without replacement containing thirty balls numbered 1 to 30. If the number on the first ball is 2, find the probabi number on the second ball is less than 20, and a mu	lity that the	2

Question 2. (20 Marks)

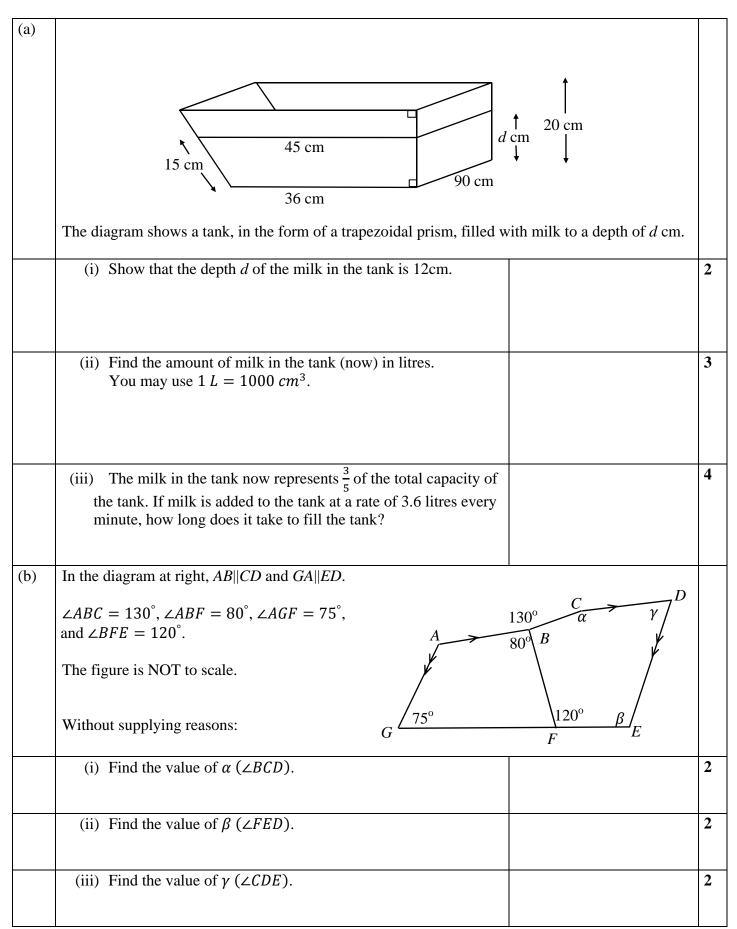
(a)	Solve for <i>x</i> , and graph the solution on a real number line:	2
	5 - 2x > 7	
(b)	Write down one factor of $6x^2 - 17x + 12$.	2
(c)	The line containing the points A, M and B is $y = -3x + 12$. Given M is the midpoint of AB, find the coordinates of M. A	2
(d)	What is the value of the gradient of the line in this diagram? $\begin{array}{c} & & y \\ & & \\$	1
(e)	Simplify as a single fraction: $\frac{2}{x+1} - \frac{1}{x-1}$	2
(f)	Make q the subject of the equation: q(p+2) = 3q + p	2
(g)	Simplify: $\frac{4x^2 + 8x + 3}{2x + 1} \times \frac{1}{4x + 6}$	2
(h)	Find the slope of the line $2x + 3y = 12$.	1
(i)	Calculate the exact distance from $A(-3, 2)$ to $B(4, 1)$.	2

(j)	Find, correct to 3 significant figures:	2
	$(8.53 \times 10^3)^2$	
(k)	Expand and simplify:	2
	3(1-5x)(2+3x)	

Question 3. (20 Marks)

