SYDNEYBOYS HIGH SCHOOL modre park, surry hills

Year 9

Yearly Examination 2013

Advanced

Mathematics

General Instructions

- Working time - 90 minutes
- Write using black or blue pen
- Approved calculators may be used
- All necessary working MUST be shown in every question if full marks are to be awarded.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- Clearly indicate your class by placing an X, next to your class

NAME:

Class	Teacher	
9 A	Ms Kilmore	
9 B	Ms Chen, Mr Elliott	
9 C	Ms Millar	
9 D	Ms Nesbitt Ms Likourezos	
9 E	Mr Hespe	
9 F	Mr McQuillan	
9 G	Mr Fuller	

- All answers should be presented in simplest exact form, unless otherwise directed.
- Marks may not be awarded for untidy or badly arranged work.

Examiner: R.Boros

Question	Mark
1	$/ 20$
2	$/ 20$
3	$/ 20$
4	$/ 11$
5	$/ 15$
6	$/ 12$
7	$/ 118$

Question 1. (20 marks)

		Answers	
(a)	In the diagram at right, $\triangle A B C$ is isosceles, such that $A B=C B$. Given the other data in the diagram, find $\angle A B C$.		1
(b)	The two triangles shown are congruent. Find the size of $\angle A B C$.		1
(c)	Find the size of the angle α.		2
(d)	Circle the correct letter. The expression $\frac{6}{\sqrt[3]{x^{2}}}$ may be written as: (A) $6 x^{-\frac{2}{3}}$ (B) $6 x^{\frac{2}{3}}$ (C) $6 x^{\frac{3}{2}}$	(D) $6 x^{-\frac{3}{2}}$	1
(e)	Andrew made the following statements: I: $\quad 6.8 \times 10^{-20}$ is greater than 1.2×10^{-10} II: 120 million can be written as 1.2×10^{8} Circle the correct letter. Andrew was correct in: (A) I only (B) II only (C) both I and II	(D) neither I nor II	1
(f)	Expand and simplify the following expression: $(2 \sqrt{3}-3)^{2}$		2

(g)	Simplify $\frac{\left(2 x^{4}\right)^{3} \times 4 x^{4}}{8 x^{8}}$	2
(h)	Find the true bearing of A from B.	1
(i)	Find the surface area of this closed can, in terms of π.	2
(j)	Find the value of α, correct to the nearest minute.	2
(k)	Find the volume of this closed can correct to the nearest cubic centimetre.	2

(l)	Angelo starts to design a spinner in which a player can win either $\$ 500$ or $\$ 1000$. Complete the design so that the probability of winning $\$ 500$ is 3 times the probability of winning $\$ 1000$.	
(m)	Belinda is to choose two balls without replacement from a bag containing thirty balls numbered 1 to 30. If the number on the first ball is 2, find the probability that the number on the second ball is less than 20, and a multiple of 3.	

Question 2. (20 Marks)

(a)	Solve for x, and graph the solution on a real number line: $5-2 x>7$		2
(b)	Write down one factor of $6 x^{2}-17 x+12$.		2
(c)	The line containing the points A, M and B is $y=-3 x+12$. Given M is the midpoint of $A B$,		
find the coordinates of M.			

(j)	Find, correct to 3 significant figures: $\left(8.53 \times 10^{3}\right)^{2}$		2
(k)	Expand and simplify: $3(1-5 x)(2+3 x)$		2

Question 3. (20 Marks)

(a)	Factorise completely: (i) $x^{2}+8 x-9$ (ii) $a(b+c)+b+c$	(i) (ii)	2
(b)	(i) Find the angle sum of a regular nonagon (9 sides). (ii) Hence find the size of each interior angle.	(i) (ii)	2
(c)	Show that the point ($3,-1$) lies on the line $3 x-y=10$		1
(d)	$P Q R S$ is a rhombus. $P Q=8 \mathrm{~cm}$, and $\angle P S R=60^{\circ}$. Find the length of $P T$.		3
(e)	Solve for x : (i) $2(x+1)-1=8$ (ii) $\frac{2 x+1}{x-1}=\frac{1}{2}$	(i) (ii)	3
(f)	Simplify the following expression, leaving your answer in index form: $\frac{2^{x+2} \times 8}{2^{2 x} \times 2^{x+1}}$		3

(g)	Simplify: $\frac{x^{3} y^{-2}}{x^{-4} y}$		$\mathbf{2}$
(h)	Solve for $x:$ $\sqrt{x}=\sqrt{75}-\sqrt{12}$ (i) Find p and q if $\frac{6+\sqrt{3}}{\sqrt{3}}=p+q \sqrt{3}$$\quad$2		

Question 4. (20 Marks)

(a)	Find the length of $A C$.		
(b)	Show that $\triangle A B C$ is isosceles.		
(c)	Show that $\triangle A B C$ is a right-angled triangle.		
(d)	Find the midpoint M of interval $A B$.		
(e)	Find the gradient of $O M$.		
(f)	Show that the line which passes through the midpoints of $A C$ and $A B$ is parallel to $B C$. (g)	Find the equation of the line $O M$, and write it in general form.	

Question 5. (11 Marks)

(a)	A plane is flying at an altitude (height) of 995 m . An observer on the ground first observes the plane when it is directly overhead at A. Forty seconds later, the angle of elevation of the plane, at B, from the observer is $20^{\circ} 32^{\prime}$.	
	(i) Through what distance did the plane fly in 40 seconds correct to the nearest minute?	3
	(ii) Calculate the speed of the plane in km / h correct to 3 significant figures.	2
(b)	The diagram represents a ladder $A C$ leaning on a hemispherical tank filled with water. $A B=7.6 \mathrm{~m}, E D=2.3 \mathrm{~m}, O E=3.63 \mathrm{~m}, E B=4.67 \mathrm{~m}$	
	(i) Find θ, the angle that the ladder makes with the ground at A, correct to the nearest minute.	2
	(ii) Find $A D$, the distance between the foot of the ladder and the hemispherical tank, correct to the nearest centimetre.	2
	(iii) Find $A C$, the total length of the ladder, correct to the nearest centimetre.	2

Question 6. (15 Marks)

(a)	The diagram shows a tank, in the form of a trapezoidal prism, filled w				
	(i) Show that the depth d of the milk in the tank is 12 cm .		2		
	(ii) Find the amount of milk in the tank (now) in litres. You may use $1 L=1000 \mathrm{~cm}^{3}$.		3		
	(iii) The milk in the tank now represents $\frac{3}{5}$ of the total capacity of the tank. If milk is added to the tank at a rate of 3.6 litres every minute, how long does it take to fill the tank?		4		
(b)	In the diagram at right, $A B \\| C D$ and $G A \\| E D$. $\angle A B C=130^{\circ}, \angle A B F=80^{\circ}, \angle A G F=75^{\circ},$ and $\angle B F E=120^{\circ}$. The figure is NOT to scale. Without supplying reasons:				
	(i) Find the value of α ($\angle B C D$).		2		
	(ii) Find the value of β ($\angle F E D$).		2		
	(iii) Find the value of $\gamma(\angle C D E)$.		2		

Question 7. (12 Marks)

| (a) | $A B C D$ is a rhombus and $A F=E B$. |
| :--- | :--- | :--- | :--- |
| Provide a full proof to parts (i), (ii), and | |
| (iii). | |

This is the end of the paper.

Use this space if you wish to REWRITE any answers
Clearly indicate the QUESTION number.

Question

Use this space if you wish to REWRITE any answers
Clearly indicate the QUESTION number.

Question	

Use this space if you wish to REWRITE any answers
Clearly indicate the QUESTION number.

Question	