(a)	Factorise completely:		2
	(i) $x^2 + 8x - 9$	(i)	
	(ii) $a(b+c) + b + c$	(ii)	
(b)	(i) Find the angle sum of a regular nonagon (9 sides).	(i)	2
	(ii) Hence find the size of each interior angle.	(ii)	
(c)	Show that the point (3, -1) lies on the line $3x - y = 10$		1
(d)	PQRS is a rhombus. $PQ = 8 \text{ cm}$, and $\angle PSR = 60^{\circ}$. Find the length of PT.		3
(e)	Solve for <i>x</i> :		3
	(i) $2(x+1) - 1 = 8$	(i)	
	(ii) $\frac{2x+1}{x-1} = \frac{1}{2}$	(ii)	
(f)	Simplify the following expression, leaving your answer in index form:		3
	$\frac{2^{x+2}\times 8}{2^{2x}\times 2^{x+1}}$		

Simplify:		2
$\frac{x^3y^{-2}}{x^{-4}y}$		
Solve for <i>x</i> :		2
$\sqrt{x} = \sqrt{75} - \sqrt{12}$		
Find p and q if		2
$\frac{6+\sqrt{3}}{\sqrt{3}} = p + q\sqrt{3}$		
	$\frac{x^{3}y^{-2}}{x^{-4}y}$ Solve for <i>x</i> : $\sqrt{x} = \sqrt{75} - \sqrt{12}$ Find <i>p</i> and <i>q</i> if	$\frac{x^{3}y^{-2}}{x^{-4}y}$ Solve for x: $\sqrt{x} = \sqrt{75} - \sqrt{12}$ Find p and q if


Question 4. (20 Marks)

	$ \begin{array}{c} & y \\ & A (0,4) \\ & & B (4,0) \\ & & C (0,-4) \end{array} $	20
	Given the diagram above:	
(a)	Find the length of <i>AC</i> .	
(b)	Show that $\triangle ABC$ is isosceles.	
(c)	Show that $\triangle ABC$ is a right-angled triangle.	
(d)	Find the midpoint <i>M</i> of interval <i>AB</i> .	
(e)	Find the gradient of <i>OM</i> .	
(f)	Show that the line which passes through the midpoints of <i>AC</i> and <i>AB</i> is parallel to <i>BC</i> .	
(g)	Find the equation of the line <i>OM</i> , and write it in general form.	
(h)	What is the gradient of the x-axis?	

Question 5. (11 Marks)

(a)	A plane is flying at an altitude (height) of 995m. An observer on the ground first observes the plane when it is directly overhead at <i>A</i> . Forty seconds later, the angle of elevation of the plane, at <i>B</i> , from the observer is 20°32'. (i) Through what distance did the plane fly in 40 seconds correct	3
	to the nearest minute?	C
	(ii) Calculate the speed of the plane in km/h correct to 3 significant figures.	2
(b)	C O E D A The diagram represents a ladder AC leaning on a hemispherical tank filled with water. $AB = 7.6m, ED = 2.3m, OE = 3.63m, EB = 4.67m$	
	(i) Find θ , the angle that the ladder makes with the ground at <i>A</i> , correct to the nearest minute.	2
	(ii) Find <i>AD</i>, the distance between the foot of the ladder and the hemispherical tank, correct to the nearest centimetre.	2
	(iii) Find <i>AC</i> , the total length of the ladder, correct to the nearest centimetre.	2

Question 6. (15 Marks)

Question 7. (12 Marks)

(a)	ABCD is a rhombus and $AF = EB$.	
(a)	Provide a full proof to parts (i), (ii), and D	
	(i) Prove that $\triangle ABF \equiv \triangle BCE$.	4
	(ii) Show why $CE = BF$.	1
	(iii) Show that $\angle ECB = \angle FBA$.	1
(b)	How much water has to be added to 1 litre of a 5% ethanol-water solution (volume for volume) to produce a 4% ethanol-water solution? Show all working.	3
(c)	Given $5^1 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + 5^7 + 5^8 + 5^9 + 5^{10}$, show by continued factoring that the above expression could be represented as $30 + 156 \times 125 \times 626$. Show all working.	3

This is the end of the paper.

Use this space if you wish to **REWRITE** any answers

Clearly *indicate* the **QUESTION** number.

Question	

Use this space if you wish to **REWRITE** any answers

Clearly *indicate* the **QUESTION** number.

Question	

Use this space if you wish to **REWRITE** any answers

Clearly *indicate* the **QUESTION** number.

Question	
	1